JPS59132009A - Automatic operation controller of unattended vehicle - Google Patents

Automatic operation controller of unattended vehicle

Info

Publication number
JPS59132009A
JPS59132009A JP58007677A JP767783A JPS59132009A JP S59132009 A JPS59132009 A JP S59132009A JP 58007677 A JP58007677 A JP 58007677A JP 767783 A JP767783 A JP 767783A JP S59132009 A JPS59132009 A JP S59132009A
Authority
JP
Japan
Prior art keywords
sensor
mark
marks
unmanned vehicle
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58007677A
Other languages
Japanese (ja)
Inventor
Hirotaka Miwa
三輪 博孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Original Assignee
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd, Daifuku Machinery Works Ltd filed Critical Daifuku Co Ltd
Priority to JP58007677A priority Critical patent/JPS59132009A/en
Publication of JPS59132009A publication Critical patent/JPS59132009A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons

Abstract

PURPOSE:To reduce guide marks and sensors and to improve economization by detecting set marks, which are provided at intervals, with a sensor, which detects the transversal displacement quantity, to control steering. CONSTITUTION:Running guide marks 5 are provided on the floor surface side at proper intervals in the running direction, and an optical sensor 6 which detects the transversal displacement quantity of the vehicle body to marks 5, a data receiver 7 to which destination data in a branching position or the like is inputted from a transmitter on the ground side, and a control operating device 10 which drives and controls motors M1 and M2 on a basis of this data are provided on the side of an unattended vehicle A. Data received by the receiver 7 is stored in a memory 13 through an I/O port 11 and a CPU12. The transversal displacement is detected in accordance with light sensing states of the optical sensor 6 in right, left, and center positions, and the detection signal is counted by a counter 14 and is operated together with data in the memory 13 by the CPU12, and thus driving mechanisms 8 and 9 are controlled.

Description

【発明の詳細な説明】 本発明は、倉庫設備や組立て生産ライン等においてワー
クの搬送などに用いられる電磁誘導式や光学誘導式など
の無人車を所定経路に沿って走行させ乍ら所望位置で分
岐、合流、変速、停止等をさせるだめの自動運行制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention enables an unmanned vehicle, such as an electromagnetic induction type or an optical guidance type used for transporting workpieces in warehouse facilities, assembly production lines, etc., to move along a predetermined route and at a desired position. This invention relates to an automatic operation control device for branching, merging, shifting, stopping, etc.

従来の自動運行制御装置は、走行経路の全長に亘って連
続的に設けた走行誘導マークと、この誘導マークに対す
る機体の横変位量を検出するセンサーならびに、このセ
ンサーの検出結果に基づいて機体が前記誘導マークに沿
って自動的に追従走行するように操向制御する機構とか
らなる自動追従制御系とは別に、前記走行誘導マークに
泊って適宜間隔を隔てて設けられた走行位置表示マーク
、この走行位置表示マークの存否を検出するセンサー、
分岐、合流位置や停止位置等の行先の制御信号が入力さ
れる受信器、前記センサーからの検出信号により走行に
伴なって前記走行位置表示マークの数をカウントする手
段、前記受信器の入力制御信号と前記のカウント信号と
を演算する手段、その演算結果に基づいて走行駆動機構
及び操向駆動機構に分岐、合流、変速、停止等のための
制御信号を出力する手段を備えた自動運行制御系を設け
て構成していたのであるが、これによる場合は、運行制
御を行なうための多数の走行位置表示マークとこのマー
クを検出するためのセンサーが必要で、しかも、前記走
行位置表示マークの施工に多大の手数と時間を要するた
め、このような無人車を含む自動運行制御装置の設備快
が高騰し7易い欠点があった。
A conventional automatic flight control system uses travel guidance marks that are continuously provided along the entire length of the travel route, a sensor that detects the amount of lateral displacement of the aircraft with respect to the guidance marks, and a system that automatically controls the aircraft based on the detection results of this sensor. Separately from an automatic tracking control system comprising a steering control mechanism so as to automatically follow the guidance mark, driving position display marks provided at appropriate intervals over the travel guidance mark; A sensor that detects the presence or absence of this driving position display mark,
A receiver into which control signals for destinations such as branching, merging positions, and stop positions are input; means for counting the number of travel position display marks as the vehicle travels based on detection signals from the sensors; and input control of the receiver. Automatic operation control comprising means for calculating the signal and the count signal, and means for outputting control signals for branching, merging, shifting, stopping, etc. to the travel drive mechanism and steering drive mechanism based on the calculation results. However, this method requires a large number of travel position display marks for operation control and sensors to detect these marks. Since the construction requires a lot of time and effort, the cost of equipment for automatic operation control systems including such unmanned vehicles has skyrocketed.

本発明は、一般に無人車走行経路が直線と曲線との組合
せから構成され、直線経路では前記無人里を間欠的に操
向制御するだけでも該無人車を所定の走行経路から許容
範囲以上に逸走させることなく、追従走行させることか
できる点に着目し、誘導マーク側の合理的な改造をもっ
て前記の設備面での欠点を改善する点に目的を有する。
The present invention provides that an unmanned vehicle traveling route is generally composed of a combination of straight lines and curved lines, and that on a straight route, even if the unmanned vehicle is only intermittently steered in the unmanned area, the unmanned vehicle deviates from the predetermined traveling route beyond a permissible range. The aim is to improve the above-mentioned drawbacks in terms of equipment by making reasonable modifications to the guidance mark side.

かかる目的を達成するためになされた本発明による無人
車の自動運行制御装置の特徴構成は、適宜間隔を隔てて
設けられた走行誘導マークと、この誘導マークに対する
機体の横変位fL鵞検出するセンサー、このセンサーの
検出結果に基づいて機体が前記誘導マークに沼って自動
的に追従走行するように操向制御する操向駆動機構、行
先データを受領する手段、走行に伴なって前記誘導マー
クの数をカウントする手段、前記の受信データ信号と前
記のカウント信号とを演算する手段、その演算結果に基
づいて走行駆動機構及び操向駆動機構に制御信号を出力
する手段を備えた無人車とから構成した点にある。
The automatic operation control system for an unmanned vehicle according to the present invention, which has been made to achieve such an object, has a characteristic configuration that includes travel guidance marks provided at appropriate intervals and a sensor that detects the lateral displacement of the vehicle with respect to the guidance marks. , a steering drive mechanism for controlling the steering so that the aircraft automatically follows the guidance mark based on the detection result of the sensor; a means for receiving destination data; and a means for receiving destination data; an unmanned vehicle, comprising: means for counting the number of , means for calculating the received data signal and the count signal, and means for outputting a control signal to a travel drive mechanism and a steering drive mechanism based on the calculation result. The point is that it was constructed from.

上述特徴構成による作用は次の通りである。The effects of the above feature configuration are as follows.

つまり、無人車を所定の走行経路に沿って追従走行させ
るための操向制御が間欠制御であり、かつ、制御間隔が
走行速度等によって変動するものの比較的長い間隔であ
るから、前記走行誘導マークを不連続マークにしても所
−期の追従制御に何等の悪影響を及ばずことがない。 
それ故に、追従用センサーの検出信号に基づいて走行誘
導マークの数をカウントすることにより、無人車の現在
の走行位置を確実に把握することができるから、このカ
ウント信号と分岐位置、合流位置、変速位置、停止位置
等の行先データ信号とを、演算して、その演算結果に基
づいて走行駆動機構及び操向駆動機構を制御することに
より、入力された行先データ通り無人車を走行経路の所
望位置で確実に分岐、合流、変速、停止等をさせること
ができる。
In other words, the steering control for making the unmanned vehicle follow a predetermined travel route is an intermittent control, and the control interval is relatively long although it varies depending on the travel speed, etc., so the travel guidance mark Even if it is made into a discontinuous mark, it will not have any adverse effect on the desired follow-up control.
Therefore, by counting the number of travel guidance marks based on the detection signal of the tracking sensor, the current travel position of the unmanned vehicle can be reliably grasped. By calculating the destination data signals such as the gear shift position and stop position, and controlling the travel drive mechanism and steering drive mechanism based on the calculation results, the unmanned vehicle is guided along the desired travel route according to the input destination data. It is possible to reliably branch, merge, change gears, stop, etc. at certain positions.

上述作用による効果は次の通りである。The effects of the above action are as follows.

つまり、従来のような運行制御用の多数の走行位置表示
マーク及びこのマークを検出するためのセンサーを削減
することができるばかりでなく、前記走行位置表示マー
クに対する施工も不要となるから、このような無人車の
自動運行制御装置を経済面で有利に設備し得るに至った
In other words, it is not only possible to reduce the number of travel position display marks and sensors for detecting these marks for operation control as in the past, but also eliminates the need for construction on the travel position display marks. It has now become possible to economically advantageously install an automatic operation control system for unmanned vehicles.

以下、本発明構成の実施例を図面に基づいて説明する。Hereinafter, embodiments of the configuration of the present invention will be described based on the drawings.

第1図、第2図で示すように、走行°フレームfi+の
前部に、左右一対のステアリングホイール(2+ 、 
(2iを支承する縦軸芯(P)周りで回動自在な操向フ
レーム(3)及びこの操向フレーム(3)ヲチェーン等
を介して操向回動させるモータ(Ml)を配備し、かつ
、その後部には、モータ(M2)により駆動される左右
一対の駆動車輪i41 、 f4)を配備して、荷物運
搬用としての無人車(A)を構成している0而して、床
面(FL)側に、走行方向に適宜間隔を隔てて走行誘導
マークの一例である光反射マーク(6)を設けるととも
に、前記無人車(A)側には、前記光反射マーク+61
に対する機体の横変位量を検出する光センサ−(6)と
、地上側に設けた図外の発信器から分岐位置、合流位置
、減速位置、停止位置等の行先データが入力される受信
器(7)ならびに、前記光センサ−(6)の検出信号及
び前記受信器(7)の入力データ信号に基づいて、機体
を光反射マーク+51に沼って自動的に追従移動させ乍
らその走行経路の所望位置で分岐、合流、減速、停止さ
せるべく、前記操向用モータ(Ml)の操向駆動機構(
8)及び前記走行用モータ(M2)の走行駆動機5(9
)に制御信号を出力するマイクロコンピュータ利用の制
御演算装置(lO)とを設けている。
As shown in Figures 1 and 2, a pair of left and right steering wheels (2+,
(Equipped with a steering frame (3) that is rotatable around the vertical axis (P) that supports the steering frame (3) and a motor (Ml) that rotates the steering frame (3) through a chain, etc., and , A pair of left and right drive wheels i41, f4) driven by a motor (M2) are installed at the rear of the vehicle to form an unmanned vehicle (A) for carrying cargo. On the (FL) side, light reflective marks (6), which are examples of travel guide marks, are provided at appropriate intervals in the traveling direction, and on the unmanned vehicle (A) side, the light reflective marks +61 are provided.
an optical sensor (6) that detects the amount of lateral displacement of the aircraft relative to 7) Also, based on the detection signal of the optical sensor (6) and the input data signal of the receiver (7), the aircraft automatically follows the light reflection mark +51 and moves along its travel route. The steering drive mechanism (
8) and the travel drive device 5 (9) of the travel motor (M2).
) is provided with a control arithmetic unit (lO) using a microcomputer that outputs control signals.

前記光反射マーク(6)は、第5図で示すように、光反
射性の高い構造又は材質で製作された偏平状の光反射部
(5a)と床面(FL)に対する打込み固定部(5b)
とから構成されている。 尚、このような打込み固定部
(5b)を設ける代わりに、第6図で示す如く、光反射
部(5a)の裏面に両面接着テープ(5c)を貼付ける
或いは接着剤を塗布して実施例 前記光センサ−(6)は、前記光反射マーク(5)に向
かって光を照射する発光部(6,1) 、 (6a’)
 、 (6a )と光反射マーク(5)の左右両横外側
脇相当箇所及び左右中中央相当箇所に配設した受光部(
6b)。
As shown in FIG. 5, the light-reflecting mark (6) includes a flat light-reflecting part (5a) made of a highly light-reflective structure or material and a part (5b) that is fixed to the floor (FL). )
It is composed of. Incidentally, instead of providing such a driving fixing part (5b), as shown in FIG. The optical sensor (6) includes a light emitting unit (6, 1), (6a') that emits light toward the light reflective mark (5).
, (6a) and the light-receiving parts (
6b).

(6b′)及び(6b)とから構成されている。(6b') and (6b).

次に、前記マイクロコンピュータ利用の制御演算装置(
10)による操向及び運行制御を、第3図、第4図に基
づいて説明する。
Next, the control calculation device using the microcomputer (
The steering and operation control according to 10) will be explained based on FIGS. 3 and 4.

即ち、前記受信器(7)で受信された分岐位置、合流位
置、減速位置、停止位置等の行先データは1/ ボート
(11)及びCPU(12)を介してメモリ(13)に
記憶される。 この時、前記光センサ−(6)の検出信
号に基ついてスタート位置からの光反射マーク(5+の
数をカウントするソフトカウンター(141がリセット
される。
That is, the destination data such as the branch position, merging position, deceleration position, and stop position received by the receiver (7) is stored in the memory (13) via the boat (11) and the CPU (12). . At this time, a soft counter (141) that counts the number of light reflection marks (5+) from the starting position is reset based on the detection signal of the optical sensor (6).

そして、前記光センサ−(6)の受光部により反射光が
検出されると、この光センサ−(6)の検出信号がI/
。ボート(川を介してCPU (+2)に入力され、前
記ソフトカウンター(14)が−回計測作動する。
When the reflected light is detected by the light receiving part of the optical sensor (6), the detection signal of the optical sensor (6) is
. The data is input to the CPU (+2) via the boat (river), and the soft counter (14) operates - times.

この時、CPU(12)では、検出信号をメモリ(I樽
に記憶されたプログラムに従って演算し、その演算結果
に基づいて例えば、中央の受光部< 6 b )q’(
右側の受光部(6b)が感受したときには機体を右側に
操向制御し、中央の受光部(6b):1.−左側の受光
部(6b)が感受したときには機体を左側に操向制御し
、中央の受光部(6b)が感受し、がっ左右両側の受光
部(6b) 、 (6b’)が非感受であるときには機
体を直進制御すべく、前記I/。ボート(川より操向用
モータ(Ml)の操向駆動機構(8)に制御信号を出力
する。
At this time, the CPU (12) calculates the detection signal according to the program stored in the memory (I barrel), and based on the calculation result, for example, the central light receiving part < 6 b ) q' (
When the right light receiving section (6b) senses, the aircraft is steered to the right, and the center light receiving section (6b): 1. - When the left photodetector (6b) is detected, the aircraft is steered to the left, the center photodetector (6b) is detected, and the left and right photodetectors (6b) and (6b') are not sensitive. In order to control the aircraft to go straight, the I/. A control signal is output from the boat (river) to the steering drive mechanism (8) of the steering motor (Ml).

このように機体を光反射マーク(5)に沿って自動的に
追従移動させ乍らそのスタート位置がら光反射マーク(
5)の数をカウントする。 そのカウント信号と前記メ
モリ圓に記憶されたデータ信号とをCPU(+2)で演
算し、機体がデータの分岐位置、合流位置、減速位置、
停止位置に到着したと判断したとき、それらに対応した
制御信号をI10ポート(川から操向用モータ(M工)
の操向駆動機構(8)及び走行用モータ(M2)の走行
駆動機構(9)に出力する。
In this way, while automatically moving the aircraft along the light reflection mark (5), it moves from its starting position to the light reflection mark (5).
5) Count the number of items. The count signal and the data signal stored in the memory circle are calculated by the CPU (+2), and the aircraft moves to the data branch position, merging position, deceleration position,
When it is determined that the stop position has been reached, the corresponding control signals are sent to the I10 port (from the river to the steering motor (M)).
is output to the steering drive mechanism (8) of the drive motor (M2) and the drive drive mechanism (9) of the drive motor (M2).

尚、目的地に到着した無人!(A)は、所定の荷物移載
作業が行なわれたのち、作業が完了したか否かの判別を
行ない、作業が残っている場合には、新しく入力された
行先データに基づいて上述と同様の運行制御が行なわれ
る。
In addition, an unmanned person arrived at the destination! In (A), after the predetermined cargo transfer work has been carried out, it is determined whether the work has been completed or not, and if there is work remaining, the same as above is performed based on the newly input destination data. Operation control is performed.

上述実施例では、前記誘導マーク[5iとして光反射テ
ープを、かつ、前記センサー(6)として光センサーを
使用したが、これの代わりに、磁石製マークと磁気セン
サー又は金属製マークと金属感知センサーを使用して実
施しても良い。
In the above embodiment, a light reflective tape was used as the guide mark [5i] and a light sensor was used as the sensor (6), but instead of this, a magnetic mark and a magnetic sensor or a metal mark and a metal sensing sensor were used. It may be carried out using.

例えば、第7図で示すように、第1走行経路(R1)の
Po番地をホームポジションとして、所定の積み卸し作
業が終了した無人Jij(A)をP1番地の分岐点を直
進してP2番地で減速し、P3番地で停止させる場合で
は、 (イ)無人車(A)がr1番地に到着したとき前記操向
駆動機構(8)に直進のための制御信号を出力する。
For example, as shown in FIG. 7, the unmanned Jij (A), which has completed the predetermined loading and unloading work, is set at address Po on the first travel route (R1) as its home position and goes straight through the branch at address P1 to address P2. In the case of decelerating at address P3 and stopping at address P3, (a) When the unmanned vehicle (A) arrives at address r1, a control signal for driving straight is output to the steering drive mechanism (8).

(ロ)無人車(A)がP2番地に到着したとき前記走行
駆動機構(9)に減速のための制御信号を出力する。
(b) When the unmanned vehicle (A) arrives at address P2, a control signal for deceleration is output to the travel drive mechanism (9).

(ハ)無人車(A)がP3番地に到着したとき前記走行
駆動機構(9)に停止のための制御信号を出力する。
(c) When the unmanned vehicle (A) arrives at address P3, a control signal for stopping is output to the traveling drive mechanism (9).

尚、前記無人車(A)をP1番地で第1走行経路(R1
)から第2走行経路(R2)に分岐移動させた場合には
、その分岐時にソフトカウンター04)をリセットし、
再び分岐位置から光反射マーク(5)の数を順次カウン
トすべく構成している。
It should be noted that the unmanned vehicle (A) is placed on the first traveling route (R1) at address P1.
) to the second travel route (R2), reset the soft counter 04) at the time of the branch,
It is configured to sequentially count the number of light reflection marks (5) again from the branch position.

上述実施例では、地上側の発信器からの行先データを無
人車(A)に設けた受信器(7)にて受信して、これを
マイクロコンピ−ユータにインプットすべく構成したが
、これの代わりに、無人m(A)に設けた行先設定器で
行先データをマイクロコンピュータにインプットすべく
構成して実施しても良く、要するに、先行データを受信
できれば何れの手段を採用しても良い。
In the above embodiment, the destination data from the transmitter on the ground side is received by the receiver (7) installed in the unmanned vehicle (A), and the data is input into the microcomputer. Alternatively, a destination setter provided in the unmanned m(A) may be configured to input the destination data into the microcomputer; in short, any means may be used as long as it can receive advance data.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は無人車の走行関係を示す側面図と平面
図、第3図は運行制御系統図、第4図は運行制御のフロ
ーチャート、第5図は走行誘導マークの正面図、第6図
は他の実施例を示す走行誘導マークの正面図、第7図は
走行ラインの一例を示す概略図である。 (A)・・・・・無人車、(5i・・・・・・走行誘導
マーク、(6)・・・・・・センサー、(8)・・・・
操向駆動機構、(9)・・・・・・L@駆動機構。 第1図 − M3図 第5図 5 第6図 Aヱユ
Figures 1 and 2 are a side view and a plan view showing the driving relationship of an unmanned vehicle, Figure 3 is an operation control system diagram, Figure 4 is a flowchart of operation control, and Figure 5 is a front view of the travel guidance mark. FIG. 6 is a front view of a travel guide mark showing another embodiment, and FIG. 7 is a schematic diagram showing an example of a travel line. (A)...Unmanned vehicle, (5i...Travel guidance mark, (6)...Sensor, (8)...
Steering drive mechanism, (9)...L@drive mechanism. Figure 1 - M3 Figure 5 Figure 6 Figure 6 A

Claims (1)

【特許請求の範囲】 ■ 適宜間隔を隔てて設けられた走行誘導マーク(5]
と、この誘導マーク(5)に対する機体の横変位量を検
出するセンサー(6)、このセンサー(6)の検出結果
に基づいて機体が前記誘導マーク(5)に治って自動的
に追従走行するように操向制御する操向駆動機構(8)
、行先テークを受信する手段、走行に伴なって前記誘導
マーク(6)の数をカウントする手段、前記の受信テー
ク信号と前記のカウント信号とを演算する手段、その演
算結果に基づいて走行駆動機構(9)及び操向駆動機構
(8)に制御信号を出力する手段を備えた無人車(A)
とから構成されていることを特徴とする無人車の自動運
行制御装置。 ■ 前記誘導マーク(5)が光反射テープであり、かつ
、前記センサー(6)が光センサーである特許請求の範
囲第■項に記載の無人車の自動運行制御装置。 Q)前記誘導マーク(5)が磁石製マークであり、かつ
、前記センサー(6)が磁気センサーである特許請求の
範囲第■頂に記載の無人車の自動運行制御装置。 ■ 前記誘導マーク(5)が金属製マークであり、かつ
、前記センサー(6)が金属感知センサーである特許請
求の範囲第0)項に記載の無人車の自動運行制御装置。
[Claims] ■ Travel guidance marks (5) provided at appropriate intervals
and a sensor (6) that detects the amount of lateral displacement of the aircraft with respect to this guidance mark (5), and based on the detection result of this sensor (6), the aircraft moves to the guidance mark (5) and automatically follows the guidance mark (5). Steering drive mechanism that controls steering as follows (8)
, a means for receiving a destination take, a means for counting the number of the guidance marks (6) as the vehicle travels, a means for calculating the received take signal and the count signal, and a traveling drive based on the calculation result. An unmanned vehicle (A) equipped with a means for outputting a control signal to the mechanism (9) and the steering drive mechanism (8)
An automatic operation control device for an unmanned vehicle, comprising: (2) The automatic operation control device for an unmanned vehicle according to claim (2), wherein the guide mark (5) is a light reflective tape, and the sensor (6) is an optical sensor. Q) The automatic operation control device for an unmanned vehicle according to claim 1, wherein the guide mark (5) is a magnetic mark and the sensor (6) is a magnetic sensor. (2) The automatic operation control device for an unmanned vehicle according to claim 0, wherein the guide mark (5) is a metal mark and the sensor (6) is a metal sensing sensor.
JP58007677A 1983-01-18 1983-01-18 Automatic operation controller of unattended vehicle Pending JPS59132009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007677A JPS59132009A (en) 1983-01-18 1983-01-18 Automatic operation controller of unattended vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007677A JPS59132009A (en) 1983-01-18 1983-01-18 Automatic operation controller of unattended vehicle

Publications (1)

Publication Number Publication Date
JPS59132009A true JPS59132009A (en) 1984-07-30

Family

ID=11672417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007677A Pending JPS59132009A (en) 1983-01-18 1983-01-18 Automatic operation controller of unattended vehicle

Country Status (1)

Country Link
JP (1) JPS59132009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180410A (en) * 1984-09-28 1986-04-24 Yutaka Kanayama Drive command system of mobile robot
FR2593941A1 (en) * 1985-12-20 1987-08-07 Yoshida Kogyo Kk APPARATUS AND METHOD FOR CONTROLLING AUTOMATIC CONTROL TROLLEY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259476A (en) * 1975-11-07 1977-05-16 Hitachi Ltd Position detecting apparatus for unmanned vehicle
JPS5762422A (en) * 1980-10-01 1982-04-15 Shinko Electric Co Ltd Run control system for unmanned moving vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259476A (en) * 1975-11-07 1977-05-16 Hitachi Ltd Position detecting apparatus for unmanned vehicle
JPS5762422A (en) * 1980-10-01 1982-04-15 Shinko Electric Co Ltd Run control system for unmanned moving vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180410A (en) * 1984-09-28 1986-04-24 Yutaka Kanayama Drive command system of mobile robot
JPH0529924B2 (en) * 1984-09-28 1993-05-06 Yutaka Kanayama
FR2593941A1 (en) * 1985-12-20 1987-08-07 Yoshida Kogyo Kk APPARATUS AND METHOD FOR CONTROLLING AUTOMATIC CONTROL TROLLEY

Similar Documents

Publication Publication Date Title
EP0472028B1 (en) Vehicle control system for multi-branching track
US4554498A (en) Control apparatus for running moving object
JPS59132009A (en) Automatic operation controller of unattended vehicle
JPS61118815A (en) Optical track guiding path
JPS6226513A (en) Unmanned trackless trolly car
KR0168701B1 (en) Method for controlling carriage running speed in separation of conveyor
JP3817775B2 (en) Vehicle intersection passage display device
JPS59132007A (en) Guiding method of unattended vehicle
JPH0542002B2 (en)
JPH0312725B2 (en)
JPH01131907A (en) Device for preventing rear end collision of mobile vehicle
JPS6336311A (en) Guidance equipment for optical guidance type moving car
JPH1020934A (en) Guide steering device for unmanned driving vehicle
JPS6125219A (en) Optical guide type mobile truck control equipment
JPH02236707A (en) Travel controller for unmanned vehicle
JPS5952310A (en) Control method of unmanned guide truck
JPS61168023A (en) Guiding device of unmanned carrier car
JPS62140106A (en) Dive control equipment for traveling vehicle
JPH0573139A (en) Controller for self-traveling truck
JPS63182711A (en) Unmanned vehicle capable of detour travel
JPS62198910A (en) Guiding device for unmanned carrier
JPS6132117A (en) Read-end collosion preventing controller of automatic running carrying truck
JPS60256813A (en) Control equipment for optical guide type traveling truck
JPS6233609B2 (en)
JPS61110209A (en) Controlling facility of optically guided moving car