JPS59131430A - Fabrication of self-condensing lens - Google Patents

Fabrication of self-condensing lens

Info

Publication number
JPS59131430A
JPS59131430A JP58005646A JP564683A JPS59131430A JP S59131430 A JPS59131430 A JP S59131430A JP 58005646 A JP58005646 A JP 58005646A JP 564683 A JP564683 A JP 564683A JP S59131430 A JPS59131430 A JP S59131430A
Authority
JP
Japan
Prior art keywords
self
refractive index
polymer
substrate
focusing lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58005646A
Other languages
Japanese (ja)
Inventor
Takeshi Yamada
武 山田
Norio Takato
高戸 範夫
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58005646A priority Critical patent/JPS59131430A/en
Publication of JPS59131430A publication Critical patent/JPS59131430A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • B29C35/0894Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds provided with masks or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00355Production of simple or compound lenses with a refractive index gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation

Abstract

PURPOSE:To make it possible to fabricate a self-condensing lens by an extremely simple process and apparatus, by allowing refractive index difference to approach a column radius direction by utilizing the difference in the polymerization speeds of two kinds of monomers. CONSTITUTION:A substrate 2 is held under a photomask 1 by a support mask 1 and a container 4 is filled with a liquid monomer mixture 5. The liquid monomer mixture 5 is formed from a monomer high in refractive index and slow in a polymerization speed, a monomer low in refractive index and high in a polymerization speed and, according to necessity, a photosensitizer, a crosslinking agent, a polymer or a solvent. When parallel ultraviolet rays 6 are irradiated from the upper part of the container 4 and, at the same time, the substrate 2 is slowly fallen, a columnar polymer 7 is formed. This polymer 7 has such refractive index distribution that the refractive index is high in the center but gradually becomes low toward the periphery thereof and a self-condensing lens is obtained from this polymer 7.

Description

【発明の詳細な説明】 本発明は高分子重合体を用いた自己収束レンズの作製方
法に関するものである、。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a self-focusing lens using a high molecular weight polymer.

従来の高分子重合体を用いた自己収束レンズの作製方法
は以下の通りである。すなわち、高屈折率の単量体に熱
開始剤を混入し、ポリ匹フッ化エチレンチューブ内など
で加熱ゲル化さけ、ゲルロッドを得る。次にこのゲルロ
ッドを真空中などで低屈折率の単量体蒸気中に保持し、
ゲルロッド中に低屈折率単量体を拡散させる。こうして
できたゲルロッドを加熱するなどし完全に重合させ、自
己集束レンズを得るものである。したがって、このよう
な従来の技術においては、ゲル[1ツドを作製し、他車
量体を拡散するという2段階が必要であって、手間と時
間がかかり、装置も真空系が必要であって大がかりなも
のとなる欠点があった。
A conventional method for producing a self-focusing lens using a high molecular weight polymer is as follows. That is, a thermal initiator is mixed into a monomer having a high refractive index, and the mixture is gelled by heating in a polyethylene fluoride tube or the like to obtain a gel rod. Next, this gel rod is held in a low refractive index monomer vapor in a vacuum, etc.
Diffuse the low refractive index monomer into the gel rod. The gel rod thus produced is heated to completely polymerize it to obtain a self-focusing lens. Therefore, in such conventional technology, two steps are required: preparing a gel and diffusing another mass, which takes time and effort, and requires a vacuum system. It had the drawback of being a large-scale project.

本発明は、これらの欠点を除去するため、2種の単量体
の重合速度の差を利用して円柱状の重合物を得ると同時
に屈折率差を円柱半径方向につけ、自己収束レンズを得
るものであり、以下図面について詳細に説明する。
In order to eliminate these drawbacks, the present invention utilizes the difference in polymerization rate between two types of monomers to obtain a cylindrical polymer and at the same time creates a refractive index difference in the radial direction of the cylinder to obtain a self-focusing lens. The drawings will be described in detail below.

第1図は本発明による自己収束レンズの作製方法の一例
を示している。円形窓パターンを有するフォトマスク1
の下に基板2を支持棒3で保持し、容器4内に単量体混
合液5を満たす。単量体混合液5は屈折率が大きく、か
つ重合速度の遅い単量体と、屈折率が小ざく、かつ重合
速度の速い単量体と、必要に応じて加えられる光増感剤
、架橋剤、高分子、溶媒所とから成っている。次に、容
器4の上部から平行紫外光6を照射すると同時に基板2
をゆっくり下降させる。づるとフォトマスク1の円形窓
パターンを通して露光された部分の単量体が光重合し、
基板2が下降するに従い、基板2上に円柱状の重合体7
が形成される。基板2の下降はモーターと運動した送り
機構につながれた支持棒3により行なわれる。この場合
上記の重合体は、必要に応じて紫外光を全面露光するか
、もしくは熱を加えて重合を完了させる。
FIG. 1 shows an example of a method for manufacturing a self-focusing lens according to the present invention. Photomask 1 with circular window pattern
The substrate 2 is held under the supporting rod 3, and the monomer mixture 5 is filled in the container 4. The monomer mixture 5 contains a monomer with a large refractive index and a slow polymerization rate, a monomer with a small refractive index and a fast polymerization rate, a photosensitizer added as necessary, and crosslinking. It consists of an agent, a polymer, and a solvent. Next, parallel ultraviolet light 6 is irradiated from the top of the container 4, and at the same time the substrate 2 is
lower slowly. Then, the monomer in the area exposed through the circular window pattern of photomask 1 is photopolymerized,
As the substrate 2 descends, a cylindrical polymer 7 is formed on the substrate 2.
is formed. The lowering of the substrate 2 is carried out by means of a support rod 3 connected to a motor and a moving transport mechanism. In this case, the above-mentioned polymer is fully exposed to ultraviolet light or heat is applied to complete the polymerization, if necessary.

次に本発明による作製方法により自己収束レンズが作製
できる理由について第2図、第3図を用いて説明する。
Next, the reason why a self-converging lens can be manufactured by the manufacturing method according to the present invention will be explained using FIGS. 2 and 3.

先に)ボベた様に、基板2が、下降づると同時に紫外光
6により単量体混合液5は重合し、円柱状の重合体7と
なる。形成された重合体7は基板2の下降とともに下降
し、円柱状の重合体7の上部には周囲から単量体の混合
液5が供給される。周囲から供給される単量体は、第3
図に示す様に互いに重合速度の異なる2種の単量体より
成っているため、重合速度の速い単量体Cは第2図のB
領域においてより多く・重合し、A領域に達する単量体
Cは少なく、また重合速度の遅い単量体りは第2図のB
領域においては充分に重合できず、より多くの単量体は
へ領域にまで達して重合する。そのため形成された円柱
状の重合体7は、中心部分では重合速度の遅い単量体り
が多く周囲は重合速度の速い単量体Cが多くなり、8度
の分布が生ずる。この時、重合速度の遅い単量体に屈折
率の大ぎな単量体を用い、また重合速度の速い単量体に
屈折率の小さな単量体を用いれば、円柱状の重合体7は
中心の屈折率が大きく周囲に行くに従い、徐々に屈折率
が小さくなる屈折率分布が得られ、自己収束レンズが得
られる。この時、2種の単量体の組み合わせを、適当な
重合速度、屈折率で選ぶことにより、希望の屈折率分布
が18にれ、希望の焦点距離の自己収束レンズが得られ
る。
As the substrate 2 descends in the same manner as described above, the monomer mixture 5 is polymerized by the ultraviolet light 6 and becomes a cylindrical polymer 7. The formed polymer 7 descends as the substrate 2 descends, and the monomer mixture 5 is supplied from the periphery to the upper part of the cylindrical polymer 7. Monomers supplied from the surroundings are
As shown in the figure, it is composed of two types of monomers with different polymerization rates, so monomer C, which has a faster polymerization rate, is B in Figure 2.
More monomer C polymerizes in the region A, and less monomer C reaches the A region.
Polymerization cannot be carried out sufficiently in this region, and more monomers reach the region where they are polymerized. Therefore, the cylindrical polymer 7 thus formed has a lot of monomers with a slow polymerization rate in the center part, and a lot of monomers C with a fast polymerization rate in the periphery, resulting in an 8 degree distribution. At this time, if a monomer with a large refractive index is used as a monomer with a slow polymerization rate, and a monomer with a small refractive index is used as a monomer with a fast polymerization rate, the cylindrical polymer 7 will be centered. A refractive index distribution is obtained in which the refractive index is large and the refractive index gradually decreases toward the periphery, and a self-focusing lens is obtained. At this time, by selecting a combination of two types of monomers with an appropriate polymerization rate and refractive index, a desired refractive index distribution can be obtained at 18, and a self-focusing lens with a desired focal length can be obtained.

重合速度が遅くかつ屈折率の大きh単量体としては、フ
ェニルメタクリレート、ベンジルメタクリレート、ジア
リルイソフタレート、ジエチレングリコール ビス ア
リル カーボネートなどがあり、また重合速度が速く、
かつ屈折率の小さな単量体としては、メヂルアクリレー
ト、メチルメタクリレートやトリノロ[]メタクリレー
トなどを用いることがぐきる。
Examples of h monomers with a slow polymerization rate and high refractive index include phenyl methacrylate, benzyl methacrylate, diallyl isophthalate, diethylene glycol bisallyl carbonate, etc.
As the monomer having a small refractive index, methyl acrylate, methyl methacrylate, trino[] methacrylate, etc. can be used.

実施例1 ベーンジルメタクリレートとメヂルアクリレートを1:
1′c渥合した液にベンゾインエチルエーテルを増感剤
として混合し、光源に水銀ランプを用いて1記のように
して円柱状の重合物を作製した。この両端を研磨し直径
5陥、長さ10誦の自己収束レンズを得た5、その焦点
はレンズ端面から7+n++のどころにあった。
Example 1 1: benzyl methacrylate and medyl acrylate
1'C A cylindrical polymer was prepared by mixing benzoin ethyl ether as a sensitizer with the combined solution and using a mercury lamp as a light source as described in 1 above. By polishing both ends of this lens, a self-converging lens with a diameter of 5 and a length of 10 was obtained.The focal point was located at 7+n++ from the end surface of the lens.

実施例2 フェニルメタクリレートとメヂルアクリレートを3:2
で混合し、単量体100に対しフェニルメタクリレート
高分子を5の割合で溶解した液に、ベンゾインエチルエ
ーテルを増感剤として混合し、光源に水銀ランプを用い
て円柱状の重合物を作製した。この両端を研磨し、直径
7!1IIITrl、長ざ5+n+++の自己収束レン
ズを得た。その焦点はレンズ端面から12mynの、と
ころにあった。
Example 2 Phenyl methacrylate and medyl acrylate 3:2
benzoin ethyl ether was mixed as a sensitizer to a solution in which phenyl methacrylate polymer was dissolved in a ratio of 5 parts to 100 parts of monomer, and a cylindrical polymer was produced using a mercury lamp as a light source. . Both ends of the lens were polished to obtain a self-converging lens with a diameter of 7!1IIITrl and a length of 5+n+++. The focal point was 12 myn from the end surface of the lens.

実施例3 ジエチレングリコールビスアリルノJ−ボネートとトリ
フロロメタクリレートを1:1で混合した液に、ベンゾ
インピロピルエーテルを増感剤として混合し、光源にエ
キシマレーザを用いて円柱状の重合物を作製した。この
両端を研磨し、直径2祁、長さ8+nn+の自己収束レ
ンズを得た。その焦点はレンズ端面から4陥のところに
あった。
Example 3 A 1:1 mixture of diethylene glycol bisallylno J-bonate and trifluoromethacrylate was mixed with benzoin propyl ether as a sensitizer, and an excimer laser was used as a light source to produce a cylindrical polymer. . Both ends of the lens were polished to obtain a self-focusing lens with a diameter of 2mm and a length of 8+nn+. Its focal point was located 4 points from the end face of the lens.

実施例4 実施例1と同様な単量体混合液を用い、フォトマスクと
して円形の窓が3×7個並んだものを用い1、水銀ラン
プを用いて円柱状の重合物が21本並んだものを作製し
た。これをエポキシ樹脂を用いて固めた後、両端を研磨
し、直径5mm、長さ10+nmの自己収束レンズ゛が
21本並んだ自己収束レンズアレイを作製した。
Example 4 Using the same monomer mixture as in Example 1, using a photomask with 3 x 7 circular windows 1, and using a mercury lamp, 21 cylindrical polymers were lined up. I made something. After hardening this with epoxy resin, both ends were polished to produce a self-focusing lens array in which 21 self-focusing lenses each having a diameter of 5 mm and a length of 10+ nm were lined up.

以上説明したように、本発明による自己収束レンズの作
製方法を用いれば、単量体から円柱状の重合物を形成す
ると同時に重合物に屈折率分布を与えることが可能であ
り、非常に簡単な手順で作製することができ、装置も簡
単であるという利点がある。さらに、本発明による自己
収束レンズの作製方法を用いれば、自己収束レンズアレ
イも容易に作製可能である1゜
As explained above, by using the method for producing a self-focusing lens according to the present invention, it is possible to form a cylindrical polymer from monomers and at the same time give a refractive index distribution to the polymer, which is a very simple method. It has the advantage that it can be manufactured by a simple procedure and the device is simple. Furthermore, by using the method for manufacturing a self-converging lens according to the present invention, a self-converging lens array can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の自己収束レンズの作製方法の一例を示
づ説明図であり、第2図は本発明の詳細な説明するため
の説明図であり、第3図は重合速度の速い単量体と重合
速度の遅い単量体の車台特性を示した特性図である。 1・・・・・・円形窓パターンを有するフォトマスク、
2・・・・・・基板、3・・・・・・支持棒、4・・・
・・・容器、5・・・・・・単量体混合液、6・・・・
・・紫外光、7・・・・・・円柱状の重合体。 出願人 (ヨ本電信電話公社 第3図
FIG. 1 is an explanatory diagram showing an example of the method for producing a self-focusing lens of the present invention, FIG. 2 is an explanatory diagram for explaining the present invention in detail, and FIG. FIG. 2 is a characteristic diagram showing the chassis characteristics of monomers having a slow polymerization rate. 1...Photomask having a circular window pattern,
2... Board, 3... Support rod, 4...
... Container, 5... Monomer mixture, 6...
...Ultraviolet light, 7...Cylindrical polymer. Applicant (Yohon Telegraph and Telephone Public Corporation Figure 3)

Claims (1)

【特許請求の範囲】 1 円形窓パターンを有するフォトマスクの下に基板を
配置し、かつこの基板を高屈折率で重合速度の遅い単量
体と低屈折率で重合速度の速い単量体と必要に応じて加
えられる光増感剤、架橋剤、高分子、溶媒からなる液体
中に入れ、前記フォトマスク上面から円形窓パターンを
通して基板に向って平行紫外光を照射しながら基板を連
続的に徐々に前記液体中に沈めてゆくことにより、光の
照射された部分の単鎖体を硬化させて円柱状の自己収束
レンズを形成し、必要に応じて前記円柱状の自己収束レ
ンズに紫外光を全面露光するかもしくは熱を加えて重合
を完了させ、その後この円柱状の自己収束レンズの先端
を研磨することを特徴とづる自己収束レンズの作製方法
。 2 フォトマスクとして、整列した複数の円形窓パター
ンを有するものを用いてアレイ状に自己収束レンズを作
製することを特徴とする特許請求の範囲第1項記載の自
己収束レンズの作製方法。
[Claims] 1. A substrate is placed under a photomask having a circular window pattern, and a monomer with a high refractive index and a slow polymerization rate and a monomer with a low refractive index and a high polymerization rate are used. The substrate is placed in a liquid consisting of a photosensitizer, a crosslinking agent, a polymer, and a solvent that are added as necessary, and the substrate is continuously irradiated with parallel ultraviolet light from the top surface of the photomask through a circular window pattern toward the substrate. By gradually submerging it into the liquid, the single chain in the irradiated portion is cured to form a cylindrical self-focusing lens, and if necessary, ultraviolet light is applied to the cylindrical self-focusing lens. A method for producing a self-focusing lens, which comprises exposing the entire surface of the lens to light or applying heat to complete polymerization, and then polishing the tip of the cylindrical self-focusing lens. 2. The method for producing a self-focusing lens according to claim 1, wherein the self-focusing lens is produced in an array using a photomask having a plurality of aligned circular window patterns.
JP58005646A 1983-01-17 1983-01-17 Fabrication of self-condensing lens Pending JPS59131430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005646A JPS59131430A (en) 1983-01-17 1983-01-17 Fabrication of self-condensing lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005646A JPS59131430A (en) 1983-01-17 1983-01-17 Fabrication of self-condensing lens

Publications (1)

Publication Number Publication Date
JPS59131430A true JPS59131430A (en) 1984-07-28

Family

ID=11616892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005646A Pending JPS59131430A (en) 1983-01-17 1983-01-17 Fabrication of self-condensing lens

Country Status (1)

Country Link
JP (1) JPS59131430A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259664A (en) * 1985-05-15 1986-11-17 日本板硝子株式会社 Artificial crystal lens and its production
EP0535720A2 (en) * 1984-08-08 1993-04-07 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
FR2830976A1 (en) * 2001-10-17 2003-04-18 Ge Med Sys Global Tech Co Llc LOW-MITIGATION ANTI-DIFFUSING GRIDS AND METHOD OF MANUFACTURING SUCH GRIDS

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0535720A2 (en) * 1984-08-08 1993-04-07 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
JPS61259664A (en) * 1985-05-15 1986-11-17 日本板硝子株式会社 Artificial crystal lens and its production
JPH0472548B2 (en) * 1985-05-15 1992-11-18 Nippon Ita Garasu Kk
FR2830976A1 (en) * 2001-10-17 2003-04-18 Ge Med Sys Global Tech Co Llc LOW-MITIGATION ANTI-DIFFUSING GRIDS AND METHOD OF MANUFACTURING SUCH GRIDS
EP1304703A1 (en) * 2001-10-17 2003-04-23 GE Medical Systems Global Technology Company LLC Antiscattering grid and a method of manufacturing such a grid

Similar Documents

Publication Publication Date Title
CA1294470C (en) Process for the production of optical elements
US5807906A (en) Process for obtaining a transparent article with a refractive index gradient
US2524862A (en) Method and apparatus for producing cast synthetic resin structures by photopolymerization of monomeric material
EP0322353A2 (en) Method and apparatus for producing optical element
JP3987580B2 (en) Optical waveguide
JPH09178901A (en) Distributed refractive index optical material and its production
US4986633A (en) Microlens and process for producing same
JPS5971830A (en) Manufacture of lens of refractive index distribution type
JPS59131430A (en) Fabrication of self-condensing lens
JPS6142241B2 (en)
JPS59223408A (en) Manufacture of high polymer photoconductive path
JP3800685B2 (en) Optical element manufacturing method
JP3504683B2 (en) Method of forming lens region, lens and lens array plate
JPH0675105A (en) Lens array plate and its production
JPS59204519A (en) Preparation of synthetic resin plane lens
JPS6153031A (en) Manufacture of refractive index distributed type micro lens
JPS6225705A (en) Production of near parabolic optical plastic
JPH0659102A (en) Microlens array plate and its production
JP3181998B2 (en) Method for producing polymer and method for producing crosslinked product
JPH06130206A (en) Lens, microlens array plate and its production
JP3490732B2 (en) Manufacturing method of plastic aspherical microlens
JP3494672B2 (en) Method for manufacturing plastic aspheric cylindrical lens
JPH063506A (en) Production of lens and production of lens array plate
JPS59223403A (en) Production of high polymer photoconductive
JPS6049303A (en) Manufacture of three-dimentional optical circuit