JPS59131280A - Magnetic recording and reproducing device equipped with sound noise suppression circuit - Google Patents

Magnetic recording and reproducing device equipped with sound noise suppression circuit

Info

Publication number
JPS59131280A
JPS59131280A JP58195970A JP19597083A JPS59131280A JP S59131280 A JPS59131280 A JP S59131280A JP 58195970 A JP58195970 A JP 58195970A JP 19597083 A JP19597083 A JP 19597083A JP S59131280 A JPS59131280 A JP S59131280A
Authority
JP
Japan
Prior art keywords
audio signal
signal
recording
dynamic range
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58195970A
Other languages
Japanese (ja)
Other versions
JPH0130208B2 (en
Inventor
Shigeyuki Ito
滋行 伊藤
Yoshizumi Wataya
綿谷 由純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58195970A priority Critical patent/JPS59131280A/en
Publication of JPS59131280A publication Critical patent/JPS59131280A/en
Publication of JPH0130208B2 publication Critical patent/JPH0130208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/92Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Television Signal Processing For Recording (AREA)

Abstract

PURPOSE:To eliminate the deterioration in sound quality such as breathing phenomenon by regulating a compressing/stretching ratio of dynamic range in response to level ratio of a desired FM sound signal and a disturbing FM sound signal when recording density is changed to an optimum value. CONSTITUTION:A sound signal from an input terminal 1 passes through a preemphasis circuit 2 and is inputted to a 2/3 compression circuit 6 through a switch 3 at the SP mode and to a 1/2 compression circuit 4 at the LP mode. The gain of dynamic range compressing circuits 6. 4 is controlled by level detectors 7,5. An output signal of the compression circuits 6, 4 is FM-modulated by an FM modulator 9 through a switch 8 and fed to an adder 29 via an LPF10. The signal is added with a video signal from a terminal 30 at the adder 29 and recorded on a magnetic tape 12 in azimuth by a magnetic head 11. Thus, the deterioration in sound quality is reduced in changing the recording density.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は周波数変調(F”M変調)音声信号と映像信号
とを周波a重畳して記録する磁気記録再生装置における
隣接トラックからのクロストークに基づく雑音を低減す
る音声雑音抑圧回路を備えた磁気記録再生装置に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to solving crosstalk from adjacent tracks in a magnetic recording/reproducing device that records a frequency modulated (F''M modulated) audio signal and a video signal by superimposing the frequency a. The present invention relates to a magnetic recording and reproducing device equipped with an audio noise suppression circuit that reduces noise caused by noise.

〔発明の背景〕[Background of the invention]

従来より、輝度信号を周波数変調(1”M変調)し1色
度信号を上記ドM変調輝度信号のF側に周波数変換して
記録する磁気記録再生装置!(以’F=VTRと言う。
Conventionally, there has been a magnetic recording/reproducing apparatus which frequency-modulates a luminance signal (1''M modulation) and converts and records one chromaticity signal to the F side of the above-described M-modulated luminance signal (hereinafter referred to as 'F=VTR).

)における音声信号の記録方法の1つとして、FM変調
した音声信号と上記映像信号とを周波数重畳して回転ヘ
ッドにて磁気テープ上に記録する方法(以下−晋声II
′M重畳方式という。)が知られている。ところで。
) is a method of recording audio signals on a magnetic tape using a rotating head (hereinafter referred to as Jinsei II
'This is called the M superimposition method. )It has been known. by the way.

近年の記録活度向上の目覚ましいものがあり、約十年前
のVTR[比べて17倍もの制密度記録を達成している
。そして、このような高密度、記録技術の進歩にともな
い一カセットの小型化や回転シリンダ径の小型化などに
より、コンパクト化を計ったVTRが開発され始めてい
る。これら小型VT)Lでは、小型・軽蓋化や磁気テー
プ定行速度の低速度化等のため、今までの固定ヘッドを
用−いる音声信号録再方式では、ワウ・フラッタ特性、
再生87Nや再生周波数帯域等の点で十分な性能を祷る
事が困難となってきており、上述した音声)’ IVI
重畳方式などの新たな音声記録再生方式を採用する必要
性が増している、音声b’ M重畳方式の特徴としては
、(1)テープ走行速度むらによる時間軸変動の影響を
受けにくいのでワウ拳フラッタ特性が良%%。
There has been a remarkable improvement in recording activity in recent years, achieving a recording density record 17 times that of VTRs from about 10 years ago. With such high density and advances in recording technology, VTRs that are more compact have begun to be developed by reducing the size of each cassette and the diameter of the rotating cylinder. These small VT)L have smaller and lighter lids and lower magnetic tape running speeds, so conventional audio signal recording and reproducing systems that use fixed heads have wow and flutter characteristics.
It has become difficult to ensure sufficient performance in terms of playback 87N, playback frequency band, etc., and the above-mentioned audio)' IVI
There is an increasing need to adopt new audio recording and playback methods such as the superimposition method.The features of the audio b'M superimposition method include: (1) it is less susceptible to time axis fluctuations due to uneven tape running speed; Good flutter characteristics.

(2)  再生周波数帯域がテープ走行速度に依存して
おらず一広帯域化が可能である。
(2) The playback frequency band does not depend on the tape running speed and can be widened.

などがあげられる。etc.

ここで−上述した音声信号を音声FM重畳方式[’l−
記@丹生するVTRの記録周波数スペクトラムについて
考えてみる。
Here, the above-mentioned audio signal is transmitted using the audio FM superimposition method ['l-
Let's think about the recording frequency spectrum of a VTR.

音声信号搬送波の中心周波数は一輝度信号及び色度信号
に与える影響が最小になるように決めなくてはならない
。また、小型VTR,%に回転シリンダ径の小さいVT
Rでは−テープとヘッドの相対速度が低くなるため記録
周波数希酸が狭く、輝度信号搬送波の中心周波数をあま
り高(設定できない。そこで、音声信号搬送波の中心周
波数は、ト’Mt、調輝度信号の下側で、できるだけ低
い周波数とせざるをえない。
The center frequency of the audio signal carrier must be determined so as to minimize its influence on the luminance signal and chromaticity signal. In addition, small VTRs, VTs with a small rotating cylinder diameter
In R, the relative speed between the tape and the head is low, so the recording frequency is narrow, and the center frequency of the luminance signal carrier wave cannot be set too high.Therefore, the center frequency of the audio signal carrier wave is There is no choice but to set the frequency as low as possible below .

第1図および第2図に映像信号とFM音声信号との記録
時の周波数スペクトラムの一例を示す。第1図は、b’
 M変調輝度信号Y、と周波e変換色度信号C1の間に
FM変調皆声信号A1を配した一例、第2図は周波数変
換色度信号C1の下側にF M変調音声信号A2を配し
た一例である。ところで音声F M重畳方式の大きな問
題は記録時のテープ速度と異なるテープ速度にて再生す
るいわゆる可変速再生を行なうためや、トラッキング余
裕度を得るために、ビデオトラック幅ヲ広(した場合、
及びトラッキングずれが生じた場合に、隣接ビデオトラ
ックの信号をも再生することになる。再生音声信号中に
該隣接ビデオトラックのFM音声信号が混入するこれの
影響(以下−隣接妨害と言う。)のため、雑音が生じて
しまう。特に、高記録密度化を計る場合、ビデオトラッ
ク幅が狭くなるため、トラッキングずれ等の隣接妨害が
大変耳障りで問題となって(る。第6図は磁気テープ2
1に形成されろビデオトラックl111. ′112と
、ビデオヘッドHの位置を模式的に示す平面図である。
FIGS. 1 and 2 show examples of frequency spectra when recording video signals and FM audio signals. Figure 1 shows b'
An example in which the FM modulated universal voice signal A1 is placed between the M modulated luminance signal Y and the frequency e-converted chromaticity signal C1, FIG. 2 shows an example in which the FM modulated audio signal A2 is placed below the frequency converted chromaticity signal C1. This is an example. By the way, a major problem with the audio FM superimposition method is that the video track width must be widened (in case of
Also, if a tracking deviation occurs, the signal of the adjacent video track will also be reproduced. Noise occurs due to the influence of the FM audio signal of the adjacent video track mixed into the reproduced audio signal (hereinafter referred to as adjacent interference). In particular, when trying to increase recording density, the video track width becomes narrower, so adjacent interference such as tracking deviation becomes very annoying and becomes a problem.
1 video track l111. '112 and a plan view schematically showing the positions of the video head H.

ここで、上記隣接妨害により生ずる雑音U (t)は、
第3図に示すごとくトラッキングがずれた場合−ビデオ
ヘッドI]がトレースしようとしているビデオトラック
幅工゛1かも得られる第1のF’M音声信号(第3図A
の部分より得られる信号で以F、希望F’ M音声信号
という。)のレベルをa、ReビデオトラックT2から
得られる第2のFM音声信号(第3図Bの部分より得ら
れる信号で、以下、妨害F M音声信号という。)のレ
ベルをbとし、希望F M音声信号と妨害FM音声信号
との差周波数をΔωとすると、 D ltl oc!!−Δω(COS Δ(d t )
  ===、−9,=、(11と表わされる。ここでt
は時間を表わす。すなわち、隣接妨害雑音D(tlは、
希望F’M音声信号と妨害FM音声信号との差周波数−
(ビート周波数)の正弦波として出力され、その振幅は
妨害FM音声信号と希望1i’ M音声信号との振幅比
b/aとその差周波数んとに比例するものと考えられる
。そ−こで、上述のVTRにおける隣接妨害を軽減する
有効な方法として、記録時は音声イS号あるいは該音声
信号の特定帯域成分の振幅に応じて、ダイナミックレン
ジを圧縮し、実効的な周波数偏移量を増加させ、妨害ト
”M音声信号と希望FM音声信号の搬送波の瞬時差周波
数がほぼ可聴帯域外となるようにしてからIi’ M変
調し、映像信号と周波数重畳して磁気テープ上にアジマ
ス記録する。そして再生時には、FM変調したのち、圧
縮したダイナミックレンジを伸張して元に戻してやるこ
とが考えられる。
Here, the noise U (t) caused by the adjacent interference is:
When the tracking deviates as shown in Fig. 3 - the first F'M audio signal (Fig. 3
The signal obtained from this part is hereinafter referred to as the desired F'M audio signal. ) is the level a, the level of the second FM audio signal obtained from the Re video track T2 (the signal obtained from the part B in Figure 3, hereinafter referred to as the interfering FM audio signal) is b, and the desired F If the difference frequency between the M audio signal and the interfering FM audio signal is Δω, then D ltloc! ! −Δω(COS Δ(d t )
===, -9, =, (expressed as 11, where t
represents time. That is, the adjacent interference noise D(tl is
Difference frequency between desired F'M audio signal and interfering FM audio signal -
(beat frequency), and its amplitude is considered to be proportional to the amplitude ratio b/a of the interfering FM audio signal to the desired 1i'M audio signal and the difference frequency. Therefore, as an effective method for reducing the adjacent interference in the VTR mentioned above, during recording, the dynamic range is compressed according to the amplitude of the audio signal S or a specific band component of the audio signal, and the effective frequency is reduced. The amount of deviation is increased so that the instantaneous difference frequency between the carrier waves of the interfering FM audio signal and the desired FM audio signal is almost outside the audible band, and then Ii'M modulation is carried out, and the frequency is superimposed with the video signal to produce a magnetic tape. Then, during playback, it is conceivable to perform FM modulation, expand the compressed dynamic range, and restore the original state.

この方法は、アジマス記録により生ずるアジマス損失に
よって、第(1)式に示す妨害F’M音声信号と希望F
M音声信号とのレベル比b/aをFM音声搬送波周波数
が低いため十分ではないがある程度小さくする効果と、
音声信号の周波数偏移量を実効的に増力口することによ
って第(1)式の差周波数成分Δωが高域および可聴帯
域外に移動し、かつ再生時に逆変換することにより雑音
レベルを小さくすることの効果との相乗効果により、隣
接妨害雑音を実用上十分なレベル!で抑圧する。その上
、この方法には以下のような特徴も合わせ生ずる。1つ
に隣接妨害低減分だけビデオトラック幅をざらに狭(出
来ろため高密度記録が行なえること、2つに隣接妨害雑
音以外のノイズも低減できること、3つに実際の音声信
号の周波数偏移量が小さくても良いために記録に必要な
周波数帯域が少なくてよいこと、4つに上記F M変調
音声信号の記録特使用周波数帯域が小さくてよいことか
ら周波数偏移量をただ増大させる方法に比べて、輝度信
号の記録波長を長(でさろため、回転シリンダ径Z小さ
く出来、小型化が計れることである。
In this method, due to the azimuth loss caused by azimuth recording, the interference F'M audio signal shown in equation (1) and the desired F'
The effect of reducing the level ratio b/a with the M audio signal to some extent, although it is not sufficient due to the low FM audio carrier frequency,
By effectively amplifying the amount of frequency deviation of the audio signal, the difference frequency component Δω in equation (1) is moved to the high range and outside the audible band, and the noise level is reduced by inversely transforming it during playback. Due to the synergistic effect of this effect, adjacent interference noise can be reduced to a practically sufficient level! to suppress it. Moreover, this method also has the following features: One, the video track width can be narrowed roughly by the amount of adjacent interference reduction (this allows for high-density recording, two, noise other than adjacent interference noise can also be reduced, and three, the frequency deviation of the actual audio signal can be reduced). Since the amount of shift may be small, the frequency band required for recording may be small.Fourly, the frequency band specifically used for recording the above-mentioned FM modulated audio signal may be small, so the amount of frequency shift is simply increased. Compared to the method, the recording wavelength of the luminance signal is longer, so the diameter Z of the rotating cylinder can be made smaller, and the size can be reduced.

しかしながら、上記隣接妨害雑音を低減する方法で用い
ているアジマス損失による妨害FM音声信号レベルの抑
圧効果は、記録トラック幅。
However, the effect of suppressing the interfering FM audio signal level due to the azimuth loss used in the method for reducing adjacent interfering noise depends on the recording track width.

ビデオヘッド幅など各V T Rシステムごとによって
太す(変わってし捷う。たとえば1表1に示すごとく、
F’ M音声搬送波周波数f。= 1.3MHz−アジ
マス角ψ=17gi、相対速度Vh=4.1m/Sが同
じで一記録トラック幅Tp及びビデオヘッド幅’l’w
が各h Tp=18.7μm、 Tw=28.0μmの
システムIとTp=9.3μm 、 Tw=14μmの
システム■とで、上述の希望F M前用信号と妨害FM
音声信号とのレベル比(以下、賦と略記する。)はシス
テムIでは約22dB、システム■では約17dBであ
り、大きく異なっている。ここで、システム■はシステ
ムIに比べて記録密度が2倍でアリ、システム■をいわ
ゆる標準モード(以下。
The width of the video head varies depending on each VTR system.For example, as shown in Table 1,
F' M audio carrier frequency f. = 1.3MHz - azimuth angle ψ = 17gi, relative velocity Vh = 4.1m/S are the same, one recording track width Tp and video head width 'l'w
For each h, system I with Tp = 18.7 μm, Tw = 28.0 μm and system ■ with Tp = 9.3 μm, Tw = 14 μm, the above-mentioned desired FM front signal and interference FM
The level ratio with the audio signal (hereinafter abbreviated as "approximate") is approximately 22 dB in system I and approximately 17 dB in system (II), which are significantly different. Here, system ■ has twice the recording density as system I, and system ■ is referred to as the so-called standard mode (hereinafter referred to as standard mode).

SPモードと略記する。)とすると、システム■はいわ
ゆる長時間モード(以下、LP七−ドと略記する。)に
相尚する。したかってm 1.PモードはSPモードに
比べて0列の差に相当する分だけ、大変耳障りな隣接妨
害雑音が多く発生してしまうことになる。
It is abbreviated as SP mode. ), system (1) corresponds to the so-called long-time mode (hereinafter abbreviated as "LP7-mode"). I want to m 1. Compared to the SP mode, the P mode generates more adjacent interference noise, which is very unpleasant to the ear, by an amount corresponding to the difference in the 0 column.

第1表 そのため+ LPモードでは隣接妨害雑音を低減する方
法で用いているダイナミックレンジの変化特性すなわち
記録時に音声信号のダイナミックレンジを圧部する圧縮
器の圧縮比及び再生時にダイナミックレンジを伸張する
伸張器の伸張比(以下合せて圧縮伸張比という)をSP
モードより犬さくしてやらなければならない。しかし、
むやみに圧縮伸張比を大さくするとSハは改善されるが
、信号レベルに応じて雑音ノベルが変動するいわゆる息
つぎ現象や歪率が劣化し、聴感上好ましくない。そこで
、音質面からD/Uに応じた最適な圧縮比及び伸張比を
規定する必要性がある。
Table 1 Therefore + In LP mode, the dynamic range change characteristics used in the method of reducing adjacent interference noise, i.e. the compression ratio of the compressor that compresses the dynamic range of the audio signal during recording, and the expansion that expands the dynamic range during playback. The expansion ratio of the container (hereinafter collectively referred to as compression expansion ratio) is SP
I have to do it more like a dog than a mode. but,
If the compression/expansion ratio is increased unnecessarily, Sc will be improved, but the so-called "breathing" phenomenon in which the noise level changes depending on the signal level and the distortion rate will deteriorate, which is undesirable for the auditory sense. Therefore, there is a need to define optimal compression ratios and expansion ratios according to D/U from the perspective of sound quality.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、FM変調音声信号を磁気テープ上にそ
の長手方向に対して傾斜して記録しその記録密度を変え
ることができる装置において、記録密度が最大の場合で
も隣接妨害を実用上十分なレベルまで減少することがで
さる音声雑音抑圧回路を備えた磁気記録再生装置を得る
ものである。
An object of the present invention is to provide a device capable of recording FM modulated audio signals on a magnetic tape obliquely with respect to the longitudinal direction of the tape and changing the recording density, in order to prevent adjacent interference to a practically sufficient level even when the recording density is maximum. To obtain a magnetic recording/reproducing device equipped with a speech noise suppression circuit that can reduce noise to a level that is low.

〔発明の概要〕[Summary of the invention]

本発明は、記録書Kを変えた時に希望F M音声信号と
妨害F’M音声信号とのレベル比(D/U)に応じて、
記録する音声イ=号のダイナミックレンジの圧縮伸張比
を最適値に規定することにより、記録密度が最大の場合
でも雑音レベルが信号レベルに応じて変化する、いわゆ
る息つぎ現象などの音質劣化が生じないようにし、かつ
隣接妨害を実用上十分なレベルまで低減させるものであ
る。
According to the present invention, when changing the record K, depending on the level ratio (D/U) of the desired FM audio signal and the interfering FM audio signal,
By setting the compression/expansion ratio of the dynamic range of the audio signal to be recorded to an optimal value, deterioration of sound quality such as the so-called breath phenomenon, in which the noise level changes depending on the signal level, occurs even when the recording density is maximum. This is to prevent adjacent interference from occurring and to reduce adjacent interference to a practically sufficient level.

〔発明の実施例〕[Embodiments of the invention]

前述したごとく、SPモードとLPモードでは希望FM
音声信号と妨害F’M音声信号とのレベル比(D/U)
に応じて、隣接妨害雑音を低減するため音声信号のダイ
ナミックレンジの圧縮比及び伸張比を変えなくてはなら
ない。ここで。
As mentioned above, in SP mode and LP mode, the desired FM
Level ratio (D/U) between audio signal and interfering F'M audio signal
Accordingly, the compression ratio and expansion ratio of the dynamic range of the audio signal must be changed in order to reduce adjacent interference noise. here.

圧縮比伸張比が犬ぎいほど隣接妨害雑音などの雑音が抑
圧されS/Nは改善されろが一雑音レベルが信号レベル
に応じて変化するいわゆる息つぎ現象や歪率劣化などが
顕著となり、聴感上の不快感が生じてしまう。そのため
、息つぎ現象などの音質劣化がなく、かつ、隣接妨害雑
音を実用上十分なレベルまで減少でさる最適な圧縮比及
び伸張比をD/U K応じて規定する必要がある。
The higher the compression ratio/expansion ratio is, the more noise such as adjacent interference noise is suppressed and the S/N ratio is improved. This will cause the above discomfort. Therefore, it is necessary to specify an optimal compression ratio and expansion ratio according to the D/UK, which does not cause deterioration of sound quality such as breath-breathing phenomenon and reduces adjacent interference noise to a practically sufficient level.

第4図は各D/CJの値に応じて圧縮比伸張比を変化?
Xせた時1て圧縮伸張1/nよる改善効果が見かけ上ど
のくらいのD/lJの値に相当しているかを示した笑験
例である。ここで圧縮比伸張比としては大略2以下の範
囲を用いている。ここで例えば圧縮器で音声信号のダイ
ナミックレンジな丁に圧縮し、この圧縮した信号を伸張
器で2倍に伸張する場合、圧縮伸張比を2という。ダイ
ナミックレンジを7に圧縮し、これを6倍に伸張する場
合、圧縮比伸張比を3という。圧縮比及び伸張比が2を
大きく上回ると(例えば、3など)、再生時に伸張され
る雑音レベル、すなわち雑音低減効果が入力音声信号レ
ベルに応じて太ぎく変動し、この雑音レベル変動が聴感
上火ぎな音質劣化を招いてしまうからである。例えば、
記録音声1g号のダイナミックレンジをよ 120bB、伝送路のS/Nを40dBとし、圧縮伸張
動作が理想的に行なわれたとすると、記録時には圧縮作
用により、音声信号のダイナミックレンジは、圧縮比及
び伸張比2の時60dB、圧縮比及び伸張比60時40
dBに圧縮される。しかしながら、再生時には一伝送路
Sハが40dBであり、伸張作用は入力される信号レベ
ルに応じて動作するため一周波数変調における変調度が
100係時の再生87Nは、圧縮比及び伸張比2及び3
ともに40dBであり、変調度0係時の再生Sハは圧縮
比及び伸張比2のと@ 80dB +圧縮比及び伸張比
3のとき120dBとなる。よって。
Figure 4 shows how the compression ratio and expansion ratio change depending on each D/CJ value?
This is an experimental example showing how much the improvement effect due to compression/expansion 1/n corresponds to the apparent value of D/lJ when X is increased. Here, a range of about 2 or less is used as the compression ratio/expansion ratio. Here, for example, when a compressor compresses an audio signal to a size equal to the dynamic range of the audio signal, and an expander expands this compressed signal to twice that, the compression/expansion ratio is referred to as 2. When compressing the dynamic range to 7 and expanding it by a factor of 6, the compression/expansion ratio is called 3. If the compression ratio and expansion ratio are much higher than 2 (for example, 3), the noise level expanded during playback, that is, the noise reduction effect, will vary greatly depending on the input audio signal level, and this noise level fluctuation will affect the auditory sense. This is because it causes serious deterioration in sound quality. for example,
Assuming that the dynamic range of recorded audio 1g is 120 bB, the S/N of the transmission path is 40 dB, and the compression/expansion operation is performed ideally, the dynamic range of the audio signal will depend on the compression ratio and expansion due to the compression effect during recording. 60dB at ratio 2, compression ratio and expansion ratio 60:40
dB. However, during reproduction, one transmission line S is 40 dB, and the expansion action operates according to the input signal level. 3
Both are 40 dB, and the reproduction S when the modulation factor is 0 is @ 80 dB when the compression ratio and expansion ratio are 2, and 120 dB when the compression ratio and expansion ratio are 3. Therefore.

変調度0%から100チで変動する雑音レベル幅は、圧
縮比及び伸張比2では40dB、3では80dBであり
、入力音声信号レベルに応じて生ずる息つぎ現象による
音質劣化は、圧縮比及び伸張比3のとき著しくなる。
The noise level width that fluctuates from 0% to 100 degrees of modulation is 40 dB at compression ratio and expansion ratio 2, and 80 dB at compression ratio 3. It becomes remarkable when the ratio is 3.

第4図を説明する。D/U 17 d Bのシステムに
圧縮比及び伸張比2を適用するとD/U 26 d B
相当のシステムと同等の隣接妨害雑音レベルVCなり、
圧縮比及び伸張比15ヲ適用するとl)/[J 21 
d B相当のシステムと同等の@接妨害雑音レベルにな
ることを示している。また、実験から、ル勺22dB程
度以上あれば、隣接妨害雑音のレベルは、聴感上許容で
きる限度である。なお、ステレオ音声などの高品位の音
声を必要とする場合は、D/U 2’6 d B以上が
望ましい。
FIG. 4 will be explained. Applying compression and expansion ratios of 2 to a system with D/U 17 d B results in D/U 26 d B.
The adjacent interference noise level VC is equivalent to that of a comparable system,
Applying a compression ratio and an expansion ratio of 15 l)/[J 21
This shows that the interference noise level is equivalent to that of a system equivalent to dB. Additionally, experiments have shown that if the level is about 22 dB or more, the level of adjacent interference noise is at the audibly permissible limit. Note that when high-quality audio such as stereo audio is required, D/U 2'6 dB or more is desirable.

したがって、音質上必要とするルルの値が決まれば、第
4図より最適な圧縮比及び伸張比を求めることができる
。つ筺り、まずシステムのD/Uに相当する値を第4図
の横軸から捜し、次に音質上必要とするD/Uに相当す
る値を同じく第4図の縦軸から捜し、これらの交点付近
にある圧縮伸張比直線の値が大略求める最適圧縮伸張比
である。例を示すと、システムのD/Uが17dL必要
とするD/U 26 d B とすると、第4図よりこ
れらの交点付近には1:2の圧縮伸張比直線があるので
、この1:2が最適圧縮伸張比となる。なお、この例で
は1:2の比を採用したが’ : 1.6+ 1 : 
2.4 など近傍の値でもよい。
Therefore, once the lulu value required for sound quality is determined, the optimum compression ratio and expansion ratio can be found from FIG. First, find the value corresponding to the D/U of the system on the horizontal axis of Figure 4, then search the value equivalent to the D/U required for sound quality on the vertical axis of Figure 4, and then The value of the compression/expansion ratio straight line near the intersection of is approximately the optimum compression/expansion ratio to be sought. For example, if the D/U of the system requires 17 dL, and D/U 26 d B , there is a 1:2 compression/expansion ratio straight line near these intersections from Figure 4, so this 1:2 is the optimal compression/expansion ratio. Note that in this example, a ratio of 1:2 was adopted, but ' : 1.6 + 1 :
A nearby value such as 2.4 may be used.

以下、本発明の磁気記@杏生装置の音声雑音抑圧回路を
図に示す実施例によって説明する。第5図は記録密度す
なわち記録時間を2通りに変えられる回転ヘッド形VT
Rにおいて音声FM重畳方式で音声信号を記録する音声
記録回路に本発明を適用した一実施例を示す回路構成図
である。第6図は本発明を通用した上記VTRの音声再
生回路の一実施例を示す回路構成図である。ここで、記
録密度が2通に変えられるVTRの仕様は前記衣1に記
載したものと同一とする。また−音質上必要とするD/
Uは26dBであるとする。したがって。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The audio noise suppression circuit of the magnetic recorder according to the present invention will be described below with reference to the embodiments shown in the drawings. Figure 5 shows a rotary head type VT that can change the recording density or recording time in two ways.
1 is a circuit configuration diagram showing an embodiment in which the present invention is applied to an audio recording circuit that records an audio signal using an audio FM superimposition method in R. FIG. 6 is a circuit diagram showing an embodiment of the audio reproduction circuit of the VTR to which the present invention is applied. Here, the specifications of the VTR whose recording density can be changed to two are the same as those described in Section 1 above. Also - D/ required for sound quality
Assume that U is 26 dB. therefore.

D/U約22dBのシステム■に相当する記録密度(S
Pモード)時は、第4図より圧縮比及び伸張比を1.5
、ル弔約17dBのシステムHに相当する記録密度(L
Pモード)時は、第4図より圧縮比及び伸張比を2とす
ればよい。第5図において、入力端子1から入力された
音声信号はプリエンファシス回路2を通ったのち、SP
モード時はスイッチ3を通って/3圧縮回路6へ。
Recording density (S) equivalent to system ■ with D/U approximately 22dB
P mode), set the compression ratio and expansion ratio to 1.5 from Figure 4.
, recording density (L) equivalent to System H of approximately 17 dB
P mode), the compression ratio and expansion ratio may be set to 2 from FIG. In FIG. 5, the audio signal input from input terminal 1 passes through pre-emphasis circuit 2 and then goes to SP
In mode, it passes through switch 3 and goes to /3 compression circuit 6.

LPモードのときはスイッチ3を通って/2圧縮回路4
へ入力される。ここでスイッチ3は入力端28より入力
されるSPモード、LPモード切換信号にて制御されろ
。SPモード時は/圧縮回路6でプリエンファシスした
音声信号のダイナミックレンジを73に圧縮し、LPモ
ード時は/2圧傘回路4で同じくブリエンフアシ回路4
は各々プリエンファシスした音声信号な入力とする検出
器5.7の出力信号にて利得な−1j御される。/圧縮
回路6またはゾ2圧縮回路4の出力信号はスイッチ8を
通してFM変調器9に入力され、F’M変調される。こ
こでスイッチ8は入力端28より入力されるSPモード
、LPモード切換信号にて制御される。FM変調器出力
は低域通過フィルタ(以下L P Fという)10にて
不要帯域成分を除去したのち、加算器29で入力端子3
0より入力される映像信号と刀口算され、磁気ヘッド1
1にて磁気テープ12上にアジマス記録される。
When in LP mode, /2 compression circuit 4 is passed through switch 3.
is input to. Here, the switch 3 is controlled by an SP mode/LP mode switching signal inputted from the input terminal 28. In the SP mode, the dynamic range of the pre-emphasized audio signal is compressed to 73 in the compression circuit 6, and in the LP mode, the dynamic range of the pre-emphasized audio signal is compressed to 73. In the LP mode, the dynamic range of the preemphasized audio signal is compressed to 73.
The gain is controlled by -1j by the output signal of the detector 5.7, each of which receives a pre-emphasized audio signal as an input. The output signal of the /compression circuit 6 or the Z2 compression circuit 4 is inputted to the FM modulator 9 through the switch 8 and subjected to F'M modulation. Here, the switch 8 is controlled by an SP mode/LP mode switching signal inputted from the input terminal 28. The output of the FM modulator is passed through a low-pass filter (hereinafter referred to as LPF) 10 to remove unnecessary band components, and then passed through an adder 29 to input terminal 3.
0, the magnetic head 1
Azimuth recording is performed on the magnetic tape 12 at step 1.

次に第6図の音声再生回路において、磁気テープ12よ
り磁気ヘッド11にて再生された信号痕帯域通過フィル
タ(以下BPFという)13に入力される。B p p
13は再生信号よりF” M音声信号のみを抽出する。
Next, in the audio reproduction circuit shown in FIG. 6, the signal traces reproduced by the magnetic head 11 from the magnetic tape 12 are input to a band pass filter (hereinafter referred to as BPF) 13. B p p
13 extracts only the F''M audio signal from the reproduced signal.

また、磁気ヘッド11にて再生された信号は、出力端子
25より映像信号再生回路(図示せず)へも出力される
。抽出されたFM音声信号は、FM復調器14にて音声
信号に復調される。復調された音声信号は、LPP、1
sにてFM搬送波のもれ等を除去されたのち、ホールド
回路16でヘッド切換に伴なう雑音を前値保持にて処理
される。ここで、ホールド回路16は入力端子26より
入力すね、るヘッド切換信号に同期した制御信号にて、
一定期間前値保持動作を行なう。
Further, the signal reproduced by the magnetic head 11 is also output from the output terminal 25 to a video signal reproduction circuit (not shown). The extracted FM audio signal is demodulated into an audio signal by the FM demodulator 14. The demodulated audio signal is LPP,1
After FM carrier wave leakage and the like are removed in step s, the hold circuit 16 processes noise caused by head switching by holding the previous value. Here, the hold circuit 16 receives a control signal synchronized with the head switching signal input from the input terminal 26.
The previous value is held for a certain period of time.

ホールド回路16の出力(信号はスイッチ17を通して
SPモード時は72倍伸張回路18、l、Pモード時は
2倍伸張回路20へ入力される。ここでスイッチ17は
入力端子27より入力されるSPモード−LPモード切
換信号にて制御される。
The output of the hold circuit 16 (signal is input through the switch 17 to the 72-fold expansion circuit 18 in the SP mode and the 2-fold expansion circuit 20 in the P mode. Here, the switch 17 is input to the SP input from the input terminal 27. It is controlled by the mode-LP mode switching signal.

ホールド回路出力信号は、SPモード時には/22倍伸
張路18で、LPモード時には2倍伸張回路20でダイ
ナミックレンジを元に戻される。ここで、/倍伸張回路
18及び2倍伸張回路20はホールド回路出力信号を人
力とする検出回路1z31の出力信号で利得制御され、
復調された音声信号のダイナミックレンジを元のレンジ
に伸張する。伸張された信号はスイッチ22を通って、
ディエンファシス回路2ろでディエンファシスされたの
ち、出力端子24より出力される。ここで。
The hold circuit output signal is restored to its original dynamic range by the /22 expansion circuit 18 in the SP mode and by the 2X expansion circuit 20 in the LP mode. Here, the gain of the double expansion circuit 18 and the double expansion circuit 20 is controlled by the output signal of the detection circuit 1z31 which uses the hold circuit output signal as a human power,
The dynamic range of the demodulated audio signal is extended to the original range. The expanded signal passes through switch 22,
After being de-emphasized by the de-emphasis circuit 2, it is output from the output terminal 24. here.

艮イツチ22はスイッチ17と連ヤしている。伸張回路
1’8−20で伸張された再生音声信号は、ノイズレベ
ルも同じ伸張動作を受け、小さい雑音レベルとなるので
隣接妨害雑音の抑えられた音声信号として出力される。
The switch 22 is connected to the switch 17. The reproduced audio signal expanded by the expansion circuit 1'8-20 undergoes the same expansion operation with respect to its noise level, and has a low noise level, so that it is output as an audio signal with suppressed adjacent interference noise.

言うまでもなく、この出力された音声信号は、最適な圧
縮比及び伸張比で圧縮伸張されているので、雑音レベル
が信号レベルに応じて変化するいわゆる息つぎ現象や歪
率劣化などの音質劣化の少ないものである、なお、W5
図、第6図に示した実施例は、2通りの記録密度ごとに
圧縮比及び伸張比を変化させろためスイッチ回路を用い
て行なっているが、構成か少し複雑となってしまう。そ
こで。
Needless to say, this output audio signal is compressed and expanded at the optimal compression and expansion ratios, so there is little deterioration in sound quality such as the so-called breathing phenomenon in which the noise level changes depending on the signal level, and distortion rate deterioration. Furthermore, W5
The embodiment shown in FIGS. 6 and 6 uses a switch circuit to change the compression ratio and expansion ratio for each of two recording densities, but the structure is a little complicated. Therefore.

実施例におけるSPモードとLPモードの2通りの圧縮
比伸張比をLPモードの2のみの1つだけに簡略化する
ことも可能である。この場合、SPモードの再生音声信
号は、S/N K関してはより改善さr、るが、上述の
息つぎ現象や歪率が多少劣化する。しかしながら、これ
らの劣化蓋は隣接妨害雑音などの雑音低減効果に比べて
十分許容できる範囲のものである。
It is also possible to simplify the two compression/expansion ratios of the SP mode and the LP mode in the embodiment to only one of the two for the LP mode. In this case, the reproduced audio signal in the SP mode is more improved in terms of S/N K, but the above-mentioned breathing phenomenon and distortion rate are somewhat degraded. However, these deterioration caps are within a sufficiently tolerable range compared to the effect of reducing noise such as adjacent interference noise.

第7図及び第8図に上記VTRで圧縮比伸張比をLPモ
ード時の2のみに簡略化した場合の音声記録再生回路の
回路構成例を示す。
FIGS. 7 and 8 show examples of the circuit configuration of the audio recording and reproducing circuit in the case where the compression/expansion ratio is simplified to only 2 in the LP mode in the above-mentioned VTR.

ここで−第7図、第8図中で第5図第6図と同一回路は
同一番号とした。第7図の動作は、SPモード及びLP
モードどちらにおいても、入力端子1から入力された音
声信号は、プリエンファシス回路2を通ったのち、/2
圧縮回路4にて、プリエンファシスした音声信号のダイ
ナミックレンジt/に圧縮する。ここで、/2圧縮回路
はプリエンファシスされた音声信号を入力とする検出器
5の出力信号で利得が制御され−ダ4す9′り′を/″
′′圧縮・/?圧縮回路4の出力信号は、F’M変調器
9でF M変調される。F M変調器出力はLPFlo
にて不要帯域成分を除去したのち、加算器29で入力端
子60より入力される映像信号と加算され、磁気ヘッド
11で磁気テープ12にアジマス記録される、第8図の
回路は、磁気テープ12よりS気ヘッド11にて再生さ
れた信号はB P Flsに入力され、FM音声信号の
みが抽出される。また、磁気ヘッド11で再生された信
号は出力端子25より映像信号再生回路(図示せず)へ
も出力される。抽出されたFM音声信号はFM復調器1
4にて音声信号に復調される。復調された音声信号はL
PF15にてFM搬送波のもれ等を除去したのち、ホー
ルド回路16でヘッド切換に伴なう雑音を前値保持にて
処理される。ホールド回路16は入力端子26より入力
される制御信号にて動作する。
Here, circuits in FIGS. 7 and 8 that are the same as those in FIGS. 5 and 6 are given the same numbers. The operation in Figure 7 is in SP mode and LP mode.
In either mode, the audio signal input from input terminal 1 passes through pre-emphasis circuit 2, and then
A compression circuit 4 compresses the pre-emphasized audio signal to a dynamic range t/. Here, the gain of the /2 compression circuit is controlled by the output signal of the detector 5 which inputs the pre-emphasized audio signal.
''compression·/? The output signal of the compression circuit 4 is subjected to FM modulation by an F'M modulator 9. FM modulator output is LPFlo
After removing unnecessary band components in the adder 29, the circuit in FIG. The signal reproduced by the S air head 11 is input to B P Fls, and only the FM audio signal is extracted. Further, the signal reproduced by the magnetic head 11 is also outputted from the output terminal 25 to a video signal reproduction circuit (not shown). The extracted FM audio signal is sent to FM demodulator 1
4, the signal is demodulated into an audio signal. The demodulated audio signal is L
After the leakage of the FM carrier wave is removed by the PF 15, the noise caused by head switching is processed by the hold circuit 16 by holding the previous value. The hold circuit 16 operates based on a control signal input from an input terminal 26.

ホールド回路16の出力信号は、ダイナミックレンジを
2倍伸張回路20にて2倍にされて、元のレンジに戻さ
れる。ここで2倍伸張回路20は検出器31の出力信号
にて利得を制御されている。
The output signal of the hold circuit 16 has its dynamic range doubled by a doubling expansion circuit 20, and is returned to its original range. Here, the gain of the double expansion circuit 20 is controlled by the output signal of the detector 31.

2倍伸張回路20の出力信号はディエンファシス回路2
6を通ったのち、出力端子24より出力されろ。また、
実施例の記録回路では、プリエンファシスした音声信号
のダイナミックレンジを圧縮して、過変調を生じにくい
ように配慮しである。また音声信号の全帯域の振幅に応
じて、圧縮、伸張を行なったが、音声信号の特定帯域成
分の振幅を用いてもよい。
The output signal of the double expansion circuit 20 is sent to the de-emphasis circuit 2.
6 and then output from the output terminal 24. Also,
In the recording circuit of the embodiment, consideration is given to compressing the dynamic range of the pre-emphasized audio signal so that overmodulation is less likely to occur. Furthermore, although compression and expansion are performed according to the amplitude of the entire band of the audio signal, the amplitude of a specific band component of the audio signal may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように一本発明を用いれば、以下に示す、
J:うに。
As explained above, if the present invention is used, the following will be achieved.
J: Sea urchin.

1、 簡単な回路構成により、高密度記録を行なっても
雑音レベルが信号レベルに応じて変化する、いわゆる息
つぎ現象や歪率劣化による皆質劣化を最小にしたうえで
、隣接妨害雑音を効果的に低減できる。
1. With a simple circuit configuration, the noise level changes depending on the signal level even during high-density recording, minimizing quality deterioration due to the so-called breathing phenomenon and distortion rate deterioration, and effectively suppressing adjacent interference noise. can be reduced.

2、 隣接妨害雑音以外のノイズも同時に低減できる0 6、 必要な周波数帯域幅が小さくてよいことから、回
転シリンダ径が小さくでき一小型がはかれる。
2. Noises other than adjacent interference noise can be reduced at the same time. 6. Since the required frequency bandwidth is small, the diameter of the rotating cylinder can be reduced, allowing for a smaller size.

など数多くの特徴を有し、VTRの小形化及び。It has many features such as miniaturization of VTR and.

音声FM重畳方式における隣接妨害雑音の低減に対して
、その効果は犬である。
The effect of this method on the reduction of adjacent interference noise in the audio FM superimposition method is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は音声I” M重畳方式における信号
周波数スペクトルの例を示す周波数スペクトル図、第3
図は隣接妨害の説明のための磁気テープの平面図、第4
図はシステムのD/lJと圧縮伸張効果により改善され
たシステムの見かけ上のD/Uとの関係を示す特性図、
第5図及び第6図、第7図、第8図は本発明を用いた音
声記録再生(ロ)路の一実施例を示す回路図である。 4.6・・・圧縮回路 18.20・・・伸張回路 5.7119.31・・・検出器 3.8,17.22・・・スイッチ 代理人弁理士 高 橋 明 夫 第 1 虐 凪液我 第 2 回 側汲牧 茅 3 図
Figures 1 and 2 are frequency spectrum diagrams showing examples of signal frequency spectra in the audio I''M superimposition method.
Figure 4 is a plan view of a magnetic tape for explaining adjacent interference.
The figure is a characteristic diagram showing the relationship between D/lJ of the system and the apparent D/U of the system improved by the compression/expansion effect.
FIGS. 5, 6, 7, and 8 are circuit diagrams showing an embodiment of an audio recording/reproducing path using the present invention. 4.6... Compression circuit 18.20... Expansion circuit 5.7119.31... Detector 3.8, 17.22... Switch representative patent attorney Akio Takahashi No. 1 Violent liquid My 2nd Soukumaki Kaya 3 Figure

Claims (1)

【特許請求の範囲】[Claims] 周波数変調音声イぎ号を磁気テープ上にその長手方向に
対して所定角度傾斜した記録軌跡として複数の回転ヘッ
ドで順次記録し、かつ前記磁気テープの走行速度を変え
て記録密度を可変する磁気記録再生装置において、記録
時に記録する音声信号の全周波数帯域の振幅丈たは特定
周波数蛍域の振幅に応じて、前記音声信号のダイナミッ
クレンジを圧縮して前記搬送波信号を周波数変調して前
記磁気テープに記録し、再生時に前記周波数変調音声信
号を復調し、復調した音声信号のダイナミックレンジを
伸張して元のダイナミックレンジに戻して丹生し、前記
ダイナミックレンジの圧縮比及び伸張比をAi?記記録
密度が最大の場合にほぼ2以下とし、隣接記録軌跡に記
録された周波数変調音声信号の妨害を除去することを特
徴とする音声雑音抑圧回路を備えた磁気記録再生装置。
Magnetic recording in which a frequency-modulated audio signal is sequentially recorded on a magnetic tape as a recording locus inclined at a predetermined angle with respect to the longitudinal direction of the tape using a plurality of rotating heads, and the recording density is varied by changing the running speed of the magnetic tape. In the reproducing device, the dynamic range of the audio signal is compressed and the carrier wave signal is frequency modulated according to the amplitude length of the entire frequency band or the amplitude of a specific frequency band of the audio signal to be recorded during recording, and the magnetic tape is reproduced. The frequency modulated audio signal is demodulated during playback, the dynamic range of the demodulated audio signal is expanded and restored to the original dynamic range, and the compression ratio and expansion ratio of the dynamic range are set to Ai? 1. A magnetic recording and reproducing device equipped with an audio noise suppression circuit, characterized in that the maximum recording density is approximately 2 or less to eliminate interference with frequency modulated audio signals recorded on adjacent recording trajectories.
JP58195970A 1983-10-21 1983-10-21 Magnetic recording and reproducing device equipped with sound noise suppression circuit Granted JPS59131280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58195970A JPS59131280A (en) 1983-10-21 1983-10-21 Magnetic recording and reproducing device equipped with sound noise suppression circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58195970A JPS59131280A (en) 1983-10-21 1983-10-21 Magnetic recording and reproducing device equipped with sound noise suppression circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56073556A Division JPS57190478A (en) 1981-05-18 1981-05-18 Sound noise suppressing circuit

Publications (2)

Publication Number Publication Date
JPS59131280A true JPS59131280A (en) 1984-07-28
JPH0130208B2 JPH0130208B2 (en) 1989-06-16

Family

ID=16350020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58195970A Granted JPS59131280A (en) 1983-10-21 1983-10-21 Magnetic recording and reproducing device equipped with sound noise suppression circuit

Country Status (1)

Country Link
JP (1) JPS59131280A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3790025B1 (en) 2019-03-29 2022-03-09 Applied Science Laboratory Co., Ltd X-ray analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265616A (en) * 1975-11-26 1977-05-31 Toshiba Corp Signal recording and reproducing unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265616A (en) * 1975-11-26 1977-05-31 Toshiba Corp Signal recording and reproducing unit

Also Published As

Publication number Publication date
JPH0130208B2 (en) 1989-06-16

Similar Documents

Publication Publication Date Title
US4812921A (en) Sound field expansion system for a video tape recorder
JPH0125127B2 (en)
US5027229A (en) Magnetic recording apparatus and magnetic recording/reproducing apparatus
JPS59131280A (en) Magnetic recording and reproducing device equipped with sound noise suppression circuit
JPH0316004A (en) Audio noise suppressor
JPH0130207B2 (en)
JPH0316003A (en) Audio noise suppressor
JPH0125128B2 (en)
US5231542A (en) Method and device for improving bass response in magnetic tape recording
JPH0359611B2 (en)
JP2627967B2 (en) Video tape recorder
JP2581482B2 (en) Magnetic tape
JP2559564B2 (en) Video tape recorder
JPH0442750B2 (en)
JP2910047B2 (en) Video signal reproduction circuit
JPH0395702A (en) Magnetic recording and reproducing device
JPH0130209B2 (en)
JPS5813964B2 (en) Saiseihouhou
JPH0690769B2 (en) Magnetic recording / reproducing device
JPH041404B2 (en)
JPS593711A (en) Noise canceller
JPH01303603A (en) Magnetic recording and reproducing device
JPS59203201A (en) Magnetic recording and reproducing device
JPS5919205A (en) Recording and reproducing circuit for superposition of multi-channel signal
JPH022201B2 (en)