JPS59131202A - Antenna device - Google Patents

Antenna device

Info

Publication number
JPS59131202A
JPS59131202A JP565883A JP565883A JPS59131202A JP S59131202 A JPS59131202 A JP S59131202A JP 565883 A JP565883 A JP 565883A JP 565883 A JP565883 A JP 565883A JP S59131202 A JPS59131202 A JP S59131202A
Authority
JP
Japan
Prior art keywords
radio wave
optical path
reflector
antenna device
deformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP565883A
Other languages
Japanese (ja)
Inventor
Yoshihiro Takechi
武市 吉博
Shunichiro Kawabata
川端 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP565883A priority Critical patent/JPS59131202A/en
Publication of JPS59131202A publication Critical patent/JPS59131202A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/147Reflecting surfaces; Equivalent structures provided with means for controlling or monitoring the shape of the reflecting surface

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To control the beam and to obtain a fixed surface of radio waves by controlling the feeding phase shift degrees to plural primary radiators in response to a reflector that is deformed by the sunbeam and based previously on the estimation of deformation of the period of a day, etc. CONSTITUTION:A parabolic reflector 1 is deformed by heat as shown in the figure 1' for instance, and therefore the surface of a radio wave is deformed. Therefore the phase shift degrees of phase shifters 9-1-9-n are controlled to compensate the deformation of the radio wave surface. As a result, the optical path of the radio wave is set in parallel to the original optical path 8 as shown in the figure 8''. Thus it is possible to prevent the bend of the optical path of the radio wave which is caused with a conventional antenna device.

Description

【発明の詳細な説明】 この発明は反射鏡と一次放射器で構成されるアンテナ装
置の改良に関するもので、以下、静止衛星搭載用のアン
テナを例に」:げて説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an antenna device comprising a reflector and a primary radiator, and will be explained below using an antenna mounted on a geostationary satellite as an example.

第1図は従来のアンテナ装置を説明するだめの図で、(
1)は反射鏡、(2)は反射鏡の支柱、(3)は−次放
射器、(4)は静止衛星本体、(5)は送受分離器、(
6)は送信機、(7)は受信機、 (81//i電波の
光路を示している。
Figure 1 is a diagram for explaining a conventional antenna device.
1) is the reflector, (2) is the reflector support, (3) is the -order radiator, (4) is the geostationary satellite body, (5) is the transmitter/receiver separator, (
6) is the transmitter, (7) is the receiver, (81//i shows the optical path of the radio wave.

いま第1図において、パラボラ反射鏡(1)の焦点にお
かれた一次放射器(3)からの放射電波の光路(8)が
静止衛星軌道上から見た地球上の要求地点を向くように
アンテナを静止衛星に取付けであるとする。しかし実際
の静止衛星は地球の自転と一致して地球の周りを廻って
いるため、第1図の上を北向きとすると、朝は衛星の東
面、昼は衛星の背面。
In Fig. 1, the optical path (8) of the radiated radio waves from the primary radiator (3) placed at the focus of the parabolic reflector (1) is directed to the desired point on the earth as seen from the geostationary satellite orbit. Assume that the antenna is attached to a geostationary satellite. However, in reality, geostationary satellites revolve around the earth in line with the earth's rotation, so if the top of Figure 1 is facing north, the east side of the satellite will be in the morning, and the back of the satellite in the afternoon.

夕方は衛星の西面、夜は衛星の前面から太陽光が当り、
かつ春、夏、秋、冬によって太陽光が南北へ傾くため反
射鏡の温度分布も変化し、これによる反射鏡の熱変形に
より、電波の光路が変化し。
Sunlight hits the west side of the satellite in the evening, and the front of the satellite at night.
Additionally, as sunlight tilts north and south in spring, summer, autumn, and winter, the temperature distribution of the reflector changes as well, and the resulting thermal deformation of the reflector changes the optical path of radio waves.

要求地点を正しく照射しなくなる。The required point will not be irradiated correctly.

すなわち、第1図の電波の光路(8)を春分又は秋分の
朝方又は夕方のときのものとすると2反射鏡(1)の側
面から太陽光が当っているだめ熱変形は少ないが1日中
になり太陽光が背面から当るようになると1反射鏡(1
)の背面の温度が上昇し、第1図の(1つのように反射
鏡が変形し、このため電波の波面が変形し、アンテナ特
性の劣化を生じたシ。
In other words, if we assume that the optical path (8) of the radio wave in Figure 1 is in the morning or evening of the vernal or autumnal equinox, the sunlight is shining from the side of the 2-reflector (1), so there is little thermal deformation, but it remains constant throughout the day. 1 reflector (1
) The temperature on the back surface of the antenna increased, causing the reflector to deform as shown in (1) in Figure 1, which deformed the wavefront of the radio wave and caused deterioration of the antenna characteristics.

あるいは第1図の電波の光路(8)は(8つに示すよう
に南向に曲る。同様に夜中になると2反射鏡の前面から
太陽光が当るため1図には示していないが反射鏡は浅く
なる様に変形し、これによる電波の波面の変形によりア
ンテナ特性が劣化したり、筐た電波の光路は北向に曲る
Alternatively, the optical path (8) of the radio wave in Figure 1 curves southward as shown in (8).Similarly, in the middle of the night, sunlight hits the front of the 2 reflecting mirrors, so it is reflected (not shown in Figure 1). The mirror deforms to become shallower, and this deforms the wavefront of the radio waves, deteriorating the antenna characteristics and causing the optical path of the encased radio waves to curve northward.

しかし、この変形は短時間では1日の周期、長時間では
1年の周期で規則正しく変化し、事前に予測することが
できる。
However, this deformation changes regularly over a short period of time, with a daily cycle, and over a long time, with a one-year cycle, and can be predicted in advance.

そこで、この発明においては一次放射器に工夫を加えて
この変形による電波の波面の変形を補償し、アンテナの
特性の劣化を防ぐとともに、電波の光路の曲りを防ぐも
のである。
Therefore, in the present invention, a modification is added to the primary radiator to compensate for the deformation of the wavefront of the radio wave due to this deformation, thereby preventing deterioration of the characteristics of the antenna and bending of the optical path of the radio wave.

以下2図によって説明する。This will be explained below with reference to two figures.

第2図はこの発明によるアンテナ装置の一実施例を示す
もので、(1)はパラボラ反射鏡、(2)は反射鏡の支
柱、  (3−1)〜(!I  n)は/161〜/1
6nのn個の一次放射器、(4)は静止衛星本体、(5
)は送受分離器、(6)は送信機、(7)は受信機、(
8)は電波の光路。
FIG. 2 shows an embodiment of the antenna device according to the present invention, in which (1) is a parabolic reflector, (2) is a support of the reflector, and (3-1) to (!In) are /161 to /1
n primary radiators of 6n, (4) is the geostationary satellite main body, (5
) is a transmitter/receiver separator, (6) is a transmitter, (7) is a receiver, (
8) is the optical path of radio waves.

(9−1) 〜(9−n)は41〜/16nのn個の移
相器。
(9-1) to (9-n) are n phase shifters of 41 to /16n.

0〔はn分配の電力分配器、 anは前記/16 i 
〜/16nのn個の移相器(9−1)〜(9−n)の移
相量をコントロールするだめの制御信号as−i〜as
 −n 全出力する制御器を示している。
0 [ is an n-distribution power divider, an is the above /16 i
Control signals as-i to as for controlling the amount of phase shift of n phase shifters (9-1) to (9-n) of ~/16n
-n Indicates a controller that outputs full output.

第2図において、−次放射器は屑1〜/I6nのn個(
例えば正六角形の頂点と中央に位置すればn=7となる
)のホーンから構成され、電力分配器Onに接続される
途中に/161〜Anのn個の移相器を夫々接続してい
る。
In Figure 2, there are n pieces of -order radiators (1~/I6n) (
For example, if the horn is located at the apex and center of a regular hexagon, n = 7), and n phase shifters from /161 to An are connected to the power divider On. .

このため反射鏡(1)が例えば(1′)のように熱によ
り変形し、これによシミ波の波面が変形したとしても、
それを補償するように、移相器(q−1)〜(9−n)
の移相量を調整し、電波の波面の変形を修正する。この
結果、電波の光路は第2図の(8〃)のように元の光路
(8)と平行になシ、従来のアンテナ装置で発生し7て
いた電波の光路の曲りを防止することができる。
Therefore, even if the reflecting mirror (1) is deformed by heat as shown in (1') for example, and the wavefront of the stain wave is deformed by this,
To compensate for this, phase shifters (q-1) to (9-n)
Adjust the phase shift amount to correct the deformation of the radio wave front. As a result, the optical path of the radio wave becomes parallel to the original optical path (8) as shown in (8) in Figure 2, and the bending of the optical path of the radio wave that occurs in conventional antenna devices can be prevented. can.

先に述べたように、静止衛星においては、太陽光の照射
方向の変化による反射鏡の熱変形は周期的に変化し、ま
たその変形量を解析的に予測することが可能なため、そ
の情報を事前に記憶させた制御器αυによシ移相器の移
相量を反射鏡の熱変形による電波の波面の変形を防止す
るように制御することは容易である。
As mentioned earlier, in geostationary satellites, the thermal deformation of the reflector changes periodically due to changes in the direction of sunlight irradiation, and the amount of deformation can be predicted analytically, so information on this It is easy to control the amount of phase shift of the phase shifter using a controller αυ stored in advance so as to prevent deformation of the wavefront of the radio wave due to thermal deformation of the reflecting mirror.

以上述べたように、この発明によるアンテナ装置を用い
ることによ99反射鏡の熱変形による特性の劣化を防止
することが可能となり、特に大きな反射鏡(例えばCバ
ンドのマルチと一ムアンテナで直径約10m)を用いる
場合や、高い周、線数を用いる場合に、極めて有効であ
る。なお、ここでは反射鏡が1枚の例を示したが、2枚
の反射鏡の場合についても同様であることは当然である
As described above, by using the antenna device according to the present invention, it is possible to prevent the deterioration of the characteristics of the 99 reflector due to thermal deformation. 10 m), or when using a high circumference or a high number of wires. Although an example in which there is one reflecting mirror is shown here, it goes without saying that the same applies to a case in which two reflecting mirrors are used.

また、ここでは静止衛星搭載のアンテナの例を示したが
2本発明はあらかじめ熱変形を予測しうるすべてのアン
テナ装置に実施することができる。
Further, although an example of an antenna mounted on a geostationary satellite is shown here, the present invention can be implemented in any antenna device whose thermal deformation can be predicted in advance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のアンテナ装置を示す図、第2図はこの
発明の一実施例を示す図であ!ll、(1)ハ反射鏡、
(2)は支柱、(3)は−次放射器、(4)は衛星本体
。 (5)は送受分離器、(6)は送信機、(7)は受信機
、(8)は電波の光路、(9)は移相器、 (IIは電
力分配器、 +11)は移相器の制御回路である。 なお9図中同一あるいは相当部分には同一符号を付して
示しである。 代理人 葛野信−
FIG. 1 is a diagram showing a conventional antenna device, and FIG. 2 is a diagram showing an embodiment of the present invention! ll, (1) C reflector,
(2) is the pillar, (3) is the -order radiator, and (4) is the satellite body. (5) is a transmitter/receiver separator, (6) is a transmitter, (7) is a receiver, (8) is a radio wave optical path, (9) is a phase shifter, (II is a power divider, +11) is a phase shifter. This is the control circuit for the device. Note that the same or corresponding parts in FIG. 9 are designated by the same reference numerals. Agent Makoto Kuzuno

Claims (1)

【特許請求の範囲】[Claims] 反射鏡と一次放射器とから構成されるアンテナ装置にお
いて、複数個の一次放射器と、上記複数個の一次放射器
それぞれに対応して設けた複数個の移相器と、上記移相
器を介して各放射素子に電力を分配する電力分配器と、
上記各移相器の移相量をあらかじめ予測した反射鏡の熱
変形による電波の波面の曲シを補償するように制御する
制御器とを備えたことを特徴とするアンテナ装置。
An antenna device comprising a reflecting mirror and a primary radiator, a plurality of primary radiators, a plurality of phase shifters provided corresponding to each of the plurality of primary radiators, and the phase shifter. a power divider that distributes power to each radiating element through the
An antenna device comprising: a controller that controls the amount of phase shift of each of the phase shifters to compensate for the curvature of a wavefront of a radio wave due to thermal deformation of a reflecting mirror, which is predicted in advance.
JP565883A 1983-01-17 1983-01-17 Antenna device Pending JPS59131202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP565883A JPS59131202A (en) 1983-01-17 1983-01-17 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP565883A JPS59131202A (en) 1983-01-17 1983-01-17 Antenna device

Publications (1)

Publication Number Publication Date
JPS59131202A true JPS59131202A (en) 1984-07-28

Family

ID=11617209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP565883A Pending JPS59131202A (en) 1983-01-17 1983-01-17 Antenna device

Country Status (1)

Country Link
JP (1) JPS59131202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017708A (en) * 2012-07-10 2014-01-30 Nippon Hoso Kyokai <Nhk> Space synthesis antenna device and manufacturing method for modified mirror surface reflector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150948A (en) * 1978-05-17 1979-11-27 Western Electric Co Multiplex reflector antenna device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150948A (en) * 1978-05-17 1979-11-27 Western Electric Co Multiplex reflector antenna device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017708A (en) * 2012-07-10 2014-01-30 Nippon Hoso Kyokai <Nhk> Space synthesis antenna device and manufacturing method for modified mirror surface reflector

Similar Documents

Publication Publication Date Title
US4371135A (en) Solar array spacecraft reflector
US4044752A (en) Solar collector with altitude tracking
US11437950B2 (en) Method to reduce shading in a photovoltaic plant
US20140000705A1 (en) Reflector system for concentrating solar systems
US3836969A (en) Geo-synchronous satellites in quasi-equatorial orbits
US4317031A (en) Central focus solar energy system
JP2542094B2 (en) Satellite control system
US4114596A (en) Method and apparatus for tracking the sun for use in a solar collector with linear focusing means
US20100051017A1 (en) Global solar tracking system
US4572160A (en) Heliotropic solar heat collector system
CA1262890A (en) Shading device for use in a geostatic satellite
JPH06152233A (en) Multi-beam antenna for satellite reception
JPH10203497A (en) System and method for operating satellite
US4548195A (en) Solar energy apparatus with automatic tracking alignment adjustments
JPS59131202A (en) Antenna device
AU2010200237A1 (en) A tracking system
JP5864293B2 (en) Concentrating solar power generation system
Bannerot et al. Predicted daily and yearly average radiative performance of optimal trapezoidal groove solar energy collectors
Bouzakri et al. Efficiency enhancement of a fixed photovoltaic panel using simple motorized reflection model
JPS59149403A (en) Antenna device
Jones A comparison of on-axis and off-axis heliostat alignment strategies
JPS5848477A (en) Condenser type solar electric generator
WO1989002055A1 (en) Solar energy conversion device
Gordon et al. A simple method for calculating the annual insolation on solar collectors
SU1081389A1 (en) Solar electric station