JPS59128435A - Automatic inspecting system - Google Patents

Automatic inspecting system

Info

Publication number
JPS59128435A
JPS59128435A JP459883A JP459883A JPS59128435A JP S59128435 A JPS59128435 A JP S59128435A JP 459883 A JP459883 A JP 459883A JP 459883 A JP459883 A JP 459883A JP S59128435 A JPS59128435 A JP S59128435A
Authority
JP
Japan
Prior art keywords
sensor
sample
signal
detection range
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP459883A
Other languages
Japanese (ja)
Other versions
JPH0445776B2 (en
Inventor
Toshikazu Onda
寿和 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP459883A priority Critical patent/JPS59128435A/en
Publication of JPS59128435A publication Critical patent/JPS59128435A/en
Publication of JPH0445776B2 publication Critical patent/JPH0445776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To perform highly accurate automatic inspection at a high speed, by performing the frequency conversion of the sensor output with respect to a sample, which is located in the detecting range of a sensor, memorizing the maximum and minimum values within the pulse width, and comparing the values with a reference value after the sample has passed the detecting range. CONSTITUTION:A microcomputer 31 in a controller 26 corresponds to a position sensor 25. As long as a conveyed sample is located in the detecting range of a sensor, which receives reflected light, the pulse width of a pulse corresponding to the detected output of the sensor, through a voltage-frequency converter 28A, a signal insulator 29A such as a photocoupler, and an interval timer 30A, is received by the computer 31, and the maximum and the minimum values are stored. After the sample has passed the detecting range of the sensor, the computer 31 compares the stored contents with the similar reference pulse width through the sensor, which receives the reflected light from a reference surface, and the quality of the sample is judged. Therefore, the comparison with the reference value is not performed for every pulse but only once, and highly accurate automatic inspection can be performed at a high speed.

Description

【発明の詳細な説明】 本発明1は、検体(被検査物)がセンサ検出範囲を通過
する間に該センサが検出するアナログ信号を基準値と比
較して検体の良否判別をする自動検査方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention 1 is an automatic inspection method in which an analog signal detected by a sensor is compared with a reference value while the specimen (tested object) passes through the sensor detection range to determine the quality of the specimen. Regarding.

製造プロセスにおける原材料の受入nや製品の出荷の際
の検査工程では、ベルトコンベア等の搬送装置上を連続
的に移動する検体の状態を何らかの方法で検出し、その
検出値と基準となる状態と全比較して検体の良否を判別
する自動検査装置が用意される。
In the inspection process during the receipt of raw materials in the manufacturing process and the shipping of products, the state of the sample that is continuously moving on a conveyor such as a belt conveyor is detected by some method, and the detected value is compared with the reference state. An automatic testing device is prepared that compares all samples and determines whether the sample is good or bad.

この種の自動検査装置は一般的には第1図に示す構成に
される。搬送装量/上を移送さ几る検体Jに対して、該
検体認の状態を何らかのアナログ信号として検出するセ
ンサJと、検体コがセンサ3の検出範囲内に移送さnた
ことを検出する位置センサダと、これらセンサJ、lの
検出信号を受けて検体2の良否を判別するコントローラ
Sとを具える。コントローラsB位置七ンサ4の検出信
号によって検体コがセンサ3の検出範囲内にあること全
確認した上でセンサ3からのアナログ信号を入力して検
体の良否を判別する。
This type of automatic inspection device generally has the configuration shown in FIG. A sensor J detects the state of the sample J as an analog signal for the sample J transferred above the transport load/above, and detects that the sample J is transferred within the detection range of the sensor 3. It includes a position sensor and a controller S that receives detection signals from these sensors J and I and determines whether the specimen 2 is good or bad. After fully confirming that the sample is within the detection range of the sensor 3 using the detection signal from the controller sB position sensor 4, the analog signal from the sensor 3 is input to determine whether the sample is good or bad.

このような自動検査装置のコントローラSとして、マイ
クロコンピュータを制御中枢部とする場合、マイクロコ
ンピュータで処理できる信号は全てディジタル信号であ
るため、センサ3がらのアナログ信号をディジタル信号
に変換する回路を持って構成することになる。また、一
般には各種プロセスの信号を計測側a1機器(C入力す
る場合には、ノイズなどを避けるためにプロセスからの
信号を計測制御機器内部に増込むのに信号絶縁を行なう
ようアナログ信号を信号絶縁器を介して入力する。
If a microcomputer is used as the control center for the controller S of such automatic inspection equipment, all the signals that can be processed by the microcomputer are digital signals, so it is necessary to have a circuit that converts the analog signal from the sensor 3 into a digital signal. It will be configured as follows. In general, when signals from various processes are input to the measurement side A1 equipment (C), analog signals are input to the measurement control equipment to avoid noise, etc., so as to insulate the signals from the process into the measurement control equipment. Input via isolator.

上述のように、マイクロコンピュータが外部アナログ信
号を信号絶縁を取りなから入力するに、その信号絶縁に
小型、低コスト、構成の簡単化を図った第2図に示す方
法がある。外部からのアナログ信号は電圧−周波数変換
回路乙によって周波数信号に変換し、この周波数信号は
フォトカプラによる光信号変換など電気的に絶縁する信
号絶縁器7を介してインターバルタイマざに取込み、イ
ンターバルタイマgは周波数信号の周波数を測定し、こ
の測定信号からマイクロコンピュータ2が入力アナログ
信号電圧に対応した数値を算出する。
As mentioned above, when a microcomputer inputs an external analog signal without signal isolation, there is a method for signal isolation shown in FIG. 2 that is compact, low cost, and has a simple configuration. The analog signal from the outside is converted into a frequency signal by the voltage-frequency conversion circuit B, and this frequency signal is taken into the interval timer via the signal isolator 7 that electrically insulates it, such as by optical signal conversion using a photocoupler. g measures the frequency of the frequency signal, and from this measurement signal the microcomputer 2 calculates a numerical value corresponding to the input analog signal voltage.

電圧−周波数変換回路6tI′i、第3図(a)に示す
ように、アナログ信号vI、IをコンデンサC8と抵抗
Pによる時定数で積分し定電流工。の定電流源10で積
分コンデンサc1 ’1充電させる積分器//と、積分
器l/の出力電圧■。が零に達したことを検出するコン
パレータ/2と、コンパレータ/2の検出出力でトリガ
さnて一定幅のパルスを周波数変換出力fOとすると共
に定電流源10を積分器//に接続するワンショット回
路/3とを具える。
As shown in FIG. 3(a), the voltage-frequency conversion circuit 6tI'i integrates the analog signals vI and I with a time constant defined by a capacitor C8 and a resistor P to perform a constant current process. The integrator // charges the integrating capacitor c1 '1 with the constant current source 10, and the output voltage of the integrator l/. a comparator/2 that detects that the signal has reached zero, and a one that is triggered by the detection output of the comparator/2 to generate a constant width pulse as the frequency conversion output fO, and connects the constant current source 10 to the integrator//. A shot circuit/3 is provided.

この構成において、第3図(b)に波形図を示す工うに
、コンパレータ/2の入力■。が零に達したときワンシ
ョット回路が動作し、その出力fol”lニ一定時間T
だけハイレベルになシ、同時に定電流源10を積分器/
/の入力として与え、このときから積分器//のコンデ
ンサC1が充電ヲ始めてワンショット回路/3の時間T
の間 vIヨ ー=(工。−R) /Ct の傾きを持って積分器出力vcが上昇する。時間Tの経
過で出力fOがローレベルになシ、定電流源70を切離
し、このときからコンデンサc1はの傾きを持って放間
を始め、この放電で■。が零になると再びワンショット
回路13が時間Tだけハイレベルになる繰シ返し動作に
なる。
In this configuration, the input of comparator/2 is shown in the waveform diagram shown in FIG. 3(b). When T reaches zero, the one-shot circuit operates, and its output fol''l continues for a certain period of time T.
At the same time, the constant current source 10 is connected to the integrator/
From this time, the capacitor C1 of the integrator // starts charging, and the time T of the one-shot circuit /3 starts.
During this period, the integrator output vc rises with a slope of vIyaw=(Eng.-R)/Ct. As the time T elapses, the output fO becomes low level, the constant current source 70 is disconnected, and from this point on, the capacitor c1 begins to discharge with a slope of . When becomes zero, the one-shot circuit 13 again goes into a repetitive operation in which it goes high for a time T.

出力foのハイレベル時間T、ローレベル時間tとすれ
ば、アナログ入力V、、が一定ならばコンデンサc1の
充電電圧と放電電圧が同じことから((工、) / C
I ) X T :==”−L’−X 1゜v重N RROl すなわち、 となシ、マイクロコンピュータ9は出力fOがローレベ
ルにある時間tf:インターバルタイマiの出力として
得、他の定数に、Tによる上述の(1)式による演算か
らアナログ人力V+ N k算出することができる。こ
のとき、出力foの周波数信号の段階で信号絶縁するこ
とにニジ、アナログ信号の段階での信号絶縁に比して回
路の簡単化を図ることができる。
If the high level time T and low level time t of the output fo are constant, then if the analog input V, is constant, the charging voltage and discharging voltage of the capacitor c1 are the same, so ((Eng.,) / C
I) Then, the analog human power V + N k can be calculated from the calculation using the above equation (1) using T. At this time, it is necessary to isolate the signal at the frequency signal stage of the output fo, and the signal isolation at the stage of the analog signal. The circuit can be simplified compared to the above.

ところで、自動検査装#、において、外部アナログ信号
v、ヲ入力しである基準値V、との比較を行なう場合、
一般にはV、とvse夫々入力して比較判別するという
動作を繰り返すが、アナログ信号の入力を上述の第2図
の回路方式で行なう場合には(1)式中の時間t’l測
定するに要する時間に加えて、(1)式に基づいた計算
に要する時間を必要とし、アナログ信号v、 l v、
による比較判別動作の繰シ返し周期を短縮することがで
きず、このような自動検査方式置では高速測定ができな
い問題があった。
By the way, when comparing the external analog signal v with the input reference value V in the automatic inspection equipment #,
Generally, the operation of inputting V and vse respectively and comparing and determining is repeated, but when inputting an analog signal using the circuit system shown in Figure 2 above, the time t'l in equation (1) is measured. In addition to the time required, the time required for calculation based on equation (1) is required, and the analog signals v, l v,
Therefore, it is not possible to shorten the repetition period of the comparison and discrimination operation, and there is a problem that high-speed measurement cannot be performed in such an automatic inspection system.

本発明は、検体がセンサ検出範囲にある間は電圧−周波
数変換さ扛たパルス幅信号のみを連続的に取込んでその
パルス幅の最大値又は最小値のみを記憶しておき、検体
がセンサ検出範囲を通過した直後に入力値の計算と基準
値の入力を行なって両者の比較をすることに工り、精度
良い高床測定を可能にした自動検査方式を提供すること
を目的とする。
The present invention continuously captures only the voltage-frequency converted pulse width signal while the sample is within the sensor detection range, and stores only the maximum or minimum value of the pulse width. The object of the present invention is to provide an automatic inspection method that enables accurate high-floor measurement by calculating an input value and inputting a reference value immediately after passing through a detection range and comparing the two.

本発明は、検体の状態を検出するアナログ信号の入力に
は電圧−周波数変換と周波数信号絶縁とインターバルタ
イマによるパルス幅検出によってアナログ入力電圧に対
応した周波数信号のパルス幅を測定し、所定の計算式を
もとに入力電圧を計算するが、アナログ信号の比較判断
に従来装置との違いがある。即ち、アナログ信号全入力
する場合、アナログ信号に対応する周波数信号のパルス
幅を測定し、こf’Lkもとに入力電圧を測定するが、
本発明では検体がセンサの検出範囲にあることを位置セ
ンサで検出しておき、この間は連続的にパルス幅の測定
のみを行ない、この測定値のうち最大値又は最小値のみ
を記憶しておく。この最大値。
The present invention measures the pulse width of the frequency signal corresponding to the analog input voltage by voltage-frequency conversion, frequency signal isolation, and pulse width detection using an interval timer to input the analog signal for detecting the state of the specimen, and performs a predetermined calculation. The input voltage is calculated based on a formula, but there is a difference from conventional devices in how analog signals are compared and judged. That is, when all analog signals are input, the pulse width of the frequency signal corresponding to the analog signal is measured, and the input voltage is measured based on this f'Lk.
In the present invention, the position sensor detects that the sample is within the detection range of the sensor, and during this time only the pulse width is continuously measured, and only the maximum or minimum value of these measured values is stored. . This maximum value.

最小値はifT述の(1)式から変換パルス幅の最大値
The minimum value is the maximum value of the conversion pulse width from equation (1) described in ifT.

最小値に対応し、この最大値又は最小値をもとにアナロ
グ信号電圧を計算することは検体の状態の検出値の最小
値又は最大値を算出することを意味し、この算出値と入
力した基準値の比較によれば検体の良否・の判定が該検
体の状態を代表する1つの値を1回比較することで済ん
で検体の各部状態の検出値を多数回比較する場合に比べ
て比較判別回数を大幅に低減できることになる。
Corresponding to the minimum value, calculating the analog signal voltage based on this maximum value or minimum value means calculating the minimum value or maximum value of the detected value of the state of the specimen, and this calculated value and input By comparing standard values, determining whether a specimen is good or bad can be done by comparing one value representative of the condition of the specimen once, compared to comparing the detected values of each part of the specimen multiple times. This means that the number of determinations can be significantly reduced.

一般的には、検体がセンサの横1範囲にある時間が短か
く、その間の基準値が大きく変化することはないため、
本発明による上述の検査にあっても検体の状態を正確に
判別し得、しかも基準値と検体よりのアナログ信号との
大小判断をする毎に入力電圧を計算しなくて済み、その
分だけマイクロコンピュータによる処理時間の短縮にな
るし、検体がセンサの検出範囲を通過する時間を短縮し
て高速測定又は精度向上を図ることができる。
In general, the time the sample remains in one area horizontally to the sensor is short, and the reference value does not change significantly during that time.
Even in the above-mentioned test according to the present invention, the state of the specimen can be accurately determined, and there is no need to calculate the input voltage each time the magnitude of the reference value and the analog signal from the specimen is determined, and the micro The processing time by the computer can be reduced, and the time required for the specimen to pass through the detection range of the sensor can be shortened, allowing for high-speed measurement or improved accuracy.

本発明方法と従来方法の違いをフローチャートで示すと
第4図のようになる。検体の状態の検出アナログ値■、
検出基準値V、、夫々の値VP 、 Vsに対する変換
パルス幅をtp 、 isとすると、同図(a)に示す
従来方法では検体検出(ステップS/)後KUアナログ
信号を大刀する毎に1. 、1.の測定(ステップS、
2,54t)とvP + v、の計算(ステップS、?
、Sj)とV、とV、の比較(ステップ84)i行ない
、この一連の測定と計算は検体が検出範囲内にある限り
繰シ返しくステップ87)、検体が検出範囲を外れると
vp、vsの比軸結果がら検体の良否判101(ステッ
プs、r)kするものであった。
The difference between the method of the present invention and the conventional method is shown in a flowchart as shown in FIG. Detection analog value of specimen condition■,
If the conversion pulse widths for the detection reference values V, , and the respective values VP and Vs are tp and is, then in the conventional method shown in FIG. .. , 1. measurement (step S,
2,54t) and calculation of vP + v (step S, ?
. The quality of the specimen was judged 101 (steps s, r) based on the ratio axis result of vs.

これに対して、本発明では、第4図(b)に示すように
、検体が検出範囲に入ると(ステップS // )、1
、測定(ステップS /! )に次いでそれまでのt。
In contrast, in the present invention, as shown in FIG. 4(b), when the specimen enters the detection range (step S // ), 1
, measurement (step S/!) followed by t.

測定値のうちの最大値(もしくは最小値)を抽出して該
最大値を記憶更新して行き(ステップs/3)、この操
作を検体が検出範囲を外するまで繰り返しくステップS
 /& ) 、検体が検出範囲を外れると初めてt、の
測定(ステップS/!;) 、Viの計算(ステップS
l&)、V、の計算(ステップEl /1 )及びv。
Step S: Extract the maximum value (or minimum value) of the measured values, store and update the maximum value (Step S/3), and repeat this operation until the specimen is out of the detection range.
/&), Measurement of t for the first time when the sample is out of the detection range (Step S/!;), Calculation of Vi (Step S
l&), V, (step El /1) and v.

とV、の比較判断(ステップs/8)を行なう。これで
より、検体がセンサの検出範囲内に存在する時間が同じ
ならば、本発明でfdアナログ信号の比較即ちアナログ
信号に対応するパルス幅の比較が従来方法に比べて多く
行なうことができ、検体の小さな異常も検出する精度良
い測定ができる12、同じ精度を得るのに本発明方法で
は検体の移動速度を早くすることができる。
A comparative judgment is made between and V (step s/8). As a result, if the amount of time that the analyte remains within the detection range of the sensor is the same, the present invention can perform more comparisons of fd analog signals, that is, more comparisons of pulse widths corresponding to the analog signals than in conventional methods. Accurate measurements can be made to detect even small abnormalities in the specimen12, and the method of the present invention can increase the movement speed of the specimen to obtain the same accuracy.

第5図は本発明の一実施例を示す装置構成図であり、搬
送装置/上を連続的に移送さnる検体コに対してその表
面に傷がある場合に該検体を排除することを目的とする
自動検査装置に適用した場合を示す。交流励磁の光源ラ
ンプ、2/は検体2が所定範囲内を移送されるときにそ
の検出面を光照射すると共に、該検体の検出範囲の近傍
に固定される比較基準面を持つ基準物体、72を光照射
する。光センサ環は光源ランプ、2/からの光が検体2
表面の傷で乱反射さnた光を捕捉し、乱反射光の強さに
対応した電気信号を得る。同様に光センサ2ダは基準物
体、22の表面粗さによる乱反射光を電気信号として検
出する。位置センサー5は検体コが光センサ環の検出範
囲内にあるか否がを検出する。コントローラ、26は位
置センサΔによる検出信号から検体がその検出範囲内に
あることを条件に光センサ23゜Jのアナログ信号から
該検体の良否(傷の強さ)を判別し、検体不良のときは
排除機27全駆動制御して該排除機27による不良検体
の排除を行なわせる。なお、光源ランプ−27ヲ交流f
ljJ磁とするのは、光センサ)、3.2’lの光入力
に外来光(例えば照明光)の影1i f無くすもので、
光センサυ1w内のセンスアンプでは検出信号から光源
ランプ−27の励娠周波数成分のみを抽出して傷の有無
を振幅の大きさとして直流アナログレベルでコントロー
ラ、26への出力とする。
FIG. 5 is an apparatus configuration diagram showing an embodiment of the present invention, in which a specimen is continuously transferred on the transport device and is removed if there is a scratch on the surface of the specimen. The case where it is applied to the intended automatic inspection equipment is shown. AC-excited light source lamp 2/ irradiates the detection surface of the specimen 2 with light when the specimen 2 is transported within a predetermined range, and a reference object 72 having a comparison reference surface fixed in the vicinity of the detection range of the specimen. irradiate with light. The light sensor ring is a light source lamp, and the light from 2/ is the sample 2.
The light diffusely reflected by the scratches on the surface is captured and an electrical signal corresponding to the intensity of the diffusely reflected light is obtained. Similarly, the optical sensor 2da detects diffusely reflected light due to the surface roughness of the reference object 22 as an electrical signal. The position sensor 5 detects whether the specimen is within the detection range of the optical sensor ring. The controller 26 determines whether the specimen is good or not (strength of scratches) from the analog signal of the optical sensor 23゜J on the condition that the specimen is within the detection range from the detection signal of the position sensor Δ, and if the specimen is defective. controls the entire drive of the remover 27 to cause the remover 27 to remove defective samples. In addition, the light source lamp-27
The ljJ magnet is used to eliminate the shadow of external light (for example, illumination light) on the optical input of the optical sensor), 3.2'l,
The sense amplifier in the optical sensor υ1w extracts only the excitation frequency component of the light source lamp 27 from the detection signal, and outputs it to the controller 26 as an amplitude indicating the presence or absence of scratches at a DC analog level.

コントローラ、26は、第6図に示す構成にさnる。The controller 26 has the configuration shown in FIG.

光センサ環の検出信号■、と光センサー1tl−の検出
信号■、とは夫々電圧−周波数変換回路21A、211
BKよって対応する周波数のパルス信号に変換さ扛、こ
nら変換信号は夫々信号絶縁器29に、、29Bで絶縁
さnてインターバルタイマ30A 、 30B K L
るノくルス幅検出がなされる。インターバルタイマ30
A。
The detection signal (■) of the optical sensor ring and the detection signal (■) of the optical sensor 1tl- are voltage-frequency conversion circuits 21A and 211, respectively.
These converted signals are insulated by signal isolators 29 and 29B, respectively, and sent to interval timers 30A and 30B.
The width of the curve is detected. interval timer 30
A.

?OBの雨検出信号は位誼センサツタが検体検出中を条
件にマイクロコンピュータ71に入力さn1該マイクロ
コンピユ一タ11ハ第4図(b)に示すフローチャート
に従った検体の良否判断をして必要に応じて排除機27
に動作指令を与える。
? The rain detection signal from the OB is input to the microcomputer 71 on the condition that the position sensor ivy is detecting a specimen. Eliminator 27 according to
Give operation commands to.

こうした構成において、検体の表面及び基準物体表面か
らの検出信号V、 、 V、と変換ノくルス幅t、。
In such a configuration, the detection signals V, , V, from the surface of the specimen and the surface of the reference object, and the conversion nodal width t,.

t、とは夫々次の(2) 、 (3)式の関係にある。t and have the relationships shown in the following equations (2) and (3), respectively.

7・=「τそ7 °−=°(2) v、=□  ・・・・・・(3) 1 + tJT@ ここで、Ks + Ts I Kp 、 Tpは夫々の
アナログ入力手段の定数である。K、 、 ’rpを例
えばに、=lOV。
7・='τso7 °−=°(2) v,=□ ・・・・・・(3) 1 + tJT@ Here, Ks + Ts I Kp and Tp are constants of each analog input means. For example, K, ,'rp=lOV.

Tp=lOOμ8とすると、VP = I V(7)と
きK t p =900μsでありV、 )LV (7
)ときに’t’i tp <900μsである。従って
、マイクロコンピュータ11がインターバルタイマ30
Af用いてt、2人力するのに要する時間は1ミリ秒程
度又はそれ以下である。こねに対して、(2)式からv
pe計算するのに、マイクロコンピュータ71でのプロ
グラムに従った計算では10ミリ程度の時間を要するの
が普通であるOこれらの時間を考慮すれば、第4図(a
)に示す従来方法による1回の測定時間は (1ms+LOms)X2=22ms 程度必要とし、アナログ信号の入力周期をこの時間より
も短縮できない。そ・して、検体がセンサの検出範囲に
ある時間が50ミリ秒とすnば検体の状態を2回(2箇
所)しか検査できないことになる0 こnに対して、本発明方法では、第4図(b) K示す
ように、検体がセンサの検出範囲にある間Fl t P
のみを連続的に入力し、その間の最小値(もしくは最大
値)のみを記憶更新しておき、検体がその検出範囲を外
nたときに1.から計算したV、とt。
If Tp = lOOμ8, when VP = I V (7), K t p = 900 μs and V, )LV (7
) when 't'i tp <900 μs. Therefore, the microcomputer 11 uses the interval timer 30
The time required for two people to use Af is about 1 millisecond or less. For kneading, from equation (2), v
It is normal for it to take about 10 millimeters to calculate pe according to the program on the microcomputer 71. Taking these times into consideration, Figure 4 (a)
The time required for one measurement using the conventional method shown in ) is approximately (1 ms + LOms) x 2 = 22 ms, and the input period of the analog signal cannot be shortened beyond this time. If the time that the specimen is in the detection range of the sensor is 50 milliseconds, the state of the specimen can only be inspected twice (at two locations).In contrast, in the method of the present invention, As shown in FIG. 4(b), Fl t P while the specimen is within the detection range of the sensor.
Only the minimum value (or maximum value) between them is memorized and updated, and when the sample goes out of the detection range, 1. V calculated from and t.

入力による■、の計算値とを初めて比較するため、アナ
ログ信号V、の入力周期がtre測定する時間とほぼ等
しくなって、例えば上述の例では約1ミリ秒まで短縮で
きる。即ち、検体が検出範囲を外nるまでの50ミリ秒
間に検体の状態?50回程変人力Cき、検出面全面に渡
った状態検出になって検出精度を大幅に向上できること
全意味するし、従来と同じ検出精度とすiば20倍以上
の高速測定を可能にすることを意味する。
Since the calculated values of (1) and (2) based on the input are compared for the first time, the input period of the analog signal V, becomes approximately equal to the time for measuring tre, and can be shortened to, for example, about 1 millisecond in the above example. In other words, what is the state of the specimen during the 50 milliseconds before it leaves the detection range? This means that the state can be detected over the entire surface of the detection surface by applying a strange amount of force about 50 times, and the detection accuracy can be greatly improved.If the detection accuracy is the same as before, it will be possible to measure at least 20 times faster. means.

なお、アナログ信号vPの入力に対応する時間幅信号t
、の記憶更新には、最小値(又は最大値)1つだけでな
く最小値に近いいくつかの値も記憶更新しておき、最小
値が他の記憶飴よりも極端に小さいときにけこCをノイ
ズによる最小値として無視して次に小さい値又は平均値
を最小値として採用することにニジ、突発的なノイズ例
えばランプの発光や電源ラインに乗るスパイクノイズ等
の外乱からの影響を増除いた信頼性の高い検査を可能に
する。
Note that the time width signal t corresponding to the input of the analog signal vP
, to update the memory of not only one minimum value (or maximum value) but also several values close to the minimum value, and when the minimum value is extremely smaller than other memory candy, Disregarding C as the minimum value due to noise and adopting the next smallest value or average value as the minimum value increases the influence of disturbances such as sudden noises such as lamp light and spike noise on the power line. Enables highly reliable inspection without removing

以上のとおり、本発明によれば、検体がセンサ検出範囲
にある間は該センサの検出信号に対応するパルス幅信号
の最大値又は最小値のみ全記憶史新しておき、検体がセ
ンサ検出範囲を外nたときにアナログ信号レベルの計算
と基準値の入力計算及び両者の比較を行なって検体の良
否判別をするため、検体状態の検出精度を向上しながら
高速測定も可能にする効果がある。
As described above, according to the present invention, while the specimen is within the sensor detection range, only the maximum value or minimum value of the pulse width signal corresponding to the detection signal of the sensor is updated in the entire memory history, and the specimen is within the sensor detection range. When the sample is removed, the analog signal level is calculated, the reference value is input, and the two are compared to determine whether the sample is good or bad.This has the effect of improving the detection accuracy of the sample condition and enabling high-speed measurement. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自動検査装置の構成図、第2図は第1図
におけるコントローラの構成図、第3図は電圧−周波数
変換器構成図(a)と要部波形図(b)。 第4図はコントローラにおける信号処理を示す従来フロ
ーチャート(a)と本発明のフローチャー) (b)、
第5図は本発明の一実施例を示す構成図、第6図は第5
図におけるコントローラの構成図である。 /・・・搬送装置、λ・・・検体、t・・・電圧−周波
数変換器、ン・・・信号絶縁器、g・・・インターバル
タイマ、?・・・マイクロコンピュータ、IO・・・定
電流源、/l・・・積分5 、/12・・・コンパレー
タ、/3・・・ワンショット回路1,2/・・・光源ラ
ンプ、U・・・基準物体1.ZJ 、 7.4’・・・
光センサ、JS・・・位置セ/す、2A・・・コントロ
ーラ1.27・・・排除穢、JA 、 −zg13・・
・電圧−周波数変換器、!9A。
FIG. 1 is a block diagram of a conventional automatic inspection device, FIG. 2 is a block diagram of a controller in FIG. 1, and FIG. 3 is a block diagram (a) of a voltage-frequency converter and a waveform diagram (b) of essential parts. FIG. 4 is a conventional flowchart showing signal processing in a controller (a) and a flowchart of the present invention) (b),
FIG. 5 is a configuration diagram showing one embodiment of the present invention, and FIG.
It is a block diagram of the controller in the figure. /...transport device, λ...sample, t...voltage-frequency converter, n...signal isolator, g...interval timer, ? ...Microcomputer, IO...Constant current source, /l...Integrator 5, /12...Comparator, /3...One-shot circuit 1, 2/...Light source lamp, U...・Reference object 1. ZJ, 7.4'...
Optical sensor, JS...Position sensor, 2A...Controller 1.27...Exclusion impurity, JA, -zg13...
・Voltage-frequency converter! 9A.

Claims (1)

【特許請求の範囲】[Claims] 搬送さnる被検査物の状態を検出してアナログ信号を出
力するセンサと、被検査物が上記センサの検出範囲にあ
ること全検出する位置センサと、この位置センサにエリ
被検査物が上記センサの検出範囲内にあるときに上記セ
ンサの検出信号を所定の基準値と比較して該被検査物の
良否を判別するコントローラとを備え、上記コントロー
ラは上記センサからのアナログ信号を対応する周波数を
持つパルス信号に変換し、該パルス信号の幅から該アナ
ログ信号のレベルを算出して上記基準値と比較判別をす
る自動検査装置であって、上記コントローラは被検査物
が上記セ/すの検出範囲内にある間は上記パルス信号の
幅信号を連続的に入力してその最大値又は最小値を記憶
更新しておき、被検査物が上記センサの検出範囲を外n
たときに上記最大値又は最小値からのアナログ信号レベ
ルの算出をしこの算出値と上記基準値との比較判別によ
って被検者物の良否判定をすることを特徴とする自動検
査方式。
A sensor that detects the state of the inspected object being transported and outputs an analog signal, a position sensor that detects whether the inspected object is within the detection range of the sensor, and a position sensor that detects whether the inspected object is within the detection range of the sensor. a controller that compares the detection signal of the sensor with a predetermined reference value to determine whether the object to be inspected is good or bad when the object is within the detection range of the sensor, and the controller converts the analog signal from the sensor to a corresponding frequency. The automatic inspection device converts the analog signal into a pulse signal with While the object is within the detection range, the width signal of the pulse signal is continuously input and its maximum or minimum value is memorized and updated, so that the object to be inspected is outside the detection range of the sensor.
1. An automatic inspection method characterized in that when an object is inspected, an analog signal level is calculated from the maximum value or the minimum value, and the quality of the object to be examined is determined by comparing the calculated value with the reference value.
JP459883A 1983-01-14 1983-01-14 Automatic inspecting system Granted JPS59128435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP459883A JPS59128435A (en) 1983-01-14 1983-01-14 Automatic inspecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP459883A JPS59128435A (en) 1983-01-14 1983-01-14 Automatic inspecting system

Publications (2)

Publication Number Publication Date
JPS59128435A true JPS59128435A (en) 1984-07-24
JPH0445776B2 JPH0445776B2 (en) 1992-07-27

Family

ID=11588479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP459883A Granted JPS59128435A (en) 1983-01-14 1983-01-14 Automatic inspecting system

Country Status (1)

Country Link
JP (1) JPS59128435A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903813B2 (en) 2002-02-21 2005-06-07 Jjl Technologies Llc Miniaturized system and method for measuring optical characteristics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147968U (en) * 1979-04-10 1980-10-24
JPS5760974A (en) * 1980-09-02 1982-04-13 Honda Motor Co Ltd Vehicle steering system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147968U (en) * 1979-04-10 1980-10-24
JPS5760974A (en) * 1980-09-02 1982-04-13 Honda Motor Co Ltd Vehicle steering system

Also Published As

Publication number Publication date
JPH0445776B2 (en) 1992-07-27

Similar Documents

Publication Publication Date Title
US4486776A (en) Inspection apparatus
WO1997017829B1 (en) Variable voltage component tester
JPS58108437A (en) Method and device for evaluating photometry signal
US8841925B2 (en) Method for testing a laboratory device and correspondingly equipped laboratory device
JPH044534B2 (en)
US6528985B1 (en) Non-destructive testing of passive components
JPS59128435A (en) Automatic inspecting system
JP2002372509A (en) Method and device for inspecting leakage of sealed vessel
KR19980070644A (en) Quality discrimination for precise inspection of selected capacitors
KR910002020B1 (en) Current probe signal processing circuit
JPH03246472A (en) Winding abnormality detecting device for winding coil for motor
JP4596834B2 (en) Electronic circuit inspection apparatus and electronic circuit inspection method
SU853515A1 (en) Method of quality control of materials and articles
KR900006188Y1 (en) Middle frequency amplifier detective circuit
SU1490611A1 (en) Device for non-destructive check of materials with electric conductance
SU997113A1 (en) Method of rejecting capacitors with oxide coating
SU1411659A1 (en) Method and apparatus for determining defective articles
JPH021570A (en) Inspecting method for circuit board
SU1458798A1 (en) Apparatus for detecting fatigue cracks in articles of complex profile
JP2024066168A (en) Pinhole inspection device
JPS61272666A (en) Measuring method for partial electric discharge of electric power cable
JPS6159211A (en) Automatic measuring and judging apparatus
JPH11132926A (en) Non-destruction inspecting method for polymer insulator
SU974296A1 (en) Device for measuring ac voltage curve shape coefficient
JPS5920969B2 (en) Object surface flaw detection device