JPS59127440A - Predictive encoding system by band-division adaptive bit allocation - Google Patents

Predictive encoding system by band-division adaptive bit allocation

Info

Publication number
JPS59127440A
JPS59127440A JP271283A JP271283A JPS59127440A JP S59127440 A JPS59127440 A JP S59127440A JP 271283 A JP271283 A JP 271283A JP 271283 A JP271283 A JP 271283A JP S59127440 A JPS59127440 A JP S59127440A
Authority
JP
Japan
Prior art keywords
band
signal
signals
prediction
bits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP271283A
Other languages
Japanese (ja)
Inventor
Junji Suzuki
鈴木 純司
Masahiro Ko
高 正博
「とき」沢 郁男
Ikuo Tokisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP271283A priority Critical patent/JPS59127440A/en
Publication of JPS59127440A publication Critical patent/JPS59127440A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/66Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission
    • H04B1/667Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for reducing bandwidth of signals; for improving efficiency of transmission using a division in frequency subbands
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To improve the quality of a code by allotting adaptively the number of quantized bits to every frame according to the deviation in the electric power of a band-divided signal. CONSTITUTION:An input signal converted into a digital signal is divided into two frequency bands to be converted into low-frequency signals as sub-band signals, but they are stored in temporary buffer parts 6 and 7 before being encoded. The buffer parts 6 and 7 calculate pseudo predictive residual signals, which are inputted to a calculator 8 for the assigned number of bits to calculate the numbers of quantized bits of those bands, thereby sending them to encoders 9 and 10 and a code multiplexer 11 until the 1st sampled value of the next frame is inputted. Prediction coefficients for obtaining the pseudo predictive residual signal use prediction coefficients used by the encoders 9 and 10, which use the encoding outputs to vary quantization width adaptively according to amplitude. Thus, only the encoding output of each band and information on the number of bits are outputted to make decoding on a decoding side possible.

Description

【発明の詳細な説明】 この発明は音声や音楽等の入力信号を複数の周波数帯域
に分割すると共に、その入力信号の持つ性質を利用して
、予測符号化を適応的にビ′ント割当てをして行う帯域
分割適応ビット割当て予測符号化方式に関するものであ
る。
[Detailed Description of the Invention] This invention divides an input signal such as voice or music into multiple frequency bands, and uses the properties of the input signal to adaptively allocate bits for predictive coding. The present invention relates to a band division adaptive bit allocation predictive coding method.

〈従来技術〉 音声の持つ冗長度を利用した従来の高能率波形符号化方
式には、 (1)過去の入力信号から算出される予測信号と実際の
入力信号との差分信号を量子化する適応予測符号化方式
、 (2)入力信号を複数の周波数帯域に分割し、各帯域信
号を量子化するビット数をあらかじめ固定したうえで上
記(1)の方式を適用する符号化方式、(3)上記(2
)の方式を量子化ビット数可変で実現し、さらに時間軸
を周期的に分割してh開方向にも量子化ビット数を適応
変化させる符号化方式、がある。上記(1)の方式は構
成が簡単であシ、予測係数を復号信号から算出する方法
を用いれば符号化による遅延時間は生じない。しかし、
この方式によって従来の圧伸(μm28w)PcMと同
程度の符号化品質を半分の情報量で実現することはやや
困難であシ、音楽信号を対象とした場合にはさらに高い
符号化品質が必要となる。上記(2)の方式は帯域分割
された信号の持つ情報量の大きさの統計的性質から量子
化ビット数の割シ当てを決めているため、平均的には上
記(1)の方式に比べ冗長度抑圧効果は向上する。各帯
域に割当てられるべき好ましいビット数は時間的に変動
しているが、このビット割当てを固定にしているため特
定区間で品質が劣化するという問題点がある。上記(3
)の方式は伝送情報量が比較的低い場合でも高品質な音
声信号伝送が可能なことを特徴とするが、符号化アルゴ
リズムの複雑さのため、バー ドウエアとして実現した
場合大規模になること、および符号化によって生ずる遅
延時間が大きいことが欠点である。
<Prior art> Conventional high-efficiency waveform encoding methods that utilize the redundancy of speech include: (1) Adaptation that quantizes the difference signal between the predicted signal calculated from past input signals and the actual input signal. Predictive coding method, (2) Coding method that divides the input signal into multiple frequency bands, fixes the number of bits for quantizing each band signal in advance, and then applies the method in (1) above, (3) Above (2
) is realized by varying the number of quantization bits, and there is also an encoding method that periodically divides the time axis and adaptively changes the number of quantization bits in the h-direction. The method (1) above has a simple configuration, and if a method of calculating prediction coefficients from a decoded signal is used, no delay time due to encoding occurs. but,
It is somewhat difficult to achieve the same level of encoding quality as conventional companding (μm28w) PcM with half the amount of information using this method, and even higher encoding quality is required when targeting music signals. becomes. In the method (2) above, the allocation of the number of quantization bits is determined based on the statistical properties of the amount of information contained in the band-divided signal, so on average, compared to the method (1) above, The redundancy suppression effect is improved. Although the preferable number of bits to be allocated to each band changes over time, there is a problem in that the quality deteriorates in a specific section because the bit allocation is fixed. Above (3
) is characterized by the ability to transmit high-quality audio signals even when the amount of transmitted information is relatively low, but due to the complexity of the encoding algorithm, it would be large-scale if realized as hardware. Another disadvantage is that the delay time caused by encoding is large.

〈発明の概要〉 この発明の目的は、電話音声帯域よシさらに広い帯域を
有する音声および音楽信号に対して高い符号化品質を得
ることを可能とし、バー ドウエア規模・遅延時間が共
に小さい、適応予測と適応ビット割当てを行なう帯域分
割符号化方式を提案するものである。
<Summary of the Invention> The purpose of the present invention is to make it possible to obtain high encoding quality for voice and music signals having a wider band than the telephone voice band, and to provide an adaptive system with small hardware scale and delay time. This paper proposes a band division coding method that performs prediction and adaptive bit allocation.

この発明においては、線形予測により各帯域について擬
似予測残差信号を抽出し、その擬似予測残差信号により
各帯域に対する量子化ビット数を算出するが、その擬似
予測残差信号を得るだめの予測係数として、符号化手段
に用いる予測係数を用い、また、符号化手段においてそ
の鉛丹化出力を用いて振幅に応じて量子化幅を適用的に
沃化させる。このようにして各帯域の符号化出力とビッ
ト数を示す情報とのみを出力して復号側で復号万能とす
る。
In this invention, a pseudo-prediction residual signal is extracted for each band by linear prediction, and the number of quantization bits for each band is calculated using the pseudo-prediction residual signal. The prediction coefficient used in the encoding means is used as the coefficient, and the quantization width is adaptively iodinated according to the amplitude using the oxidation output in the encoding means. In this way, only the encoded output of each band and the information indicating the number of bits are output, so that the decoding side can perform all-purpose decoding.

〈実施例〉 第1図はこの発明の実施例を示す。ディジタル信号に変
換された音声・音楽信号などの入力信号が入力端子1に
入力される。この入力信号は低域通過フィルタ2と高域
通過フィルタ3とによって二つの周波数帯域に分割され
る。これら帯域分割された信号は、標本化周波数変換器
4,5によって低域信号に変換され、いわゆるサブバン
ド信号となる。サブバンド信号は符号化される前に一旦
バツファ部6,7へ蓄えられる。
<Example> FIG. 1 shows an example of the present invention. Input signals such as audio and music signals converted into digital signals are input to the input terminal 1. This input signal is divided into two frequency bands by a low pass filter 2 and a high pass filter 3. These band-divided signals are converted into low-band signals by sampling frequency converters 4 and 5, and become so-called subband signals. The subband signals are temporarily stored in buffer units 6 and 7 before being encoded.

バッファ部6,7は例えば第2図に示すような構造をし
ている。サブバンド信号は入力端子23に入力され、直
列接続された複数の遅延器24によって順次サンプリン
グ時間ずつ遅延される。一方、このバッファ部6,7は
適応予測機能を有しており、各遅延器24の出力は分岐
されてそれぞれ各列の予測係数乗算器26へ供給され、
これら各予測係数乗算器26よシ得られた過去の近接サ
ンプルに対する予測係数乗算出力の総和が加算器27で
とられ、この加算器27と端子23よシの現在入力され
た信号との差分信号、即ち擬似予測残差信号が減算器2
8によって計算され、出力端子29を通じて第1図中の
ビット割当て数算出器8へ入力される。
The buffer sections 6 and 7 have a structure as shown in FIG. 2, for example. The subband signal is input to the input terminal 23 and sequentially delayed by a sampling time by a plurality of delay devices 24 connected in series. On the other hand, the buffer units 6 and 7 have an adaptive prediction function, and the output of each delay device 24 is branched and supplied to the prediction coefficient multiplier 26 of each column.
The sum of the prediction coefficient multiplication outputs for past neighboring samples obtained from each prediction coefficient multiplier 26 is taken by an adder 27, and a difference signal between this adder 27 and the currently input signal from the terminal 23 is obtained. , that is, the pseudo prediction residual signal is sent to the subtracter 2
8 and is inputted to the bit allocation number calculator 8 in FIG. 1 through the output terminal 29.

ビット割当て数算出器8ではバッファ部6,7よシの各
擬似予測残差信号を取シ込み、第2図中の遅延器24の
全体によってその入力端子23と出力端子25との間に
生ずる遅延時間と同一の時間内で擬似予測残差信号電力
の総和を計算する。この時間単位を以下フレームと称す
る。各帯域のビット割当て数は、各帯域で生ずる量子化
雑音電力の和を最小にするように、擬似予測残差信号電
力の比率から計算する。ビット割当ての決定は現フレー
ムの最後の標本値の入力が終了してから行われ、次フレ
ームの最初の標本値が入力されるまでに符号器9,10
および符号多重化器11へ送出される。
The bit allocation number calculator 8 takes in each of the pseudo prediction residual signals from the buffer sections 6 and 7, and generates a signal between the input terminal 23 and the output terminal 25 of the entire delay device 24 in FIG. The total sum of pseudo-prediction residual signal power is calculated within the same time as the delay time. This time unit is hereinafter referred to as a frame. The number of bits allocated to each band is calculated from the ratio of pseudo-prediction residual signal powers so as to minimize the sum of quantization noise powers occurring in each band. The bit allocation decision is made after the input of the last sample value of the current frame is completed, and the encoders 9 and 10 are determined before the input of the first sample value of the next frame.
and sent to the code multiplexer 11.

符号器9.10は例えば第3図に示す構造をしている。The encoder 9.10 has the structure shown in FIG. 3, for example.

バッファ部6,7の出力端子25の出力信号は入力端子
31へ入力され、適応予測器33の出力信号との差分が
減算器32で計算され、予測残差信号が得られる。この
予測残差信号はステップサイズ適応化器38が出力する
ステップサイズによって除算器34で除され、その除算
出力は量子化器36において、適応ビット割当て数算出
器8から端子35を通じて入力された量子化ビット数に
基づいて離散的量子化信号に変換されて出力端子37へ
送られる。
The output signals of the output terminals 25 of the buffer units 6 and 7 are input to the input terminal 31, and the difference with the output signal of the adaptive predictor 33 is calculated by the subtracter 32 to obtain a prediction residual signal. This prediction residual signal is divided by the step size output by the step size adaptor 38 in the divider 34, and the divided output is sent to the quantizer 36 by the quantizer input from the adaptive bit allocation number calculator 8 through the terminal 35. The signal is converted into a discrete quantized signal based on the number of quantized bits and sent to the output terminal 37.

ステップサイズ適応化器38は量子化器36の量子化値
を受け、次の標本化値のステップサイズを決定する。
A step size adaptor 38 receives the quantized value of the quantizer 36 and determines the step size of the next sampled value.

この発明では適応予測方法として予測係数を復号器へ伝
送する必要がないという利点を有するバックワード形方
式を用いるために、符号器9,10は局部復号器を有し
、予測係数は復号信号から分析・決定される。具体的に
局部復号器は第3図に示すように、逆量子化器39と乗
算器40と適応予測器33とから構成される。逆量子化
器39は量子化器36の出力が分岐供給され、量子化器
36と逆の機能を有し、この出力と、ステップサイズ適
応化器38の出力ステップサイズとの積を乗算器40で
計算すると予測残差信号の復号信号が得られる。適応予
1UII器33は従来の線形・近接予測器であシ、減算
器32へ供給する予測信号と、乗算器40からの残差信
号の復号信号との和を求める加算器41、その出力が供
給される直列接続された複数の遅延器42、各遅延器4
2の出力が分岐供給される複数の予測係数乗算器43、
これら予測係数乗算器43の出力を加算する加算器44
、予測係数算出器45から成る。予測係数算出器45は
加算器41の出力として得られる復号信号を用いてフレ
ームの終了と共に予測係数を算出し、次のフレームの最
初の標本値が入力されるまでの間に予測係数乗算器43
の予測係数を更新すると共に、この発明では出力端子4
6から予測係数を各帯域のバッファ部6,7(第1図)
へ送り、同様に予測係数乗算器26(第2図)の予測係
数を更新する。このように予測係数を1フレーム前の復
号信号から求める構成となっているため、適応ビット割
当てに要する遅延時間を1フレームにすることができる
In this invention, in order to use a backward type method as an adaptive prediction method, which has the advantage that there is no need to transmit prediction coefficients to a decoder, encoders 9 and 10 have local decoders, and prediction coefficients are obtained from decoded signals. Analyzed and determined. Specifically, the local decoder is composed of an inverse quantizer 39, a multiplier 40, and an adaptive predictor 33, as shown in FIG. The inverse quantizer 39 is branch-supplied with the output of the quantizer 36, has a function opposite to that of the quantizer 36, and multiplies the product of this output and the output step size of the step size adaptor 38 to the multiplier 40. When calculated, the decoded signal of the prediction residual signal is obtained. The adaptive predictor 1UII 33 is a conventional linear/proximity predictor; A plurality of series-connected delay devices 42 are supplied, each delay device 4
a plurality of prediction coefficient multipliers 43 to which the outputs of 2 are branched;
Adder 44 that adds the outputs of these prediction coefficient multipliers 43
, a prediction coefficient calculator 45. The prediction coefficient calculator 45 calculates a prediction coefficient at the end of the frame using the decoded signal obtained as the output of the adder 41, and the prediction coefficient multiplier 43 calculates the prediction coefficient at the end of the frame.
In addition to updating the prediction coefficient of output terminal 4 in this invention,
6 to the buffer sections 6 and 7 of each band (Fig. 1).
Similarly, the prediction coefficients of the prediction coefficient multiplier 26 (FIG. 2) are updated. Since the prediction coefficient is thus obtained from the decoded signal of one frame before, the delay time required for adaptive bit allocation can be reduced to one frame.

符号多重化器11は、いずれか−帯域の割当てビット数
情報と、符号器9,10からの両帯域信号の符号とを多
重化し、伝送路12へ送出する8この際フレームの最初
にビット数情報を付属させれば復号器側で以下に続く符
号化列から低域および高域信号を復号できる。
The code multiplexer 11 multiplexes the allocated bit number information for either band and the codes of both band signals from the encoders 9 and 10, and sends it to the transmission path 12.8 At this time, the bit number is set at the beginning of the frame. If the information is attached, the decoder side can decode the low-frequency and high-frequency signals from the coded sequence that follows.

復号化の方法を以下に記す。伝送路12から送られた信
号は、符号分離器13に入力され、ビット割当て情報が
ビット割当て数算出器14へ送られる。
The decryption method is described below. The signal sent from the transmission path 12 is input to the code separator 13, and the bit allocation information is sent to the bit allocation number calculator 14.

一つの帯域のビット数がわかれば、他方の帯域のビット
数は伝送情報量が固定であるため一意に定マシ、両帯域
のビット割当て数は符号分離器13と復号器15 、1
6へ送られる。
If the number of bits in one band is known, the number of bits in the other band is uniquely fixed because the amount of transmitted information is fixed, and the number of bits allocated to both bands is determined by the code separator 13 and decoder 15, 1.
Sent to 6.

復号器15 、16は例えば第4図に示す構成を有する
。各帯域の符号化信号は入力端子47から入力され、逆
量子化器49に入る。入力端子48には量子化ビット数
が入力される。以下、後号器の出力端子58に復号信号
が出力される過程は、符号器9,10における局部復号
器の動作で説明したものと全く同様であり、ステップサ
イズ適応什器50.予測残差信号の復号信号を得る乗算
器51、適応予測器52゜復号信号を得る加算器53、
直列接続された遅延器54、予測係数乗算器55.予測
信号を得る加算器56゜予測係数算出器57とを備えて
いる。その動作説明は省略する。
The decoders 15 and 16 have the configuration shown in FIG. 4, for example. The encoded signal of each band is input from an input terminal 47 and enters an inverse quantizer 49 . The number of quantization bits is input to the input terminal 48. Hereinafter, the process by which the decoded signal is outputted to the output terminal 58 of the post-coder is exactly the same as that described for the operation of the local decoder in the encoders 9 and 10, and the step-size adaptive fixture 50. a multiplier 51 that obtains a decoded signal of the prediction residual signal; an adaptive predictor 52; an adder 53 that obtains a decoded signal;
A delay device 54 and a prediction coefficient multiplier 55 connected in series. It includes an adder 56 and a prediction coefficient calculator 57 for obtaining a prediction signal. The explanation of its operation will be omitted.

第1図においてJ復号器15 、16から出力されるサ
ブバンド信号は、標本化周波数変換器17 、18にそ
れぞれ入力され、元の入力信号の標本化周波数に戻され
る。この周波数変換に伴なうスペクトラムの折シ返しは
低域通過フィルタ19と高域通過フィルタ20でそれぞ
れP波され、加算器21で各フィルタ19 、20の出
力信号が加算されることにより復号信号が出力端子22
から得られる。
In FIG. 1, the subband signals output from J decoders 15 and 16 are input to sampling frequency converters 17 and 18, respectively, and are returned to the sampling frequency of the original input signal. The folding of the spectrum accompanying this frequency conversion is converted into a P wave by a low pass filter 19 and a high pass filter 20, respectively, and an adder 21 adds the output signals of each filter 19 and 20 to produce a decoded signal. is the output terminal 22
obtained from.

〈効 果〉 以上説明したように、この発明は帯域分割した信号の電
力の偏シに応じてフレームごとに適応的に量子化ビット
数を割当てる符号化方式であるため、特に電話音声帯域
の2倍程度の帯域を有する広帯域信号のように低周波数
に電力が集中している信号に対して符号化品質を向上さ
せることができる。具体的には、7 KHz帯域の音声
・音楽に対して、帯域分割をしない適応予測符号化方式
より約3dBのS/N比の改善効果がある1、符号化品
質を主観的に評価すると、上記と同じ帯域を有する信号
を圧伸PCM符号化したものの品質と比較して同程度の
音声品質が半分の情報量を用いて得られ、構成が簡単で
あるにもかかわらず、高い符号化品質を実現できる方式
である。
<Effects> As explained above, the present invention is a coding method that adaptively allocates the number of quantization bits for each frame according to the polarity of the power of the band-divided signal. Encoding quality can be improved for a signal in which power is concentrated in a low frequency, such as a wideband signal having a band approximately twice as large. Specifically, for speech and music in the 7 KHz band, the S/N ratio is improved by about 3 dB compared to the adaptive predictive coding method that does not perform band division.1 When the coding quality is subjectively evaluated, Compared to the quality of a signal with the same band as above that is compressed and PCM encoded, the same level of audio quality can be obtained using half the amount of information, and the encoding quality is high despite the simple configuration. This is a method that can realize the following.

また、この発明方式は適応ビット割当てに必要となる予
測器の予測係数を1フレーム前の復号信号から求めるた
め、符号化による遅延時間を約10m s e c以内
にすることが可能であシ、実用上はとんど問題にならな
いという利点がある。更に擬似予測残差信号を得るだめ
の予測係数として符号器9゜10での予測係数を用い、
かつ量子化幅の沃化を符号器9,10の出力に応じて行
うようにすることにより、各帯域の符号化出力と割当て
ビット数を示す情報のみを送出すればよい。
Furthermore, since the method of this invention calculates the prediction coefficients of the predictor necessary for adaptive bit allocation from the decoded signal of one frame before, it is possible to reduce the delay time due to encoding to within about 10 msec. This has the advantage of not causing any problems in practice. Further, the prediction coefficients at the encoder 9 and 10 are used as prediction coefficients to obtain a pseudo-prediction residual signal,
Furthermore, by quantizing the quantization width in accordance with the outputs of the encoders 9 and 10, it is only necessary to send out information indicating the encoded output of each band and the number of allocated bits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すブロック図、第2図は
第1図中のバッファ部4,5の具体例を示すブロック図
、第3図は第1図中の符号器9゜】0の具体例を示すブ
ロック図、第4図は第1図の復号器15 、16の具体
例を示すブロック図である。 に入力端子、2:低域通過フィルタ、3:高域通過フィ
ルタ、4,5:標本化周波数変換器、6.7:バッファ
部、8:ビット割当て数算出器、9.10:符号器、1
1:符号多重化器、12:伝送路、13:符号分離器、
14:ビット割当て数算出器、15 、16 :復号器
、17 、 ts :標本化周波数変換器、19:低域
通過フィルタ、20:高域通過フィルタ、21:加算器
、22:出力端子、23:入力端子、24:遅延器、2
5:出力端子、26:予測係数乗算器、27:加算器、
28:減算器、29:出力端子、30:入力端子、31
:入力端子、32:減算器、33:適応予測器、34:
除算器、35:入力端子、36:量子化器、37:出力
端子、38ニステツプサイズ適応化器、39:逆量子化
器、40:乗算器、41:加算器、42:遅延器、43
:予測係数乗算器、44:加算器、45:予測係数算出
器、46:出力端子、47 、48 :入力端子、49
:逆量子化器、50ニステツプサイズ適応化器、51:
乗算器、52:適応予測器、53:加算器、514=遅
延器、55:予測係数乗算器、56:加算器、57:予
測係数算出器、58:出力端子。 特許出願人  日本電信電話公社 代理人 草野 卓
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing a specific example of the buffer sections 4 and 5 in FIG. 1, and FIG. 3 is a block diagram showing an example of the encoder 9 in FIG. 1. FIG. 4 is a block diagram showing a specific example of the decoders 15 and 16 in FIG. input terminal, 2: low-pass filter, 3: high-pass filter, 4, 5: sampling frequency converter, 6.7: buffer section, 8: bit allocation number calculator, 9.10: encoder, 1
1: Code multiplexer, 12: Transmission line, 13: Code separator,
14: bit allocation number calculator, 15, 16: decoder, 17, ts: sampling frequency converter, 19: low pass filter, 20: high pass filter, 21: adder, 22: output terminal, 23 : input terminal, 24: delay device, 2
5: Output terminal, 26: Prediction coefficient multiplier, 27: Adder,
28: Subtractor, 29: Output terminal, 30: Input terminal, 31
: input terminal, 32: subtractor, 33: adaptive predictor, 34:
Divider, 35: Input terminal, 36: Quantizer, 37: Output terminal, 38 Step size adaptor, 39: Inverse quantizer, 40: Multiplier, 41: Adder, 42: Delay unit, 43
: Prediction coefficient multiplier, 44: Adder, 45: Prediction coefficient calculator, 46: Output terminal, 47, 48: Input terminal, 49
: Inverse quantizer, 50 step size adaptor, 51:
Multiplier, 52: Adaptive predictor, 53: Adder, 514 = Delay device, 55: Prediction coefficient multiplier, 56: Adder, 57: Prediction coefficient calculator, 58: Output terminal. Patent applicant: Takashi Kusano, agent of Nippon Telegraph and Telephone Public Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)入力信号を複数の周波数帯域に分割する手段と、
これら分割された各帯域の信号についてそれぞれ線形予
測し、擬似予測残差信号を抽出する手段と、これら抽出
された擬似予測残差信号から上記各帯域に対する量子化
ピント数を算出する手段と、上記各帯域の信号に対し、
線形予測して予測残差信号を得、これら予測残差信号を
上記算出された量子化ビット数をそれぞれ用いて量子化
する符号化手段と、その符号化手段よシの出力符号を用
いてその符号化手段における量子化幅を、振幅に適応し
て変化させる手段と、」二記符号化手段よりの各帯域に
対する出力符号及び上記算出された量子化ビット数を示
す情報を出力する手段とを有し、上記擬似予測残差信号
の抽出のだめの予測計数は上記符号化手段において用い
られた予測計数が用いられる帯域分割適応ピント割当て
予測符号化方式。
(1) means for dividing an input signal into multiple frequency bands;
Means for linearly predicting the signals of each of these divided bands and extracting pseudo-prediction residual signals; means for calculating the quantization focus number for each of the bands from the extracted pseudo-prediction residual signals; For each band signal,
An encoding means that performs linear prediction to obtain prediction residual signals, and quantizes these prediction residual signals using each of the calculated quantization bit numbers, and an encoding means that uses the output code of the encoding means means for changing the quantization width in the encoding means in accordance with the amplitude; and means for outputting information indicating the output code for each band from the encoding means and the calculated number of quantization bits. A band division adaptive focus allocation predictive coding method, wherein the prediction coefficients used in the encoding means are used as the prediction coefficients for extraction of the pseudo-prediction residual signal.
JP271283A 1983-01-10 1983-01-10 Predictive encoding system by band-division adaptive bit allocation Pending JPS59127440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP271283A JPS59127440A (en) 1983-01-10 1983-01-10 Predictive encoding system by band-division adaptive bit allocation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP271283A JPS59127440A (en) 1983-01-10 1983-01-10 Predictive encoding system by band-division adaptive bit allocation

Publications (1)

Publication Number Publication Date
JPS59127440A true JPS59127440A (en) 1984-07-23

Family

ID=11536911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP271283A Pending JPS59127440A (en) 1983-01-10 1983-01-10 Predictive encoding system by band-division adaptive bit allocation

Country Status (1)

Country Link
JP (1) JPS59127440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091588A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Sub-band adaptive differential pulse code modulation/encoding apparatus, sub-band adaptive differential pulse code modulation/encoding method, wireless transmission system, sub-band adaptive differential pulse code modulation/decoding apparatus, sub-band adaptive differential pulse code modulation/decoding method, and wirel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002091588A1 (en) * 2001-05-07 2002-11-14 Matsushita Electric Industrial Co., Ltd. Sub-band adaptive differential pulse code modulation/encoding apparatus, sub-band adaptive differential pulse code modulation/encoding method, wireless transmission system, sub-band adaptive differential pulse code modulation/decoding apparatus, sub-band adaptive differential pulse code modulation/decoding method, and wirel

Similar Documents

Publication Publication Date Title
RU2197776C2 (en) Method and device for scalable coding/decoding of stereo audio signal (alternatives)
AU733156B2 (en) Audio coding method and apparatus
US6502069B1 (en) Method and a device for coding audio signals and a method and a device for decoding a bit stream
KR100299528B1 (en) Apparatus and method for encoding / decoding audio signal using intensity-stereo process and prediction process
JPH04127747A (en) Variable rate encoding system
EP0884850A2 (en) Scalable audio coding/decoding method and apparatus
JPH047616B2 (en)
JPS5921039B2 (en) Adaptive predictive coding method
JPH0856163A (en) Adaptive digital audio encoing system
EP1310943B1 (en) Speech coding apparatus, speech decoding apparatus and speech coding/decoding method
KR100952065B1 (en) Coding method, apparatus, decoding method, and apparatus
AU751077B2 (en) Audio coder utilising repeated transmission of packet portion
JPS63110830A (en) Frequency band dividing and encoding system
US6012025A (en) Audio coding method and apparatus using backward adaptive prediction
JP3193515B2 (en) Voice coded communication system and apparatus therefor
JPS59127440A (en) Predictive encoding system by band-division adaptive bit allocation
JP3336619B2 (en) Signal processing device
JPS59129900A (en) Band division coding system
JPS6134697B2 (en)
Atal et al. Split-band APC system for low bit-rate encoding of speech
JPH10260699A (en) Method and device for speech encoding
JPH02264520A (en) Band split coding/decoding system and band split coder and band split decoder
JP2952776B2 (en) Variable bit rate adaptive predictive coding
JP3161286B2 (en) Signal encoding device and signal decoding device
KR100206755B1 (en) Decode and code system in freq.