JPS59126933A - Opto-acoustic analyzing device - Google Patents

Opto-acoustic analyzing device

Info

Publication number
JPS59126933A
JPS59126933A JP58001140A JP114083A JPS59126933A JP S59126933 A JPS59126933 A JP S59126933A JP 58001140 A JP58001140 A JP 58001140A JP 114083 A JP114083 A JP 114083A JP S59126933 A JPS59126933 A JP S59126933A
Authority
JP
Japan
Prior art keywords
signal
photoacoustic
phase
intensity
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58001140A
Other languages
Japanese (ja)
Other versions
JPH046893B2 (en
Inventor
Takehiko Kitamori
武彦 北森
Masaaki Fujii
藤井 正昭
Katsuo Tsukada
塚田 勝男
Yoshio Toyama
遠山 恵夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58001140A priority Critical patent/JPS59126933A/en
Publication of JPS59126933A publication Critical patent/JPS59126933A/en
Publication of JPH046893B2 publication Critical patent/JPH046893B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure simultaneously the grain size distribution and concn. of suspended components by detecting and analyzing the intensity and phase of the opto-acoustic signal obtd. by projecting modulating light to a suspension. CONSTITUTION:A suspension of a sample is sealed in a measuring cell 8, and the pulsed light 7 obtd. by modulating laser light 5 from an argon laser 4 with an acousto-optic modulator 6 is irradiated thereto. The suspended particles emit a heat flow flux by absorbing the light 7 and generates a photo-acoustic signal 9 in a medium. The signal 9 is converted to an electrical signal by a piezoelectric element 14 and the signal is amplified with a lock-in amplifier 11. The intensity of said signal is inputted to a microcomputer 12 while the phase thereof is scanned with the reference signal 10 from an optical modulator 6 as a reference. The microcomputer 12 records the data on the phase and intensity in a two- dimensional arrangement and calculates the grain size from the data on the phase and the data in the intensity. The result thereof is outputted to a recorder 13.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は光音響分析装置に係り、特に、懸濁液中の懸濁
成分の粒径分布及びその濃度を自動的に測定し得るよう
に改良した光音響分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a photoacoustic analyzer, and in particular, to an improved device capable of automatically measuring the particle size distribution and concentration of suspended components in a suspension. This invention relates to a photoacoustic analysis device.

〔従来技術〕[Prior art]

従来一般に光音響分析装置は、試料である懸濁液に変調
光全投射して得られる光音響信号の強度を測定する手段
を備え、測定した光音響信号の強度に基づいて懸濁成分
の濃度全検知し得るように構成されている。
Conventionally, photoacoustic analyzers are generally equipped with means for measuring the intensity of a photoacoustic signal obtained by projecting all modulated light onto a suspension, which is a sample, and based on the intensity of the measured photoacoustic signal, the concentration of suspended components can be determined. It is configured so that it can be detected completely.

しかし、上記の光音響分析装置によっては懸濁成分の粒
径分布が測定できないので、粒径測定は光散乱法などで
行なわれる。この光散乱法にょる粒径測定は入射光の波
長との関係で0.2〜1μm程度の粒子しか計れない。
However, since the above photoacoustic analyzer cannot measure the particle size distribution of suspended components, the particle size is measured by a light scattering method or the like. Particle size measurement using this light scattering method can only measure particles of about 0.2 to 1 μm depending on the wavelength of incident light.

址た、比濁分析によって懸濁液の濃度測定全行なう場合
、粒径の違いによって測定濃度に誤差を生じ、この誤差
が10チに及ぶため正確な測定が困難である。
However, when the concentration of a suspension is entirely measured by nephelometric analysis, an error occurs in the measured concentration due to differences in particle size, and this error can reach up to 10 cm, making accurate measurement difficult.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑み、懸濁液中の懸濁成分の粒径
分布および濃度を高精度で同時に測定し得る光音響分析
装置を提供しようとするものである。
In view of the above circumstances, the present invention seeks to provide a photoacoustic analyzer that can simultaneously measure the particle size distribution and concentration of suspended components in a suspension with high accuracy.

〔発明の概要〕[Summary of the invention]

本発明は、懸濁液に変調光全投射して得られる光音響信
号の強度のみでなく、その位相全検出、分析することに
よって懸濁成分の粒径分布全測定し得るように構成する
The present invention is configured so that the entire particle size distribution of suspended components can be measured by detecting and analyzing not only the intensity of the photoacoustic signal obtained by projecting all of the modulated light onto the suspension, but also the entire phase thereof.

次に、光音響信号の位相に基づいて粒径全算出する原理
を第1図について説明する。本図は懸濁粒子1に光2を
照射したとき、該懸濁粒子1がら熱α1[束3が発散す
る状態全模式的に描いである。
Next, the principle of calculating the total particle size based on the phase of the photoacoustic signal will be explained with reference to FIG. This figure schematically depicts the entire state in which heat α1 [flux 3] emanates from suspended particles 1 when the light 2 is irradiated onto the suspended particles 1.

懸濁粒子1は光2を吸収して熱全発生する。発生した熱
量’kQとすると、Qは入射光強度■及び懸濁粒子の半
径rの関数として次式のごとく表わされる。
The suspended particles 1 absorb the light 2 and generate heat. Assuming that the amount of heat generated is 'kQ', Q is expressed as a function of the incident light intensity (2) and the radius r of the suspended particles as shown in the following equation.

ここで、kは比例定数である。発生した熱は懸濁粒子1
の表面から液体に伝達する。懸濁粒子から液体への熱流
束3全Jとすると、JとQとの関係は Q=J4 rc r2t           −(2
)となり、ここで、tは熱の流出に要する時間である。
Here, k is a proportionality constant. The heat generated is suspended particles 1
transfer from the surface to the liquid. Assuming that the heat flux from the suspended particles to the liquid is 3 total J, the relationship between J and Q is Q=J4 rc r2t −(2
), where t is the time required for heat to flow out.

(1)及び(2)式よシ、tとrとの関係は、i 3J           “°°(3)となる。光変
調周波数を1とすると、入射光の変調周期に対する光音
響信号の位相遅れφは(3)式より φ=2πf(を十−) となシ、φばrの関数となる。Jl、11jら、ブし音
響信号の位相スペクトルは、懸濁粒子の8径分布と相似
になる。ここに、Rは九■と検出器の距耐、Vは媒質内
の廿速である。
According to equations (1) and (2), the relationship between t and r is i 3J "°° (3).If the optical modulation frequency is 1, the phase delay of the photoacoustic signal with respect to the modulation period of the incident light. From equation (3), φ = 2πf (10 -), which is a function of φbar.Jl, 11j et al., the phase spectrum of the acoustic signal is similar to the 8-diameter distribution of suspended particles. Here, R is the range of the detector, and V is the velocity in the medium.

本測定原理の物理的意味?以下に述べる。粒子内で光吸
収によp発生した熱は、粒子の表面全通過して媒質中に
放出される。
What is the physical meaning of this measurement principle? It is described below. The heat generated within the particles due to light absorption passes through the entire surface of the particles and is released into the medium.

前掲の(1)式は、懸濁粒子による光の吸収量が粒子の
体積に比例することヲ衣わしている。従って粒子の留度
が一定であれば光の吸収量は粒子の質量に比例する。こ
の関係式は直径501Im以内の粒子の場合に非常によ
く当ては唸る。
Equation (1) above assumes that the amount of light absorbed by suspended particles is proportional to the volume of the particles. Therefore, if the concentration of particles is constant, the amount of light absorbed is proportional to the mass of the particles. This relational expression applies very well to particles with a diameter of 501 Im or less.

一方、単位時間当たりに粒子から放出される熱は、粒子
表面から媒質への熱流束が一足であるから、粒子の&面
積に比例する。したがって、粒子内で発生する熱量で、
放出する熱量及び放出時間の1カ係は前記の(2)式で
六わされる。即ち、3次元的な広が9?持つ熱源が2次
元的な熱通過面?介して熱を放出するため、前記の(3
)式で表わされる粒径−放出時間の関係を生じる。
On the other hand, the heat released from a particle per unit time is proportional to the & area of the particle since the heat flux from the particle surface to the medium is one foot. Therefore, the amount of heat generated within the particle,
The ratio between the amount of heat to be released and the release time is expressed by the above equation (2). That is, three-dimensional spread 9? Is the heat source it has a two-dimensional heat passing surface? In order to release heat through
) yields a particle size-release time relationship expressed by the equation.

放出された熱は速やかに媒質の前影111”zk引き起
こし、媒質内に光音響信号、即ち音波を発生する。
The emitted heat quickly causes a foreshadowing 111''zk of the medium and generates a photoacoustic signal, ie, a sound wave, within the medium.

発生した音波は入射光に対して(3)式の前回過程によ
る位相遅れと音波の伝播による位相遅れR/ V(4)
式を伴って検出される。以上kg括して音響信号の位相
遅れと粒子の径とは比例関係にある。
The generated sound wave has a phase delay with respect to the incident light due to the previous process in equation (3) and a phase delay due to the propagation of the sound wave R/V (4)
Detected with expression. Collectively, the phase delay of the acoustic signal and the diameter of the particle are in a proportional relationship.

上述の原理に基づいて、懸濁液中の懸濁成分の粒厩分布
及び濃度を高精度で同時に検出するため、本発明の光音
響分析装置は、光学変調器、および変調された光?測定
セルに投射する手段を設けるとともに、上記の測定セル
から入力される光音響信号と、上記の光学変調器から入
力される8照信号との位相差を測定する機能金有する増
幅器を設け、かつ、前記の光音響信号金スキャ/しつつ
上記増幅器の出力信号を周波数分析して位相スペクトル
を算出する機能を有する自動演算(幾全設けて測定セル
内の試料中の倣籾子の濃度及び粒径分布全自動的に測定
し得べくなしたることケ待減とする。
Based on the above-mentioned principle, in order to simultaneously detect the particle distribution and concentration of suspended components in a suspension with high precision, the photoacoustic analyzer of the present invention includes an optical modulator and a modulated light beam. In addition to providing a means for projecting onto the measurement cell, an amplifier having a function of measuring the phase difference between the photoacoustic signal inputted from the measurement cell and the optical signal inputted from the optical modulator is provided, and , an automatic calculation having a function of frequency-analyzing the output signal of the amplifier and calculating the phase spectrum while performing the photoacoustic signal gold scanning/ The diameter distribution can be measured completely automatically, reducing waiting time.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例を第2図乃至第7図について説
明する。
Next, an embodiment of the present invention will be described with reference to FIGS. 2 to 7.

第2図は本発明の光音響分析装置のブロック図テする。FIG. 2 is a block diagram of the photoacoustic analyzer of the present invention.

本実施例では光源としてアルゴンレーザ4全設け、51
4nmのiwのレーザ光5會発生させる。上記のレーザ
光5を音響光学変調器6に入力させ、10KH2のパル
ス光7に変調する。
In this embodiment, all 4 argon lasers are provided as light sources, and 51
Five laser beams of 4 nm iw are generated. The above laser beam 5 is input to an acousto-optic modulator 6 and modulated into a pulsed beam 7 of 10KH2.

この変調光線7を測定セル8に入射せしめる。上記の測
定セル8は後に詳述するように、被測定物である懸濁試
料を充填し得る構造で、円尚状圧′iセラミックスによ
り構成しである。この1iilJ定セル8から発した光
音響信号9を入力するロックインアンプ11を設け、こ
のロックインアンプ11に参照信号10として音響光学
変調器6の出力の一部を入力せしめるように構成する。
This modulated light beam 7 is made to enter a measuring cell 8. As will be described in detail later, the measurement cell 8 has a structure in which it can be filled with a suspended sample to be measured, and is made of concavity-shaped pressure ceramics. A lock-in amplifier 11 is provided to input the photoacoustic signal 9 emitted from the 1IIIJ constant cell 8, and a part of the output of the acousto-optic modulator 6 is input to the lock-in amplifier 11 as the reference signal 10.

上記ノロツクインアンプ11において光音響信号9を増
幅し、参照信号との信相差、並びに強度をマイクロコン
ピュータ12に入力させる。マイクロコンピュータ12
はデータ処理を行ってその結果全記録計13に出力する
The lock-in amplifier 11 amplifies the photoacoustic signal 9, and inputs the phase difference with the reference signal and the intensity to the microcomputer 12. Microcomputer 12
performs data processing and outputs the results to all recorders 13.

第3図は本実施例の測定セル8の1部pi面図である。FIG. 3 is a partial pi-plane view of the measurement cell 8 of this embodiment.

この測定セル8は内径7■、長さ100咽のガラス円筒
15の中央部に、このガラス円筒と等しい内径を有する
円筒状圧電素子14を同心状に埋設して構成する。本例
においては試料としてジルコニウム懇7B i k用い
、キャップ21.テフロンパツキン19および光学懇1
6を取り外して内部空間24に試料の懸濁液を満たす。
This measurement cell 8 is constructed by concentrically embedding a cylindrical piezoelectric element 14 having an inner diameter equal to that of the glass cylinder 15 in the center of a glass cylinder 15 having an inner diameter of 7 cm and a length of 100 mm. In this example, zirconium 7B i k was used as the sample, and cap 21. Teflon packing 19 and optical seal 1
6 is removed and the internal space 24 is filled with a sample suspension.

気泡を生じないように光学窓16全装着して試料を窓封
し、テフロンパツキン19およびキャップ21全取りつ
ける。20は測定セルのカバーである。
The optical window 16 is completely attached to prevent air bubbles from forming, the sample is sealed, and the Teflon gasket 19 and cap 21 are completely attached. 20 is a cover of the measurement cell.

本例においては上記のセルカバー20及びキャップ21
をステンレスで構成してあり、この測定セルの外−ケな
している。
In this example, the above cell cover 20 and cap 21
is made of stainless steel and serves as the outer shell of this measurement cell.

22は十字線を刻印したガラスフィルタ、23は同ホル
ダで、上記の十字線を利用してこの測定セルの中心線を
入射レーザ光(第2図に示した7)に一致させてセット
する。このガラスフィルタ22は着脱自在に装着してあ
り、上記の光軸台わJの後は取り外しておく。このよう
に準備して、パルス変調したレーザ光(第2図に示した
7)全測定セルに投射する。25は、この測定セル内で
発生した光音響信号ケ取シ出するため、圧電素子14に
接続した信号取出線である。
22 is a glass filter engraved with crosshairs, and 23 is the same holder, which is set so that the center line of this measurement cell coincides with the incident laser beam (7 shown in FIG. 2) using the crosshairs. This glass filter 22 is removably attached, and is removed after the optical axis support J mentioned above. With this preparation, a pulse-modulated laser beam (7 shown in FIG. 2) is projected onto all measurement cells. Reference numeral 25 denotes a signal output line connected to the piezoelectric element 14 in order to output the photoacoustic signal generated within this measurement cell.

上記のように構成した光音響分析装置において、分析セ
ル内に試料の)ピ濁液を封入し、パルス変調したレーザ
光全照射すると、先に述べた原理により変調光線が懸濁
粒子に捕捉されて元熱し、この発熱に伴う熱膨張で発生
した光音響信号は圧電素子14によシミ気信号に変換さ
れ、ロックインアンプ11で増幅される。この光音響信
号は、光変調器6からの参照信号10を基準として位相
φをスキャンシながらその強度P=iマイクロコンピュ
ータ12に入力する。マイクロコンピュータ12では、
位相及び強度のデータを2次元配列で記録する。この入
力データのうち、位相のデータ全(4)式よりマイクロ
コンピュータで と粒径に線型変換し、また、強度P’tC=AP   
           ・・・(6)と濃度に線型変換
する。ここにAは、あらかじめ測定しておいた検量数の
傾きで、比例定数である。
In the photoacoustic analyzer configured as above, when a suspension (of the sample) is sealed in the analysis cell and the entire pulse-modulated laser beam is irradiated, the modulated beam is captured by the suspended particles according to the principle described earlier. The photoacoustic signal generated by thermal expansion accompanying this heat generation is converted into a stain signal by the piezoelectric element 14 and amplified by the lock-in amplifier 11. This photoacoustic signal is input to the microcomputer 12 with its intensity P=i while scanning the phase φ with reference to the reference signal 10 from the optical modulator 6. In microcomputer 12,
Phase and intensity data are recorded in a two-dimensional array. Of this input data, all phase data is linearly converted into particle size using equation (4) using a microcomputer, and intensity P'tC=AP
...(6) and linearly transform into concentration. Here, A is the slope of the calibration number measured in advance and is a proportionality constant.

以上の操作によシ(位相2強度)のd11]定データは
(粒径、濃度)に再配列され、この結果を記録計13に
出カラーる。
By the above operation, the (d11) constant data of (phase 2 intensity) is rearranged into (particle size, density), and this result is outputted to the recorder 13.

あらかじめ、顕微鏡写真により測定したジルコニウム懸
濁敲の粒径分布を第4図に示す。この懸濁試料は、5μ
m=i中心粒径とする粒径分布金持つ。この試料全本分
析装置で測定した結果得られた光音響信号の位相スペク
トル全第5図に示す。
FIG. 4 shows the particle size distribution of the zirconium suspension, which was measured in advance using a micrograph. This suspension sample was 5μ
It has a particle size distribution gold with m=i center particle size. The entire phase spectrum of the photoacoustic signal obtained as a result of measurement with this sample analyzer is shown in FIG.

また、本分析装置で測定した、この試料の検量線を第6
図に示す。第6図より、(6)式の比例定数Aの値は、 A = 0.5 (p(n / μv )であることが
わかる。また、物性定数表より2πf−=140.0 
(mrad) であるから、これらの値を用いてマイクロコンピュータ
で(4)式によりデータ処理した紹”呆を第7図に示す
。本実施例による測定結果では、中心粒径5.08m1
中心粒径に対する濃度は0.98 llInと、いずれ
も2俤以内の精度で測定できた。
In addition, the calibration curve of this sample measured with this analyzer was
As shown in the figure. From Figure 6, it can be seen that the value of the proportionality constant A in equation (6) is A = 0.5 (p (n / μv). Also, from the physical property constant table, 2πf- = 140.0
(mrad). Therefore, using these values, the data is processed by a microcomputer according to equation (4). Figure 7 shows the result of the measurement. In the measurement results of this example, the central grain size was 5.08 m1.
The concentration relative to the central particle size was 0.98 llIn, which could be measured with an accuracy of within 2 circles.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の光音響分析装置は、光学
変調器、および変調された光を測定セルに投射する手段
全役けるとともに、上記の測定セルから入力されるy色
音響信号と、上記の光学変調器から入力される参照信号
との位相差全測定する機能?有する増幅器を設け、かつ
、前記の光音響信号をスキャンしつつ上記増幅器の出力
信号を周波数分析して位相スペクトル全算出する機能を
有する自動演算機を設けることにより、懸濁赦中の懸濁
成分の粒径分布および一度を高精度で同時に測定するこ
とができる。
As described in detail above, the photoacoustic analyzer of the present invention has an optical modulator and a means for projecting modulated light onto a measurement cell, as well as a y-color acoustic signal input from the measurement cell. , the function to measure the total phase difference with the reference signal input from the above optical modulator? The suspended components in the suspended atomizer are provided with an automatic calculator having a function of scanning the photoacoustic signal, frequency-analyzing the output signal of the amplifier, and calculating the entire phase spectrum. particle size distribution and one time can be measured simultaneously with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は懸濁粒子による光の吸収および発熱の状態全模
式的に描いた説明図、第2図は本発明の光音響分析装置
の1実施例におけるブロック図、第3図は同じく測定セ
ルの1部所面図、第4図はジルコニウム懸濁液の粒径分
布會示す図表、第5図は光音響信号の位相スペクトルを
示す図表、第6図はジルコニウム懸濁液の検線量を示す
図表、第7図は光音響分析装置によるジルコニウム忠濁
液の粒径分布算出精米を示す図表である。 1・・・懸濁粒子、2・・・光、3・・・熱流束、4・
・・アルゴンレーザ、5・・・レーザ光、6・・・音響
光学変調器、7・・・パルス光、8・・・測定セル、9
・・・光祈響信号、10・・・$黒信号、11・・・ロ
ックインアンプ、12・・・マイクロコンピユータ、1
3・・・記録計、14・・・圧電累子、15・・・ガラ
ス円筒、16・・・光学窓、17・・・バッキング、1
8・・・バッキング、19・・・バンキング、20・・
・セルカバー、21・・・キャップ、22・・・ガラス
フィルタ、23・・・ガラスフィルタホルダ、24・・
・試料を入れるための仝間、25・・・信号取出線。 代理人 9f埋士 秋本正実 弔/図 / 築20 弔3図 ′2り 第を図 1 粒径(、am) イガ木口 (771灯a) 第6図 θ  /   234−5 温度CPPynう 第171図 #L栓θゆラ −16゛
Fig. 1 is an explanatory diagram schematically depicting the entire state of light absorption and heat generation by suspended particles, Fig. 2 is a block diagram of an embodiment of the photoacoustic analyzer of the present invention, and Fig. 3 is a measurement cell as well. Fig. 4 is a diagram showing the particle size distribution of the zirconium suspension, Fig. 5 is a chart showing the phase spectrum of the photoacoustic signal, and Fig. 6 is the chart showing the detection line amount of the zirconium suspension. FIG. 7 is a chart showing grain size distribution calculation and polishing of a zirconium suspension using a photoacoustic analyzer. 1...Suspended particles, 2...Light, 3...Heat flux, 4.
... Argon laser, 5... Laser light, 6... Acousto-optic modulator, 7... Pulse light, 8... Measurement cell, 9
... Optical prayer signal, 10 ... $ black signal, 11 ... Lock-in amplifier, 12 ... Microcomputer, 1
3...Recorder, 14...Piezoelectric transducer, 15...Glass cylinder, 16...Optical window, 17...Backing, 1
8...backing, 19...banking, 20...
・Cell cover, 21...Cap, 22...Glass filter, 23...Glass filter holder, 24...
- Space for placing the sample, 25...Signal output line. Agent 9th Burial Masami Akimoto / Diagram / Built 20 Funeral 3 Diagram '2nd Rise Figure 1 Grain size (, am) Iga Kiguchi (771 light a) Figure 6 θ / 234-5 Temperature CPPyn Figure 171 #L stopper θ Yura-16゛

Claims (1)

【特許請求の範囲】[Claims] 1、光音響分析装置において、光学変調器、および変調
された光音測定セルに投射する手段を設けるとともに、
上記の測定セルから入力される光音響信号と、上記の光
学変調器から入力される参照信号との位相差全測定する
機能を有する増幅器を設け、かつ、前記の光音響信号を
スキャンしつつ上記増幅器の出力信号全周波数分析して
位相スペクトル全算出する機能を有する自動演算機を設
けて測定セル内の試料中の微粒子の濃度及び粒径分布を
自動的に測定し得べくなしたることを%徴とする光音響
分析装置。
1. In the photoacoustic analysis device, an optical modulator and a means for projecting the modulated photoacoustic sound onto the measurement cell are provided, and
An amplifier having a function of measuring the total phase difference between the photoacoustic signal input from the measurement cell and the reference signal input from the optical modulator is provided, and while scanning the photoacoustic signal, An automatic computing machine with the function of analyzing all frequencies of the output signal of the amplifier and calculating the entire phase spectrum is installed to automatically measure the concentration and particle size distribution of fine particles in the sample in the measurement cell. Photoacoustic analyzer that measures the percentage.
JP58001140A 1983-01-10 1983-01-10 Opto-acoustic analyzing device Granted JPS59126933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001140A JPS59126933A (en) 1983-01-10 1983-01-10 Opto-acoustic analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001140A JPS59126933A (en) 1983-01-10 1983-01-10 Opto-acoustic analyzing device

Publications (2)

Publication Number Publication Date
JPS59126933A true JPS59126933A (en) 1984-07-21
JPH046893B2 JPH046893B2 (en) 1992-02-07

Family

ID=11493138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001140A Granted JPS59126933A (en) 1983-01-10 1983-01-10 Opto-acoustic analyzing device

Country Status (1)

Country Link
JP (1) JPS59126933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344149A (en) * 1986-08-11 1988-02-25 Hitachi Ltd Method and apparatus for detecting particulate material
US6560005B2 (en) 2001-08-07 2003-05-06 Tkd, Inc. Acousto-optic devices
DE102007014519A1 (en) * 2007-03-27 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photoacoustic detector for the measurement of fine dust

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344149A (en) * 1986-08-11 1988-02-25 Hitachi Ltd Method and apparatus for detecting particulate material
US6560005B2 (en) 2001-08-07 2003-05-06 Tkd, Inc. Acousto-optic devices
DE102007014519A1 (en) * 2007-03-27 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photoacoustic detector for the measurement of fine dust
WO2008116655A1 (en) * 2007-03-27 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photoacoustic detector for measuring fine dust
US8115931B2 (en) 2007-03-27 2012-02-14 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Photoacoustic detector for measuring fine dust

Also Published As

Publication number Publication date
JPH046893B2 (en) 1992-02-07

Similar Documents

Publication Publication Date Title
Patel et al. Pulsed optoacoustic spectroscopy of condensed matter
Karabutov et al. Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer
US5913234A (en) Spectroscopic method and apparatus
JPH04357440A (en) Photoacoustic cell and photoacoustic measuring apparatus
CN110686771A (en) Photoacoustic effect-based wide-spectrum pulse light detector and detection method
JPS5764145A (en) Flow type optoacoustic detector
JPH0479570B2 (en)
JPS59126933A (en) Opto-acoustic analyzing device
DK156282B (en) PHOTOTHERMIC PROCEDURE FOR STUDYING THE LIGHT ABSORPTION OF A TEST SUBSTANCE
CN102830084A (en) Sensor for online concentration detection of atmospherical inhalable particles
Beitz et al. High sensitivity photoacoustic spectrometer for variable temperature solution studies
Mohebbifar The signal-to-noise ratio measurement in chloroform detection in the presence of krypton buffer gas by laser photoacoustic method
JPH05172738A (en) Acoustic cell
JPS62272153A (en) Photoacoustic measuring instrument having open type cell
JPH109811A (en) Coherent divergence interference method
JPH05312716A (en) Measuring method and apparatus for concentration of nox
JPH09251004A (en) Method and device for optical-acoustic analyzing
JPS61137046A (en) Apparatus for measuring scattering of light
JPH10325791A (en) Pore distribution measuring device
JPS63277957A (en) Method and device for measuring optical absorptivity
JPH0410024B2 (en)
JPH087193B2 (en) Photoacoustic cell for absorption measurement of liquid samples
JPS61137047A (en) Apparatus for measuring scattering of light
Rai et al. Physics and instrumentation of photothermal and photoacoustic spectroscopy of solids
Kirkbright Some applications of photoacoustic spectroscopy to the study of chemical systems in the condensed phase-a tutorial review