JPS59122359A - Dc linear motor with dc generator - Google Patents

Dc linear motor with dc generator

Info

Publication number
JPS59122359A
JPS59122359A JP22701682A JP22701682A JPS59122359A JP S59122359 A JPS59122359 A JP S59122359A JP 22701682 A JP22701682 A JP 22701682A JP 22701682 A JP22701682 A JP 22701682A JP S59122359 A JPS59122359 A JP S59122359A
Authority
JP
Japan
Prior art keywords
coil
linear motor
generator
armature coil
field magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22701682A
Other languages
Japanese (ja)
Inventor
Norimitsu Hirano
平野 紀光
Hideki Kobayashi
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP22701682A priority Critical patent/JPS59122359A/en
Publication of JPS59122359A publication Critical patent/JPS59122359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To enable to facilitate the control of the speed of a DC linear motor by providing an armature coil and a generating coil oppositely to a field magnet, using one as a movable element and the other as a stator. CONSTITUTION:An armature coil 10 is provided oppositely to a field magnet 5. A plurality of generating coil 16 groups superposed and disposed by displacing the phase are opposed to the magnet 5. The magnet 5, or either one of the armature coil 10 and the generating coil 16 group is used as a movable element, and the other is used as a stator. The speed is controlled by a control circuit 18 on the basis of a smooth generating voltage waveform having less ripple obtained from the coil 16 group.

Description

【発明の詳細な説明】 本発明の直流発電器を有する直流リニアモータに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC linear motor having a DC generator.

リニアモータにおいて直流発電器r)Kするものは、本
件出願人は既に出願している。ここにおいて、直流発電
器からは周波数の形で1g号?取り出せるものと、電圧
の形で信号ヶ取り出せるものとがある。前者はF(周波
数)−■(電圧)変換回路ケ設けなければならないため
高価になるのに対して、後者は当該リニアモータの推進
速度を制御するのに都合のよい電圧の形で信号がでてく
るので、高価となるF−V変換回路ヶ必要としないので
安価に直流発電器?有する直流リニアモータが得られる
利点がある。
The applicant has already filed an application for a DC generator (r)K in a linear motor. Here, 1g in the form of frequency from the DC generator? There are some that can be extracted, and others that can be extracted as a signal in the form of voltage. The former is expensive because it requires an F (frequency) - ■ (voltage) conversion circuit, whereas the latter provides a signal in the form of voltage, which is convenient for controlling the propulsion speed of the linear motor. Since it does not require an expensive F-V conversion circuit, it is an inexpensive DC generator. There is an advantage that a DC linear motor with

本発明は先に出願した直流発電器を有する直流リニアモ
ータの改良を図ったもので、しかも直流発電6葡有成す
る発電コイル會多数配役できるようにして性能r有する
直流発電6葡有する直流リニアモータ7得ることr目的
とする。
The present invention is an improvement of the previously applied DC linear motor having a DC generator, and moreover, it is possible to use a large number of generating coils each having six DC generators, so that the DC linear motor having six DC generators has performance r. The purpose is to obtain a motor 7.

かかる本発明の目的は、界磁マグネットr設け、該界磁
マグネットに相対向して電機子コイル2設けると共に、
位相tずらせて重畳配置した複数の発電コイル群?上記
界出マグネットに相対向させ、上記界Iマグネット又は
電機子コイル及び発電コイル側のいずれか一方wa@子
とし、他方葡固定子としたこと?特徴とする直流発電器
r有する直流リニアモータを提供することによって達成
さ扛る。
The object of the present invention is to provide a field magnet r, provide an armature coil 2 opposite to the field magnet, and
A group of multiple power generation coils arranged one on top of the other with a phase shift of t? Is it made to face the above-mentioned field magnet, and one of the above-mentioned field I magnet, armature coil, and generator coil side is set as wa @, and the other is set as a stator? This is achieved by providing a DC linear motor with a DC generator characterized by:

以下図面r参照しつつ本発明の詳細な説明することとす
る。
The present invention will be described in detail below with reference to drawing r.

まず本発明の第一実施例を説明する。First, a first embodiment of the present invention will be described.

第1図は可動コイル型リニアモータ1會側面方向から見
た図で、2は走行方向に沿って長板状罠形成さnた固定
子で、その両端部は図示しない支柱に固設されている。
Fig. 1 is a side view of a moving coil linear motor 1, in which 2 is a stator with a long plate-like trap formed along the running direction, and both ends of the stator are fixed to pillars (not shown). There is.

3は上記固定子2に相対向して直線的往復移動紮な丁移
動子で、4は移動子3に回動自在に軸支され、移動子3
の上下両側面に沿って摺動する走行ローラでろる。
Reference numeral 3 denotes a linear mover that moves back and forth in a linear manner opposite to the stator 2; 4 is rotatably supported by the mover 3;
It is rolled by running rollers that slide along both the top and bottom sides.

第2図は巣1図のもの7移動子2の走行方向から見た縦
断面図で、5は第3図に示すように移動子2の長手方向
に沿って8体、S喰の@極?交互に有するp(pは3以
上の正の整数を選択するが、この実施例ではp=4以上
?選択している)極の長板状の界磁マグネット、6は界
磁マグネット5會モールドしたプラスチック、7にプラ
スチック6の上下に走行方向に沿って形成さnたガイド
溝、8は板状の磁性体ヨーク、9は断面コ字状の諺性体
ヨークで、その端部kffl性体ヨーク8に固設して、
磁性体ヨーク8.9が一体して走行するようにしている
。10は電機子コイルで、例えば第4図に示すような矩
形枠状に巻回形成されたものt用いている。第5図は電
機子コイル10と界磁マグネット5との展開図でめる2
、電機子コイル10は走行方向と垂直な導体部、即ち推
力に寄与する導体部10aと10a′との開角幅が外伝
マグネット5のff1M幅と等倍のもの?用いているが
、上記ta 40幅の整数倍であっても良い。しかし、
第4図に示し7c形状の直磯子コイル?(1’i用いる
場合には、推力に寄与する導体部10aと10a′の開
角幅が界磁マグネット5の磁極幅の2n−1(nは1以
上の正の篭数)倍の開角幅のもの2用いるのが望ましい
。電機子コイル10は、この実施例では長手方向に2個
重畳しないように磁性体ヨーク9面に配役している。1
1は位置検知素子として用いたホール集子やホールIC
等の磁電変換素子で、第2図及び第5図で示すように電
機子コイル10の推力に寄与する導体部10a(10a
’であっても良い)上に配置している。尚、ffl!変
換素子11は電機子コイル10の推力に寄与する導体部
10a又は10a′と均等位置である上記導体部10a
、 10a’外位置の磁性体ヨーク9面に配設しても良
い。あるいは電機子コイル10が多数あるときには、電
機子コイル10の推力に寄与する導体部10a又は10
a′と均等位置にある電機子コイル10の枠内空胴部位
置(第1図参照)に磁電変換素子11七配設すると良い
。このような位置に磁電変換素子11會配設してやると
、該素子11の厚み分だけ磁気エアーギャップが薄くな
るので、強い推力が得らnるメリットがある。12は磁
性体ヨーク9の上下それぞれに形成された透孔、13は
母性体ヨーク8.9間に横架固設された軸、4は軸13
によって回動自在に軸支されガイド溝7に沿って走行移
動する走行ローラ、14は電機子コイル10ヶ駆動する
ための半導体整流装置、15−1.15−2はそnぞれ
プラス電源端子、マイナス電源端子ゲ示す(第5図参照
)。
Fig. 2 is a vertical cross-sectional view of the nest 1 in Fig. 7 as seen from the running direction of the mover 2, and 5 is a vertical cross-sectional view of the nest 1 as seen from the running direction of the mover 2. ? Long plate-shaped field magnet with p (p is selected as a positive integer of 3 or more, but in this example, p = 4 or more?) poles alternately, 6 is a field magnet 5-hole mold 7 is a guide groove formed along the running direction on the top and bottom of the plastic 6; 8 is a plate-shaped magnetic yoke; 9 is a typical U-shaped yoke in cross section; Fixed to yoke 8,
The magnetic yokes 8 and 9 run together. Reference numeral 10 denotes an armature coil, which is wound into a rectangular frame shape as shown in FIG. 4, for example. Figure 5 is a developed diagram of the armature coil 10 and field magnet 5.
, the armature coil 10 has conductor parts perpendicular to the running direction, that is, conductor parts 10a and 10a' that contribute to thrust, and the opening angle width is the same as the ff1M width of the side transmission magnet 5? Although it is used here, it may be an integral multiple of the above ta 40 width. but,
The 7c-shaped Naisogo coil shown in Figure 4? (When using 1'i, the opening angle width of the conductor parts 10a and 10a' that contribute to the thrust is 2n-1 (n is a positive cage number of 1 or more) times the magnetic pole width of the field magnet 5. It is desirable to use one with a width of 2. In this embodiment, the armature coils 10 are arranged on the surface of the magnetic yoke 9 so that two armature coils do not overlap in the longitudinal direction.1
1 is a Hall collector or Hall IC used as a position detection element
As shown in FIGS. 2 and 5, the conductor portion 10a (10a
' may be placed above). In addition, ffl! The conversion element 11 is located at the same position as the conductor portion 10a or 10a' that contributes to the thrust of the armature coil 10.
, 10a' may be disposed on the surface of the magnetic yoke 9 at a position outside of 10a'. Alternatively, when there are a large number of armature coils 10, the conductor portion 10a or 10 contributing to the thrust of the armature coil 10
It is preferable that the magneto-electric transducer 117 is disposed at a position in the cavity within the frame of the armature coil 10 (see FIG. 1), which is located at the same position as a'. When the magnetoelectric transducer 11 is disposed at such a position, the magnetic air gap becomes thinner by the thickness of the element 11, so there is an advantage that a strong thrust can be obtained. 12 is a through hole formed on the upper and lower sides of the magnetic yoke 9, 13 is a shaft horizontally fixed between the mother yokes 8 and 9, and 4 is the shaft 13.
14 is a semiconductor rectifier for driving 10 armature coils, 15-1 and 15-2 are positive power terminals, respectively. , shows the negative power terminal (see Figure 5).

16は発電コイルで、界磁マグネット5?介して電機子
コイル10と相対向する磁性体ヨーク8の面に第6図乃
至第8図に示すように位相【ずらせて階段状に重畳配置
している。発電コイル16は第6図に示すような枠状の
もの?用いている。第6図は発電コイル16勿重畳配設
したものの平面図ケ示し、第7図は界磁マグネット5と
発電コイル16の断面図で、第8図は界磁マグネット5
と発電コイルとの展開図r示す。発電コイル16は走行
方向と垂直な導体部、即ち発電に寄与する導体部16a
と16a′との開角が界磁マグネット5の整数倍、又は
2n−1(nは1以上の正の整数)倍の開角幅に巻回形
成されtものr用いる。この実施例では、発電に寄与す
る導体部16aと16a′との開角が界磁マグネット5
の磁極幅と等倍の曲角幅の発電コイル16ケ用いている
。発電コイル16は耐経の細い線材?用い、電機子コイ
ルIOよりも極めて厚みを薄く巻回して形成したもの葡
5個、第6図及び第7図に示すように階段状に配置して
いる。このようにした理由は、限られた面積にできるだ
け多くの発電コイル16奮配置して発電電圧のりフプル
會減らすためである。この実施例では5相にしているが
、相数が多けれは多いほど良い。17は整流回路で、こ
の整流回路11と発電コイル1Bとで直流発電器(タコ
ジェネレータ)を形成している。18は制御回路で、直
流発電器の出力によって半導体整流装置14に与える電
圧又甫流勿制御することにより移動子3の速度を一定に
保つためのものである。
16 is a power generation coil, and field magnet 5? As shown in FIGS. 6 to 8, on the surface of the magnetic yoke 8 which faces the armature coil 10 via the magnetic material yoke 10, the magnetic yoke 8 is disposed in a phase-shifted manner so as to be superimposed in a stepped manner. Is the generating coil 16 frame-shaped as shown in Fig. 6? I am using it. FIG. 6 shows a plan view of the generator coil 16 arranged in an overlapping manner, FIG. 7 is a sectional view of the field magnet 5 and the generator coil 16, and FIG. 8 shows the field magnet 5.
A developed diagram of the power generation coil and the generator coil is shown. The power generation coil 16 has a conductor portion perpendicular to the traveling direction, that is, a conductor portion 16a that contributes to power generation.
and 16a' are wound so that the opening angle width is an integral multiple of the field magnet 5, or 2n-1 (n is a positive integer of 1 or more) times. In this embodiment, the opening angle between the conductor portions 16a and 16a' contributing to power generation is determined by the field magnet 5.
16 generator coils are used, each with the same bending width as the magnetic pole width. Is the power generation coil 16 made of thin wire with warp resistance? Five coils are wound and formed to be extremely thinner than the armature coil IO, and are arranged in a stepwise manner as shown in FIGS. 6 and 7. The reason for doing this is to arrange as many power generating coils as possible in a limited area to reduce the voltage fluctuation. In this embodiment, there are five phases, but the greater the number of phases, the better. 17 is a rectifier circuit, and this rectifier circuit 11 and the power generation coil 1B form a DC generator (tacho generator). Reference numeral 18 denotes a control circuit for keeping the speed of the mover 3 constant by controlling the voltage or current applied to the semiconductor rectifier 14 by the output of the DC generator.

第9図は直流発電器の回路図?示すもので必る。Is Figure 9 a circuit diagram of a DC generator? It must be shown.

発にコイル16は一端tグランドGNDつなぎ、他端孕
抵抗を介して発電コイルからの信号?オペアンプOP、
に入力している。17−1は加算増幅器7構成し、17
−2はオペアンプOP、とOP。
One end of the coil 16 is connected to the T ground GND, and the other end receives a signal from the generator coil via a resistor. operational amplifier OP,
is being entered. 17-1 constitutes the summing amplifier 7;
-2 is operational amplifier OP, and OP.

によって整流回路塗構成し、加算増幅器17−1からの
信号b=流倍信号壁流している。オペアンプop、uロ
ーパスフィルタも兼ねているので、出力リップルがさら
に減少され理想的な直流電圧が得られる。この直流電圧
勿端子19?介して制御回路18に入力し、該制御回路
18からの信号にて半導体整流装置14ケ制御すること
で移動子3の直腺走行速度全制御できる。尚、当然のこ
とながら、発電電圧は界磁マグネット5と発電コイル1
6とが相対的移動することにより発電コイル16から得
られる。
A rectifier circuit is configured as shown in FIG. Since the operational amplifiers OP and U also serve as low-pass filters, the output ripple is further reduced and an ideal DC voltage can be obtained. This DC voltage is terminal 19? By inputting the signal to the control circuit 18 via the control circuit 18 and controlling the 14 semiconductor rectifying devices using the signal from the control circuit 18, the direct running speed of the moving element 3 can be completely controlled. Incidentally, as a matter of course, the generated voltage is determined by the field magnet 5 and the generating coil 1.
6 is obtained from the power generating coil 16 by moving relative to the power generating coil 16.

上記実施例においては界磁マグネット5側を固定子とし
、電機子コイル10及び発電コイル16側勿移動子とし
た場合の実施例を示したが、逆にしても良いことは言う
までもない。
In the above embodiment, the field magnet 5 side is used as a stator, and the armature coil 10 and power generation coil 16 sides are used as a movable element, but it goes without saying that the arrangement may be reversed.

本発明は上記構成から明らかなように限られ九面槓に多
数の発電コイル荀配置しているので、理想的なリップル
の少ない滑らかな発電重圧波形が得らnるので、平滑し
たりする必要がなく、速度制御ケ容易に行なうことがで
きる。また発電コイルから電圧の形で信号で取り出すよ
うにすれは、高価なF−V変換回路が不要となるため安
価に直流発官器ケ有する直流リニアモータが得られると
いう効果がある。
As is clear from the above configuration, the present invention has a limited number of generator coils arranged in a nine-sided configuration, so it is possible to obtain an ideal smooth power generation pressure waveform with few ripples, so it is necessary to smooth the waveform. There is no speed control, and speed control can be easily performed. Further, by extracting a signal in the form of voltage from the generator coil, an expensive F-V conversion circuit is not required, so that a direct current linear motor having a direct current generating organ can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第−実流例ン示す可動コイル型リニア
モータを側面方向から見た図、第2図は第1図のものt
移動子の走行方向から見た縦断面図、第3図は界磁マグ
ネットの斜視図、第4図は電機子コイルの斜視図、第5
図は界磁マグネットと電機子コイルとの展開図、第6圀
は発電コイル會重畳配設したものの平面図、第7図は界
磁マグネットと発電コイルの断面図、第8図は界磁マグ
ネットと発電コイルとの展開図、第9図は直流発電器の
回路図である。 1・・・可動コイル型リニアモータ、  2・・・固定
子、3・・・移動子、  4・・・走行ローラ、  5
・・・界磁マグネット、  6・−・プラスチック、 
 7・・・ガイド溝、8.9・−・磁性体ヨーク、  
10・・・tEd子コイル、11・・・磁電変換素子(
位置横細素子)、  12・・・透孔、  13・・・
軸、  14・・・半環体゛整流装置、15−1・・・
プラス電源端子、   15−2・・・マイナス電源端
子、  16・・・発電コイル、  17・・・歪流回
路、  18・−・制御回路、  19・・・端子。 特許出願人 高  橋    義  照6べ
Figure 1 is a side view of a moving coil type linear motor showing an actual flow example of the present invention, and Figure 2 is the same as that shown in Figure 1.
FIG. 3 is a perspective view of the field magnet, FIG. 4 is a perspective view of the armature coil, and FIG.
The figure is a developed view of the field magnet and armature coil, the 6th section is a plan view of the generator coils arranged in an overlapping arrangement, the 7th figure is a cross-sectional view of the field magnet and the generator coil, and the 8th figure is the field magnet. FIG. 9 is a developed diagram of the generator coil and a circuit diagram of the DC generator. DESCRIPTION OF SYMBOLS 1... Moving coil type linear motor, 2... Stator, 3... Mover, 4... Running roller, 5
...Field magnet, 6.--Plastic,
7...Guide groove, 8.9...Magnetic material yoke,
10... tEd child coil, 11... Magnetoelectric conversion element (
horizontal thin element), 12... through hole, 13...
Shaft, 14... Half ring rectifier, 15-1...
Positive power terminal, 15-2... Negative power terminal, 16... Generating coil, 17... Distorted current circuit, 18... Control circuit, 19... Terminal. Patent applicant Yoshi Takahashi Teru6be

Claims (1)

【特許請求の範囲】 1、界磁マグネット紫膜け、該界磁マグネットに相対向
して電機子コイルを設けると共に、位相ケずらせて重畳
配置した複数の発電コイル群r上記界磁マグネットに相
対向させ、上記界磁マグネット又は′ilE機子コ芥子
コイル電コイル群側のいず扛か一方紮移動子とし、他方
會固定子としたことを脣依とする直流発電器を有する直
流リニアモータ。 24  上記界磁マグネットは、移動子の移動方向に沿
ってN、Sの磁極を父互に肩するp(pは1以上の正の
歪数)極のものであること?特徴とする%訂詞求の範囲
第1項記載の直流発電器を有する直流リニアモータ。 3、上記電機子コイルは、推力に寄与する導体部の開角
が界磁マグネットの@体幅の整数倍に巻回形成式扛たも
のであることケ特徴とする特許請求の範囲第2項記載の
直流発電器?有する直流リニアモータ。 4、上記電機子コイルは推力に寄与する導体部の一角が
界磁マグネットの磁極幅の2n−1(nは1以上の正の
整数)倍に巻回形成さnたものであることr特徴とする
特許請求の範囲第3項記載の直流発電器ケ有する直流リ
ニアモータ。 5、上記電機子コイルは枠状に巻回形成されたものであ
ることt特徴とする特許請求の範囲第3狽又は第4項記
載の直流発電器を有する直流リニアモータ。 6、上記電機子コイル移動型の場合には、該電機子コイ
ル側に位置検知集子r肩すること2特留とする特許請求
の範囲第1項乃至第5項いずれかに記載の直流発電器を
有する直流リニアモータ。 7、上記位置横用集子は、−電夏換集子でめることt%
徴とする特#!F請求の範囲第6項記載の直流発電器?
有する直流IJ ニアモータ。 8.上記磁電変換素子は、電機子コイルの推力に寄与す
る導体部と対向する部分に配置したこと′に特徴とする
特許請求の範囲第6項又は第7頂に記載の直流発電器を
有する直流リニアモータ。 9、上記磁電変換素子は、電機子コイルの推力に寄与す
る導体部と均等位置に配置したこと?特徴とする%許請
求の範囲第6項又は第7項記載の直流発電器ケ府する@
流すニアモータ。 10、  上記磁電変換素子は、電機子コイルの推力に
寄与する導体部と均等位置にある電機子コイルの枠内空
力回部に配置したことr特徴とする特許請求の範囲第9
項記載の直流発電6葡有する直流リニアモータ。 11、  上記発電コイルは発電に寄与する導体部の開
角が界磁マグネットの@体幅の整数倍に巻回形成したも
のであることケ特徴とする特許請求の範囲第1項乃至第
10項いずれかに記載の直流発電器?有する直流リニア
モータ。 12、  上記発電コイルは発電にを与する導体部の開
角が界磁マグネットの磁極幅の2n−1(nは1以上の
正の整数)倍に巻回形成されたものであることを特徴と
する特許請求の範囲第11項記載の直流発電6葡有する
直流IJ ニアモータ。 13、  上記発電コイルは電機子コイルよりも厚み會
薄く巻回形成したものであること盆特徴とする特許請求
の範囲第1項乃至第12項いずれかに記載の直流発電器
?有する直流リニアモータ。 14、  上記発電コイルは枠状に巻回形成したもので
あること?特徴とする特許請求の範囲第1項乃至第13
項いずれかに記載の@流発電器紮有する直流リニアモー
タ。
[Claims] 1. A field magnet purple film, an armature coil provided opposite to the field magnet, and a plurality of generating coil groups r arranged overlappingly with phase shifts relative to the field magnet. A DC linear motor having a DC generator in which one of the field magnets or the coils of the electric coil group of the machine is used as a moving element on one side and as a stator on the other side. . 24 Does the above field magnet have p-poles (p is a positive strain number of 1 or more) with N and S magnetic poles on each other along the moving direction of the mover? A direct current linear motor having a direct current generator according to item 1. 3. The armature coil is formed by winding so that the opening angle of the conductor portion that contributes to the thrust is an integral multiple of the body width of the field magnet. DC generator mentioned? DC linear motor with. 4. The above-mentioned armature coil is characterized in that one corner of the conductor portion contributing to the thrust is wound to a width 2n-1 (n is a positive integer of 1 or more) times the magnetic pole width of the field magnet. A DC linear motor having a DC generator according to claim 3. 5. A DC linear motor having a DC generator as set forth in claim 3 or 4, wherein the armature coil is wound into a frame shape. 6. In the case of the above-mentioned armature coil moving type, the DC power generation according to any one of claims 1 to 5, wherein the position detection collector r is placed on the side of the armature coil. A DC linear motor with a 7. The above-mentioned position horizontal collector is set with -Den summer exchange collector t%
Feature #! F: DC generator according to claim 6?
DC IJ near motor with. 8. The above-mentioned magnetoelectric conversion element is arranged in a part facing a conductor part contributing to the thrust of the armature coil. motor. 9. Is the magnetoelectric conversion element arranged at the same position as the conductor part that contributes to the thrust of the armature coil? The DC generator described in claim 6 or 7 is characterized by %.
near motor that flows. 10. Claim 9, characterized in that the magnetoelectric conversion element is disposed in an aerodynamic turning part within the frame of the armature coil, which is located at the same position as the conductor part that contributes to the thrust of the armature coil.
A DC linear motor having six DC power generators as described in Section 1. 11. Claims 1 to 10, characterized in that the power generation coil is wound so that the opening angle of the conductor portion contributing to power generation is an integral multiple of the body width of the field magnet. Which DC generator is mentioned? DC linear motor with. 12. The above-mentioned power generation coil is characterized in that the opening angle of the conductor portion that contributes to power generation is 2n-1 (n is a positive integer of 1 or more) times the magnetic pole width of the field magnet. A DC IJ near motor having six DC power generators according to claim 11. 13. The DC generator according to any one of claims 1 to 12, characterized in that the power generation coil is wound thinner than the armature coil. DC linear motor with. 14. Is the above generator coil wound into a frame shape? Features Claims 1 to 13
A DC linear motor having a current generator according to any one of paragraphs.
JP22701682A 1982-12-27 1982-12-27 Dc linear motor with dc generator Pending JPS59122359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22701682A JPS59122359A (en) 1982-12-27 1982-12-27 Dc linear motor with dc generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22701682A JPS59122359A (en) 1982-12-27 1982-12-27 Dc linear motor with dc generator

Publications (1)

Publication Number Publication Date
JPS59122359A true JPS59122359A (en) 1984-07-14

Family

ID=16854191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22701682A Pending JPS59122359A (en) 1982-12-27 1982-12-27 Dc linear motor with dc generator

Country Status (1)

Country Link
JP (1) JPS59122359A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225861A (en) * 1985-07-25 1987-02-03 Hitachi Metals Ltd Linear motor
JPS6355782U (en) * 1986-09-24 1988-04-14
EP0417956A2 (en) * 1989-09-05 1991-03-20 Linear Drives Limited Improvements in or relating to the control of linear motors
WO1991012648A1 (en) * 1990-02-13 1991-08-22 Hitachi Metals, Ltd. Linear dc motor
EP0961393A1 (en) * 1998-05-28 1999-12-01 Sulzer Rüti Ag Linear motor for textile machine, device with a linear motor and Loom with this device
WO2018073880A1 (en) * 2016-10-18 2018-04-26 弘次 須山 New type motor/generator, new type engine, new type turbine, and new type magnetic levitation train

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225861A (en) * 1985-07-25 1987-02-03 Hitachi Metals Ltd Linear motor
JPH0416636Y2 (en) * 1986-09-24 1992-04-14
JPS6355782U (en) * 1986-09-24 1988-04-14
EP0417956A2 (en) * 1989-09-05 1991-03-20 Linear Drives Limited Improvements in or relating to the control of linear motors
US5091665A (en) * 1989-09-05 1992-02-25 Kelly H P G Linear motors
AU649405B2 (en) * 1989-09-05 1994-05-26 Linear Drives Limited Improvements in or relating to the control of linear motors
WO1991012648A1 (en) * 1990-02-13 1991-08-22 Hitachi Metals, Ltd. Linear dc motor
US5225725A (en) * 1990-02-13 1993-07-06 Hitachi Metals, Ltd. Linear direct current motor
GB2247787A (en) * 1990-02-13 1992-03-11 Hitachi Metals Ltd Linear direct current motor
GB2247787B (en) * 1990-02-13 1994-06-29 Hitachi Metals Ltd Linear direct current motor
EP0961393A1 (en) * 1998-05-28 1999-12-01 Sulzer Rüti Ag Linear motor for textile machine, device with a linear motor and Loom with this device
US6188149B1 (en) 1998-05-28 2001-02-13 Sulzer Rueti Ag Linear motor for a textile machine as well as an apparatus with a linear motor and a weaving machine with an apparatus
WO2018073880A1 (en) * 2016-10-18 2018-04-26 弘次 須山 New type motor/generator, new type engine, new type turbine, and new type magnetic levitation train

Similar Documents

Publication Publication Date Title
JPS61161952A (en) 3-phase linear inductor type motor
US20020043879A1 (en) Linear motor, driving and control system thereof and manufacturing method thereof
CN112769311A (en) Linear motor and transport system using the same
JPS59122359A (en) Dc linear motor with dc generator
JPS6223537B2 (en)
JP3944799B2 (en) Linear motor
JP4061835B2 (en) Electric motor
JPS6030195B2 (en) straight electric machine
Chiba et al. Radial force and speed detection for improved magnetic suspension in bearingless motors
JPS59153457A (en) Hybrid linear stepping motor
JP2001119919A (en) Linear motor
JPS6111542B2 (en)
JPS611255A (en) Core type dc linear motor
JP2001008432A (en) Linear motor
JPS619161A (en) Coreless linear dc motor
JPH0628502B2 (en) Linear motor
JPS59122355A (en) Movable magnet type dc linear motor with 5-pole field magnet
JPS6176060A (en) Dc linear motor having propulsion speed detecting mechanism
JPS6334468Y2 (en)
JP3700883B2 (en) Linear motor stator
JPS5986473A (en) Semiconductor dc linear motor
JP2531408B2 (en) Stepping motor
JP4175076B2 (en) Coreless linear motor
JPS59230460A (en) Dc linear motor with speed detecting mechanism
JPS611256A (en) Core type dc linear motor