JPS591019B2 - Optical communication method - Google Patents

Optical communication method

Info

Publication number
JPS591019B2
JPS591019B2 JP51089566A JP8956676A JPS591019B2 JP S591019 B2 JPS591019 B2 JP S591019B2 JP 51089566 A JP51089566 A JP 51089566A JP 8956676 A JP8956676 A JP 8956676A JP S591019 B2 JPS591019 B2 JP S591019B2
Authority
JP
Japan
Prior art keywords
receiving element
optical
light receiving
output
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51089566A
Other languages
Japanese (ja)
Other versions
JPS5314503A (en
Inventor
二三男 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP51089566A priority Critical patent/JPS591019B2/en
Publication of JPS5314503A publication Critical patent/JPS5314503A/en
Publication of JPS591019B2 publication Critical patent/JPS591019B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Description

【発明の詳細な説明】 本発明は、高信頼性の通信を行なうことができる光通信
方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical communication system that allows highly reliable communication.

従来の光通信方式に於いては、発光ダイオード、レーザ
ダイオード等の発光素子により入力信号に従つた光変調
を行なわせ、その出力光を光ファイバからなる光伝送路
で伝送し、受信側では、フォトダイオード、アバランシ
エ・フォトダイオード等の受光素子で受光して電気信号
に変換するものである。
In conventional optical communication systems, a light emitting element such as a light emitting diode or a laser diode performs optical modulation according to an input signal, and the output light is transmitted through an optical transmission line consisting of an optical fiber. A light receiving element such as a photodiode or avalanche photodiode receives light and converts it into an electrical signal.

従つてその伝送距離は、発光素子の出力、光伝送路の伝
送損失及び受光素子の変換効率、雑音比等に依存すると
ころが大である。又送信側の発光素子や光ファイバ等に
障害が発生すれば通信が全くできないものとなる。本発
明は、2本の光ファイバを1対とした光伝送路を用いて
、等価的に受信感度を向上させ、又その2本の光ファイ
バのうちの何れか1本の系統に障害が発生しても、確実
な通信が可能となる高信頼性の光通信方式を提供するこ
とを目的とするものである。
Therefore, the transmission distance largely depends on the output of the light emitting element, the transmission loss of the optical transmission line, the conversion efficiency of the light receiving element, the noise ratio, etc. Furthermore, if a failure occurs in the light emitting element or optical fiber on the transmitting side, communication will be completely impossible. The present invention uses an optical transmission line consisting of a pair of two optical fibers to equivalently improve reception sensitivity, and when a failure occurs in one of the two optical fibers. The objective is to provide a highly reliable optical communication system that enables reliable communication even when

以下実施例について詳細に説明する。第1図は本発明に
係る伝送系の基本構成を説明するための図であり、1、
2は発光夕゛イオード、レーヂダイオード等の発光素子
で、入力端子INに加えられる入力信号に応じて動作す
るトランジスタQ1、Q2により駆動され、発光出力は
光ファイバ3、4からなる光伝送路で受信側に送出され
る。受信側では光ファイバ3、4対応にフォトダイオー
ド、アバーランシエ・フォトダイオード、フォトトラン
ジスタ等の受光素子5、6が設けられ、それらの出力信
号は差動増幅器Tに加えられる。入力信号が゛01’’
であるとき、トランジスタQ1がオンとなつて発光素子
1が発光し、入力信号が゛0’’であるとき、トランジ
スタQ2がオンとなつて発光素子2が発光するので、光
ファイバ3、4には相互に反転した光信号が伝送される
ことになる。
Examples will be described in detail below. FIG. 1 is a diagram for explaining the basic configuration of a transmission system according to the present invention.
2 is a light emitting element such as a light emitting diode or a radiation diode, which is driven by transistors Q1 and Q2 that operate according to the input signal applied to the input terminal IN, and the light emission output is transmitted through an optical transmission line consisting of optical fibers 3 and 4. is sent to the receiving side. On the receiving side, light receiving elements 5 and 6 such as photodiodes, avalanche photodiodes, and phototransistors are provided corresponding to the optical fibers 3 and 4, and their output signals are applied to a differential amplifier T. Input signal is ``01''
When , the transistor Q1 is turned on and the light emitting element 1 emits light, and when the input signal is ``0'', the transistor Q2 is turned on and the light emitting element 2 emits light, so that the optical fibers 3 and 4 are connected to each other. In this case, mutually inverted optical signals are transmitted.

又受信側に於いては、例えば受光素子5の出力により差
動増幅器Tの出力が正電位、受光素子6の出力により差
動増幅器Tの出力が負電位となるように構成することに
より、出力端子のOUTには入力信号に対応し1こ正負
のレベルに反転する受信信号が得られる。従つて等価的
には光信号が2倍になり、S/Nを改善することができ
る。又光フアイバ3,4の何れか一方の系統に障害が発
生した場合は、差動増幅器7の出力が雰電位になるので
、それを検出して障害発生警報等に利用することができ
る。前述の如く本発明に係る伝送係では、発光素子、受
光素子及び光フアイバを従来例の2倍必要とすることに
なるが、発光素子や受光素子はアレイ化等の手段を採用
することが可能であり、又光フアイバはケーブル化する
ことも容易であるから、経済的な面は余り問題にならず
、S/Nの改善等の利点の方が大きいものとなる。
On the receiving side, for example, by configuring the output of the differential amplifier T to have a positive potential depending on the output of the light receiving element 5, and the output of the differential amplifier T to have a negative potential depending on the output of the light receiving element 6, the output At the terminal OUT, a received signal corresponding to the input signal and inverted to one positive or negative level is obtained. Therefore, the optical signal is equivalently doubled, and the S/N ratio can be improved. Furthermore, if a fault occurs in either one of the optical fibers 3, 4, the output of the differential amplifier 7 becomes an atmospheric potential, which can be detected and used for fault occurrence alarms, etc. As mentioned above, the transmission unit according to the present invention requires twice as many light emitting elements, light receiving elements, and optical fibers as in the conventional example, but it is possible to employ means such as arraying the light emitting elements and light receiving elements. Moreover, since optical fibers can be easily made into cables, the economical aspect is not so much of an issue, and the advantages such as improved S/N ratio are greater.

なお2本の光フアイバ3,4によりそれぞれ光信号を伝
送する為、全く同一の伝送特性でない場合には、受光素
子5,6の出力位相を調整する必要が生じる。第2図は
本発明の実施例のプロツク線図であり、5,6,7は第
1図に示す受光素子及び差動増幅器であつて、8,9は
基準電圧VPレベルでスライスするスライサ、10,1
1はピーク検出器、12〜14は差動増幅器、VS,、
S?基準電圧、Q3,Q4は受光素子3,4にバイアス
を加える為のトランジスタ、+V、−VBはトランジス
タQ3,Q4に加える電圧である。第3図は動作説明図
であり、第2図の各部の信号a−1をそれと同一符号a
−1に対応して示してある。
Note that since the optical signals are transmitted through the two optical fibers 3 and 4, it is necessary to adjust the output phase of the light receiving elements 5 and 6 if the transmission characteristics are not exactly the same. FIG. 2 is a block diagram of an embodiment of the present invention, in which 5, 6, and 7 are the light receiving elements and differential amplifiers shown in FIG. 1, and 8 and 9 are slicers that slice at the reference voltage VP level; 10,1
1 is a peak detector, 12 to 14 are differential amplifiers, VS,...
S? Reference voltages Q3 and Q4 are transistors for applying bias to the light receiving elements 3 and 4, and +V and -VB are voltages applied to the transistors Q3 and Q4. FIG. 3 is an explanatory diagram of the operation, and the signals a-1 of each part in FIG.
-1 is shown.

又T1は正常状態の期間、T2は片側の信号が断となつ
た異常状態の期間を示す。正常状態のときは受光素子5
,6の出力は相互に反対のものとなり、従つて差動増幅
器7の出力は正、負の電位に反転するパルス出力となる
。その出力の正電位の信号をスライサ8、負電位の信号
をスラ.イサ9によりそれぞれ基準電圧でスライスする
ことにより第3図A,bに示す信号A,bが得られ、ピ
ーク検出器10,11で信号A,bのピーク検出を行な
い、所定時間内に信号A,b/)′S.″ビであれば6
1″の信号を出力する。従つて正常状.態ではピーク検
出器10,11の出力信号C,dは第3図のC,dの期
間T1内の如く同一レベルとなり、差動増幅器12の出
力信号eは第3図eに示すように雰となる。又差動増幅
器13,14の出力信号F,gはそれぞれ第3図F,g
に示すように同一レベル・となり、受光素子5,6に加
えるバイアス電圧H,iは第3図H,iに示すように同
一レベルとなる。従つて受光素子5,6の感度は同一と
なつて、差動増幅器7の出力信号jは、第3図jの期間
T1内に示すように、正、負電位に反転するパルス信号
となる。若し、受光素子6の系統に障害が発生して受光
素子6の出力が差動増副器7に加えられないような異常
状態になると、差動増幅器rの出力信号は負電位になる
ことがないのでスライサ9の出力信号bは連続的に″0
”となり、従つてピーク検出器11の出力信号Dii6
O゛となるから、差動増幅器12の出力信号eは第3図
eの期間T2内の如く或るレベルとなり、又差動増幅器
14の出力信号gは低下する。
Further, T1 indicates a period of a normal state, and T2 indicates a period of an abnormal state in which one side of the signal is disconnected. In normal condition, the light receiving element 5
, 6 are opposite to each other, and therefore the output of the differential amplifier 7 is a pulse output that is inverted to positive and negative potentials. The positive potential signal of the output is sent to the slicer 8, and the negative potential signal is sent to the slicer 8. The signals A and b shown in FIG. 3A and b are obtained by slicing with the standard voltage using the isa 9, and the peaks of the signals A and b are detected by the peak detectors 10 and 11. ,b/)′S. ``6 if it is bi
Therefore, in the normal state, the output signals C and d of the peak detectors 10 and 11 are at the same level as within the period T1 of C and d in FIG. The output signal e becomes the atmosphere as shown in FIG.
The bias voltages H and i applied to the light receiving elements 5 and 6 are at the same level as shown in FIG. 3 H and i. Therefore, the sensitivities of the light receiving elements 5 and 6 become the same, and the output signal j of the differential amplifier 7 becomes a pulse signal that is inverted between positive and negative potentials, as shown in period T1 in FIG. 3j. If a failure occurs in the system of the light receiving element 6 and an abnormal state occurs in which the output of the light receiving element 6 is not applied to the differential amplifier 7, the output signal of the differential amplifier r may become a negative potential. Therefore, the output signal b of the slicer 9 is continuously "0".
”, therefore, the output signal Dii6 of the peak detector 11
O'', the output signal e of the differential amplifier 12 becomes a certain level as shown in period T2 in FIG. 3e, and the output signal g of the differential amplifier 14 decreases.

それによつて受光素子5のバイアス電圧hは負側に大き
くなり、その感度が増大し、受光素子6のバイアス電圧
1は負側に小さくなつてその感度が低下する。即ち光信
号が断となつた側の受光素子の感度が低丁され、他方の
側の受光素子の感度が増大され、差動増幅器7の出力信
号jは第3図jの期間T2内で示すように大きなレベル
のパルス信号となる。前述の如く片側の信号が断となつ
ても、差動増幅器7の出力信号jのレベルが大きくなる
ので、光通信を継続することができるものとなる。
As a result, the bias voltage h of the light receiving element 5 increases to the negative side and its sensitivity increases, and the bias voltage 1 of the light receiving element 6 decreases to the negative side and its sensitivity decreases. That is, the sensitivity of the light-receiving element on the side where the optical signal is cut off is reduced, the sensitivity of the light-receiving element on the other side is increased, and the output signal j of the differential amplifier 7 becomes as shown in period T2 in FIG. 3j. This results in a pulse signal with a high level. Even if the signal on one side is cut off as described above, the level of the output signal j of the differential amplifier 7 increases, so that optical communication can be continued.

以上説明したように、本発明は即ち、正常時には、通常
の自動利得制闘(AGC)方式の動作と同様に動作して
各伝送系が同一信号レベル(絶対値)となるように制闘
され、異常時では、障害伝送系の感度をその信号レベル
が出力として現れない程度に十分低下させ、逆に正常伝
送系の感度を増大して、通信が継続できる信号レベルに
まで増大させるものである。この正常伝送系の感度増大
量はおおむね2倍程度である。また、従来の自動利得制
圓方式が、障害が発生して光信号が低丁した場合、これ
を補正するように働き、該受光素子のバイアス電圧を負
側へ異常に高めることとなり、受光素子の許容電圧値を
越え、素子劣化を招いていたがこれを防止する上でも極
めて有利である。
As explained above, the present invention operates in the same way as a normal automatic gain control (AGC) system during normal operation, and controls each transmission system to have the same signal level (absolute value). In the event of an abnormality, the sensitivity of the faulty transmission system is reduced sufficiently to the extent that the signal level does not appear as an output, and conversely, the sensitivity of the normal transmission system is increased to a signal level that allows communication to continue. . The amount of increase in sensitivity of this normal transmission system is approximately twice as much. In addition, when the conventional automatic gain control system works to compensate for a low optical signal due to a failure, it abnormally increases the bias voltage of the light receiving element to the negative side, causing the light receiving element to This is extremely advantageous in preventing the device from exceeding the allowable voltage value and causing device deterioration.

又2本の光フアイバの何れか一方の系統が障害によつて
断となつたとしても、他方の系統により光信号の伝送が
可能であるから、信頼性が高いものとなり,単なる並列
の2重化構成とは異なり、正常時のS/Nの改善及び障
害発生検出が簡単に得られる利点がある。
In addition, even if one of the two optical fibers is disconnected due to a fault, the optical signal can be transmitted using the other system, making it highly reliable, and making it possible to transmit optical signals using the other system. This configuration has the advantage that it is easy to improve the S/N ratio during normal operation and detect the occurrence of a failure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る伝送系の基本構成を説明するため
の図、第2図は本発明の実施例のプロツク線図、第3図
はその動炸説明図である。 1,2は発光素子、3,4は光フアイバ、5,6は受光
素子、7は差動増幅器、8,9はスライサ、10,11
はピーク検出器、12〜14は差動増幅器である。
FIG. 1 is a diagram for explaining the basic configuration of a transmission system according to the present invention, FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is an explanatory diagram of its motion. 1 and 2 are light emitting elements, 3 and 4 are optical fibers, 5 and 6 are light receiving elements, 7 is a differential amplifier, 8 and 9 are slicers, 10 and 11
is a peak detector, and 12 to 14 are differential amplifiers.

Claims (1)

【特許請求の範囲】[Claims] 1 光伝送路を2本の光ファイバで構成し、各光ファイ
バにより相互に反転した光信号を同時に伝送し受信側で
は各光ファイバ対応に受光素子を設け、該受光素子で光
電変換した受信信号のレベル差を差動増幅器で増幅して
出力し、且つ該差動増幅器の出力信号の正、負レベルを
監視し、正又は負のレベルの連続を検出して光伝送路の
障害を検出し、障害発生の光ファイバに対応した受光素
子のバイアス電圧を制御して該受光素子の感度を受信信
号のレベル変動が出力として現れない程度に低下させ、
且つ正常の光ファイバに対応した受光素子のバイアス電
圧を制御して該受光素子の感度を定常時の倍程度に増大
させることを特徴とする光通信方式。
1 The optical transmission line is composed of two optical fibers, and each optical fiber simultaneously transmits mutually inverted optical signals. On the receiving side, a light receiving element is provided for each optical fiber, and the received signal is photoelectrically converted by the light receiving element. Amplify and output the level difference with a differential amplifier, monitor the positive and negative levels of the output signal of the differential amplifier, and detect a continuous positive or negative level to detect a failure in the optical transmission line. , controlling the bias voltage of the light-receiving element corresponding to the optical fiber in which the failure has occurred to reduce the sensitivity of the light-receiving element to such an extent that level fluctuations in the received signal do not appear as output;
An optical communication system characterized in that the bias voltage of a light receiving element corresponding to a normal optical fiber is controlled to increase the sensitivity of the light receiving element to about twice that of a normal optical fiber.
JP51089566A 1976-07-26 1976-07-26 Optical communication method Expired JPS591019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51089566A JPS591019B2 (en) 1976-07-26 1976-07-26 Optical communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51089566A JPS591019B2 (en) 1976-07-26 1976-07-26 Optical communication method

Publications (2)

Publication Number Publication Date
JPS5314503A JPS5314503A (en) 1978-02-09
JPS591019B2 true JPS591019B2 (en) 1984-01-10

Family

ID=13974351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51089566A Expired JPS591019B2 (en) 1976-07-26 1976-07-26 Optical communication method

Country Status (1)

Country Link
JP (1) JPS591019B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109402A (en) * 1977-03-07 1978-09-25 Toshiba Corp Light communication unit
JPS55149546A (en) * 1979-05-11 1980-11-20 Okuma Mach Works Ltd Photo coupling circuit
US5138475A (en) * 1990-03-26 1992-08-11 At&T Bell Laboratories Dc-coupled optical data link utilizing differential transmission
US5291560A (en) * 1991-07-15 1994-03-01 Iri Scan Incorporated Biometric personal identification system based on iris analysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515524A (en) * 1974-07-04 1976-01-17 Tokyo Electric Power Co HENATSUKITATSUPUHOSHOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515524A (en) * 1974-07-04 1976-01-17 Tokyo Electric Power Co HENATSUKITATSUPUHOSHOHOHO

Also Published As

Publication number Publication date
JPS5314503A (en) 1978-02-09

Similar Documents

Publication Publication Date Title
US4306313A (en) High reliability optical fiber communication system
US6122084A (en) High dynamic range free-space optical communication receiver
US5610748A (en) Optical space communication apparatus sending main signals and an auxiliary signal for controlling the intensity at the receiver
JPH07112173B2 (en) Light modulation circuit
US8901474B2 (en) Enhanced received signal power indicators for optical receivers and transceivers, and methods of making and using the same
GB1573137A (en) Method and system for transmitting signals by fibre optics
US5809049A (en) Method and apparatus for monitoring the RF drive circuit of a linear laser transmitter
US6246499B1 (en) Optical signal communication apparatus and optical signal communication method
US5023942A (en) Fault tolerant data transmission network
US4051363A (en) Split-path receiver for fiber optics application
US4266183A (en) Fault locating arrangement for a two-way repeatered transmission link
JPS591019B2 (en) Optical communication method
JPS6377171A (en) Optical receiver
US4543664A (en) Direct current coupled data transmission
JPH0468830A (en) Light amplifying repeater
JPS61267404A (en) Optical receiver
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
JPH0687549B2 (en) Optical receiver
JPH08274719A (en) Optical output control circuit of optical communication system
JP2797229B2 (en) Optical transmitter
JPS589445A (en) Optical transmission system
JPS628615Y2 (en)
JPH10262001A (en) Optical transmission equipment provided with automatic wavelength control function
JPH03254232A (en) Optical communication and apparatus
JPH0530332B2 (en)