JPS588B2 - Hikari Bee Mususasouchi - Google Patents

Hikari Bee Mususasouchi

Info

Publication number
JPS588B2
JPS588B2 JP50124040A JP12404075A JPS588B2 JP S588 B2 JPS588 B2 JP S588B2 JP 50124040 A JP50124040 A JP 50124040A JP 12404075 A JP12404075 A JP 12404075A JP S588 B2 JPS588 B2 JP S588B2
Authority
JP
Japan
Prior art keywords
light beam
rotating polygon
polygon mirror
mirror
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50124040A
Other languages
Japanese (ja)
Other versions
JPS5248331A (en
Inventor
野口勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP50124040A priority Critical patent/JPS588B2/en
Priority to US05/732,393 priority patent/US4054361A/en
Priority to GB42664/76A priority patent/GB1562635A/en
Publication of JPS5248331A publication Critical patent/JPS5248331A/en
Publication of JPS588B2 publication Critical patent/JPS588B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10831Arrangement of optical elements, e.g. lenses, mirrors, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0031Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration for scanning purposes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Laser Beam Printer (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Dot-Matrix Printers And Others (AREA)

Description

【発明の詳細な説明】 本発明は回転多面鏡を用いた改良された光ビーム走査装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved optical beam scanning device using a rotating polygon mirror.

近年レーザ光などの光ビームを走査して情報を読み取っ
たり記録したりする装置が多く開発されている。
In recent years, many devices have been developed that scan light beams such as laser beams to read and record information.

このような装置において用いられる光偏向器の一種に回
転多面鏡がある。
One type of optical deflector used in such devices is a rotating polygon mirror.

回転多面鏡は非常に高度に精密加工されたものであって
もその回転軸と反射鏡面との平行度に多少の誤差がある
Even if a rotating polygon mirror is highly precisely machined, there is some error in the parallelism between the rotation axis and the reflecting mirror surface.

この平行度誤差は回転多面鏡による光偏向方向に対して
直角方向に光ビームを偏倚させるので、回転多面鏡の各
反射鏡面による光ビームが走査面に描く走査線の軌跡は
一致しない。
Since this parallelism error deflects the light beam in a direction perpendicular to the direction of light deflection by the rotating polygon mirror, the trajectories of scanning lines drawn by the light beams on the scanning surface by the respective reflecting mirror surfaces of the rotating polygon mirror do not match.

この平行度誤差による走査線の偏倚を光学的に補正して
一致した走査線を形成するための方式がいくつか提案さ
れている。
Several methods have been proposed for optically correcting the deviation of the scanning line due to the parallelism error and forming matched scanning lines.

たとえば特開昭47−33642号明細書に記載されて
いる発明では、回転多面鏡の各反射鏡面の平行度の誤差
の補正量をあらかじめ測定し記憶装置に記憶させておき
、回転多面鏡の回転に同期させてこの記憶装置からの信
号によって別に設置した平行度誤差補正用光偏向器を駆
動させて光ビームの走査線の偏倚を除去するものである
For example, in the invention described in Japanese Patent Application Laid-Open No. 47-33642, the amount of correction for the error in parallelism of each reflecting mirror surface of a rotating polygon mirror is measured in advance and stored in a storage device, and the rotation of the rotating polygon mirror is In synchronization with this, a separately installed optical deflector for correcting parallelism error is driven by a signal from this storage device, thereby removing the deviation of the scanning line of the light beam.

この方式は光偏向器をあらたに設け、これを記憶装置を
介して駆動するため複雑な装置が必要となるという欠点
がある。
This method has the disadvantage that it requires a complicated device to newly provide an optical deflector and drive it via a storage device.

また特開昭48−49315号明細書に記載されている
発明では、2枚の円柱レンズを用い第1の円柱レンズで
回転鏡の反射鏡面上に偏向された光ビーム群のなす面に
平行な線像を形成し、第2の円柱レンズで反射鏡面上の
偏向点と走査面とを物点と像点の関係にすることによっ
て平行度誤差による走査線の偏倚を除去するものである
Furthermore, in the invention described in JP-A No. 48-49315, two cylindrical lenses are used, and the first cylindrical lens is used to direct the light beams parallel to the plane formed by the group of light beams deflected onto the reflecting mirror surface of the rotating mirror. By forming a line image and using a second cylindrical lens to make the deflection point on the reflecting mirror surface and the scanning plane into an object point and image point relationship, deviation of the scanning line due to parallelism error is eliminated.

この方式は2枚の円柱レンズを必要さしてそれぞれを所
定の関係に設定するのが容易でないこと、また回転多面
鏡への入射光ビームが偏向された光ビーム群のなす面と
同一面内にあるために、偏光角を大きくとろうとすると
入射光ビームの反射鏡面に対する入射角を大きくとらな
ければならず従って反射鏡面によって入射光ビームがけ
られを受けやすいという欠点がある。
This method requires two cylindrical lenses, and it is not easy to set them in a predetermined relationship.Also, the light beam incident on the rotating polygon mirror is in the same plane as the plane formed by the group of deflected light beams. Therefore, if an attempt is made to increase the polarization angle, the angle of incidence of the incident light beam with respect to the reflective mirror surface must be increased, which has the disadvantage that the incident light beam is likely to be vignetted by the reflective mirror surface.

本発明の目的は、回転多面鏡の平行度誤差による走査線
の走査方向と直角な方向の偶奇を除去した改良された光
ビーム走査装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an improved light beam scanning device that eliminates even-oddity in the direction perpendicular to the scanning direction of the scanning line due to the parallelism error of the rotating polygon mirror.

本発明によれば回転多面鏡の平行度誤差による走査線の
偏倚は、焦点距離の異なる主軸および副軸を有する光学
素子を1個用いることによって除去される。
According to the present invention, the deviation of the scanning line due to the parallelism error of the rotating polygon mirror is eliminated by using one optical element having a major axis and a minor axis having different focal lengths.

また本発明によれば回転多面鏡の平行度誤差による走査
線の偶奇を除去するための前記光学素子の設定が非常に
楽になる。
Further, according to the present invention, it is very easy to set the optical element to eliminate evenness and oddness of the scanning lines due to parallelism errors of the rotating polygon mirror.

さらに本発明によれば回転多面鏡への入射光ビームを偏
向された光ビーム群のなす面と同一面内にとる必要がな
いので、入射光ビームの反射鏡面に対する入射角を小さ
くすることができる。
Furthermore, according to the present invention, since it is not necessary to make the incident light beam on the rotating polygon mirror in the same plane as the plane formed by the group of deflected light beams, the angle of incidence of the incident light beam on the reflecting mirror surface can be made small. .

従って反射鏡面によって入射光ビームのけられを小さく
することができ、同一の入射光ビーム径に対して考えれ
ば有効偏向角を大きくすることができ、また同一の有効
偏向角に対して考えれば入射光ビーム径を大きくするこ
とができるので走査面での解像度を高くすることができ
る。
Therefore, the vignetting of the incident light beam can be reduced by the reflective mirror surface, and the effective deflection angle can be increased for the same incident light beam diameter; Since the diameter of the light beam can be increased, the resolution on the scanning plane can be increased.

本発明は回転多面鏡と焦点距離の異なる主軸および副軸
を有する光学素子と、結像光学系とを含む光ビーム走査
装置において、入射する光ビームを前記光学素子を介す
ることにより前記回転多面鏡の反射鏡面上にその回転軸
と垂直な線像を形成せしめ、前記反射鏡面からの反射光
ビームを再び前記光学素子を介してから、前記結像光学
系によって走査面上に光点を結像せしめるようにそれぞ
れ配置したことにより、前記回転多面鏡の回転に伴なっ
て前記光点が走査面上を走査する際に前記反射鏡面に平
行度誤差があっても走査線の偏倚を補正する光ビーム走
査装置である。
The present invention provides a light beam scanning device including a rotating polygon mirror, an optical element having a main axis and a minor axis having different focal lengths, and an imaging optical system, in which an incident light beam is transmitted through the rotating polygon mirror by passing through the optical element. A line image perpendicular to the rotation axis is formed on the reflecting mirror surface of the mirror, and the reflected light beam from the reflecting mirror surface is passed through the optical element again, and then a light spot is imaged on the scanning surface by the imaging optical system. By arranging the light spots so that the rotating polygon mirror rotates, the beam corrects the deviation of the scanning line even if there is a parallelism error on the reflecting mirror surface when the light spot scans on the scanning surface. It is a beam scanning device.

本発明において焦点距離の異なる主軸および副軸を有す
る光学素子というのは、その代表例を円柱レンズとする
ように一方向の焦点距離がそれと直交する方向の焦点距
離と異なる光学素子の総称で、短かい焦点距離に関係し
た軸が主軸、長い焦点距離に関係した軸が副軸を意味す
る。
In the present invention, an optical element having a major axis and a minor axis with different focal lengths is a general term for optical elements whose focal length in one direction is different from the focal length in a direction perpendicular to the cylindrical lens, a typical example of which is a cylindrical lens. The axis related to the short focal length is the main axis, and the axis related to the long focal length is the secondary axis.

このような光学素子の例としては上記の円柱レンズのほ
かアナモルフィック・レンズ、放物筒鏡、円筒鏡などが
含まれる。
Examples of such optical elements include, in addition to the above-mentioned cylindrical lens, anamorphic lenses, parabolic mirrors, cylindrical mirrors, and the like.

以下本発明を具体的な実施例によって説明する。The present invention will be explained below using specific examples.

第1図は本発明をレーザ記録装置に応用した第1の実施
例の光学系の基本的配置図である。
FIG. 1 is a basic layout diagram of an optical system of a first embodiment in which the present invention is applied to a laser recording apparatus.

レーザ光源100から発した平行なレーザ光ビーム10
は光変調器110によって時系列的に変調された光ビー
ム20となる。
A parallel laser light beam 10 emitted from a laser light source 100
becomes a light beam 20 that is modulated in time series by the optical modulator 110.

光ビーム20は必要に応じてビームエクスパンダ−12
0によってビーム径を拡大された光ビーム30となり、
全反射鏡130および140で反射されて円柱レンズ2
00に入射する。
The light beam 20 is connected to a beam expander 12 as necessary.
A light beam 30 whose beam diameter is expanded by 0 is obtained,
It is reflected by the total reflection mirrors 130 and 140 and forms the cylindrical lens 2.
Enter 00.

光ビーム30は平行光ビームであるが、これが円柱レン
ズ200を通過すると水平方向(円柱レンズ200の主
軸210に平行な方向)には平行でその垂直方向にのみ
集束する光ビーム40となる。
The light beam 30 is a parallel light beam, but when it passes through the cylindrical lens 200, it becomes a light beam 40 that is parallel to the horizontal direction (direction parallel to the main axis 210 of the cylindrical lens 200) and focused only in the vertical direction.

円柱レンズ200と回転多面鏡300の反射鏡面310
との距離を円柱レンズ200の主軸210に関連した焦
点距離f1に設置し、また円柱レンズ200の主軸21
0と回転多面鏡300の回転軸320とを垂直に設定す
ることにより、光ビーム40は反射鏡面310上に集束
して回転多面鏡300の回転軸320と垂直な方向に長
さをもつ線像50を形成する。
Cylindrical lens 200 and reflective mirror surface 310 of rotating polygon mirror 300
is set at a focal length f1 related to the principal axis 210 of the cylindrical lens 200, and the principal axis 21 of the cylindrical lens 200 is
By setting 0 and the rotation axis 320 of the rotating polygon mirror 300 perpendicularly, the light beam 40 is focused on the reflecting mirror surface 310 and forms a line image having a length in the direction perpendicular to the rotation axis 320 of the rotating polygon mirror 300. form 50.

回転鏡300が矢印330の方向に回転すると、反射光
ビームは矢印331の向きに偏向される。
When rotating mirror 300 rotates in the direction of arrow 330, the reflected light beam is deflected in the direction of arrow 331.

有効偏向角内の任意の位置にある反射光ビーム60と、
その特別な場合として有効偏向角の両端の位置にある反
射光ビーム60aおよび60bとを考える。
a reflected light beam 60 at any position within the effective deflection angle;
As a special case, consider reflected light beams 60a and 60b at opposite ends of the effective deflection angle.

反射光ビーム60は線像50から発して水平方向には平
行で垂直方向には発散する。
Reflected light beam 60 emanates from line image 50 and is parallel in the horizontal direction and diverging in the vertical direction.

しかしこれが円柱レンズ200を再び通過すると完全な
平行光ビーム70(有効偏向角の両端においては70a
および70b)となり、さらに結像レンズ400によっ
て集束する光ビーム80(有効偏向角の両端においては
80aおよび80b)となって、結像レンズ400から
その焦点距離f2の距離の像面上に光点90(有効偏向
角の両端においては90aおよび90b)を結像する。
However, when it passes through the cylindrical lens 200 again, it becomes a completely parallel light beam 70 (70a at both ends of the effective deflection angle).
and 70b), which is further focused by the imaging lens 400 as a light beam 80 (80a and 80b at both ends of the effective deflection angle), and a light spot is formed on the image plane at a distance of focal length f2 from the imaging lens 400. 90 (90a and 90b at both ends of the effective deflection angle).

この光点は回転多面鏡300が矢印330の向きに回転
すると、回転多面鏡300の各反射鏡面毎に90aの位
置から90bの位置まで像面上を走査し、走査線91を
形成する。
When the rotating polygon mirror 300 rotates in the direction of the arrow 330, this light spot scans the image plane from the position 90a to the position 90b for each reflecting mirror surface of the rotating polygon mirror 300, thereby forming a scanning line 91.

像面に記録面をもつ記録材料410を配置し矢印411
の向きに送ることによって、この記録材料410上には
上記の走査線によって情報が記録される。
A recording material 410 having a recording surface is placed on the image plane, and arrow 411
Information is recorded on this recording material 410 by the above-mentioned scanning lines.

上述したレーザ記録装置に用いられた光ビーム走査装置
により回転多面鏡300に平行度誤差があっても、走査
線のその走査方向とは直角方向の偏倚が除去される。
Even if there is a parallelism error in the rotating polygon mirror 300, the deviation of the scanning line in the direction perpendicular to the scanning direction is removed by the light beam scanning device used in the laser recording apparatus described above.

第2図は第1図のレーザ記録装置における光ビーム走査
の有様を詳しく説明するための図であり、第2図aは回
転多面鏡の平行度誤差による光ビームの偏倚の除去を説
明するための光学系の側面図、第2図すは光ビームの走
査を説明するためのその平面図である。
Fig. 2 is a diagram for explaining in detail the state of light beam scanning in the laser recording device of Fig. 1, and Fig. 2a explains the removal of the deviation of the light beam due to the parallelism error of the rotating polygon mirror. FIG. 2 is a side view of the optical system for the purpose of the present invention, and FIG. 2 is a plan view thereof for explaining the scanning of the light beam.

第2図aの側面図において平行光ビーム30は円柱レン
ズ200を通過して回転多面鏡300の反射鏡面310
上に集束される光ビーム40となる。
In the side view of FIG.
This results in a light beam 40 that is focused upwards.

反射鏡面310から反射されて発散する光ビーム60は
、回転多面鏡300の平行度誤差のため反射鏡面が31
0´のように傾いていると反射方向の偏倚をうけて光ビ
ーム60′の位置に生じる。
The light beam 60 reflected from the reflecting mirror surface 310 and diverging is caused by the parallelism error of the rotating polygonal mirror 300.
If the beam is tilted as shown at 0', it will be deflected in the direction of reflection and will be generated at the position of the light beam 60'.

これら反射光ビーム60および60´は再び円柱レンズ
200を通過することによって平行光ビーム70および
70′になる。
These reflected light beams 60 and 60' pass through the cylindrical lens 200 again to become parallel light beams 70 and 70'.

しかも光ビーム70および70′は互にも平行であるか
ら結像レンズ400によってその焦点距離f2の距離に
ある像面上では同一の位置90に光点を結像することが
でき、この像面上では回転多面鏡300の平行度誤差に
よる走査線の走査方向と直角な方向の偏倚が除去される
Moreover, since the light beams 70 and 70' are parallel to each other, a light spot can be imaged at the same position 90 on the image plane at a distance of focal length f2 by the imaging lens 400, and this image plane In the above, the deviation of the scanning line in the direction perpendicular to the scanning direction due to the parallelism error of the rotating polygon mirror 300 is removed.

第2図すの平面図において、平行光ビーム30が円柱レ
ンズ200を通過した後の光ビーム40も平行であり、
反射鏡面310で反射された光ビーム60(有効偏向角
の両端においては60aおよび60b)も平行である。
In the plan view of FIG. 2, the light beam 40 after the parallel light beam 30 passes through the cylindrical lens 200 is also parallel;
The light beams 60 (60a and 60b at both ends of the effective deflection angle) reflected by the reflective mirror surface 310 are also parallel.

さらにこれが円柱レンズ200を再び通過した光ビーム
70(有効偏向角の両端においては70aおよび70b
)も平行である。
Furthermore, this light beam 70 (70a and 70b at both ends of the effective deflection angle) passes through the cylindrical lens 200 again.
) are also parallel.

しかしながら光ビーム70は偏向角によって結像レンズ
400への入射角が異なるため、結像レンズ400から
その焦点距離f2の距離にある像面上に結像される光点
の位置90はその偏向角によって異なる。
However, since the incident angle of the light beam 70 to the imaging lens 400 differs depending on the deflection angle, the position 90 of the light spot imaged on the image plane at a distance of focal length f2 from the imaging lens 400 is determined by the deflection angle. It depends.

それ故回転鏡300が矢印330の向きに回転すること
により、各反射鏡面毎に像面上の光点90は有効偏向角
の両端における位置90aおよび90bの間を矢印33
2の向きにくり返し走査する。
Therefore, by rotating the rotating mirror 300 in the direction of the arrow 330, the light spot 90 on the image plane for each reflecting mirror surface moves between the positions 90a and 90b at both ends of the effective deflection angle as indicated by the arrow 330.
Scan repeatedly in the 2 directions.

この実施例では第2図aに示すように回転多面鏡300
へ指向させた光ビーム40が回転多面鏡300の回転軸
320に直角でないため、入射光ビーム40と反射光ビ
ーム60との間にαなる角度を生ずる(αの値は回転多
面鏡300の反射鏡面に平行度誤差があると多少液わる
)。
In this embodiment, as shown in FIG. 2a, a rotating polygon mirror 300
Since the light beam 40 directed to is not perpendicular to the rotation axis 320 of the rotating polygon mirror 300, an angle α is created between the incident light beam 40 and the reflected light beam 60 (the value of α is determined by the reflection of the rotating polygon mirror 300). If there is a parallelism error on the mirror surface, it will be slightly distorted).

またαの値が大きくなると偏向されたビーム70が結像
レンズ400の周辺部を通ることになる。
Further, when the value of α becomes large, the deflected beam 70 passes through the periphery of the imaging lens 400.

このため偏向された光ビーム70が有効偏向角の両端7
0aおよび70bの近傍で結像レンズ400によってけ
られをうけたり、あるいは結像レンズ400の周辺の大
きな収差を受ける可能性がある。
Therefore, the deflected light beam 70 is at both ends 7 of the effective deflection angle.
There is a possibility of being eclipsed by the imaging lens 400 in the vicinity of 0a and 70b, or receiving large aberrations around the imaging lens 400.

この場合には結像レンズを400´の位置に設置して結
像レンズ400の中央部を使うことが好ましい。
In this case, it is preferable to install the imaging lens at a position of 400' and use the central part of the imaging lens 400.

第3図は回転多面鏡によって偏向された光ビームが円柱
レンズ200および結像レンズ400の光軸を含む面を
通過するようにさせた第2の実施例の側面図である。
FIG. 3 is a side view of a second embodiment in which a light beam deflected by a rotating polygon mirror passes through a plane including the optical axes of a cylindrical lens 200 and an imaging lens 400.

この場合回転多面鏡300の回転軸320を図のように
垂直方向に対してα/2だけ傾けておく。
In this case, the rotation axis 320 of the rotating polygon mirror 300 is tilted by α/2 with respect to the vertical direction as shown in the figure.

すると回転多面鏡300の反射鏡面310へ指向される
光ビーム40と反射光ビーム60とは角度αをなす(α
の値は回転多面鏡300の反射鏡面が310/のように
平行度誤差をもっている場合には反射光ビームは60′
のようになり多少液わる)。
Then, the light beam 40 directed toward the reflective mirror surface 310 of the rotating polygon mirror 300 and the reflected light beam 60 form an angle α (α
If the reflecting mirror surface of the rotating polygon mirror 300 has a parallelism error such as 310/, the reflected light beam will be 60'.
)

回転多面鏡300が回転することによって偏向される反
射光ビーム60は円柱レンズ200の光軸を含む面内に
あり、さらに円柱レンズ200を通過して平行になった
光ビーム70も結像レンズ400の光軸を含む面内で偏
向される。
The reflected light beam 60 that is deflected by the rotation of the rotary polygon mirror 300 is within a plane that includes the optical axis of the cylindrical lens 200, and the light beam 70 that has passed through the cylindrical lens 200 and has become parallel is also reflected by the imaging lens 400. is deflected in a plane that includes the optical axis of.

光ビーム70は結像レンズ400からその焦点距離f2
の距離にある像面上に光点90を結ぶ。
The light beam 70 is directed from the imaging lens 400 to its focal length f2
A light spot 90 is focused on the image plane at a distance of .

反射鏡面が310´のように傾いていて平行度誤差があ
り、反射光ビームが60′の位置に生じても像面上では
90の位置に光点が生じて平行度誤差による走査線の走
査方向と直角方向の偏倚が除去されることは第1の実施
例の場合と同様である。
Since the reflecting mirror surface is tilted at 310', there is a parallelism error, and even if the reflected light beam is generated at the 60' position, a light spot is generated at the 90' position on the image plane, resulting in scanning of the scanning line due to the parallelism error. Similar to the first embodiment, the deviation in the direction perpendicular to the direction is removed.

この実施例では回転多面鏡300の回転によって偏向さ
れる光ビームが円柱レンズ200および結像レンズ40
0の光軸を含む面内にあるのでこれらレンズの収差の影
響をうけにくく、また偏向された光ビームが結像レンズ
400によってけられることもなくすることができる。
In this embodiment, the light beam deflected by the rotation of the rotating polygon mirror 300 is transmitted through the cylindrical lens 200 and the imaging lens 40.
Since it is in a plane that includes the optical axis 0, it is less susceptible to the effects of aberrations of these lenses, and the deflected light beam can be prevented from being eclipsed by the imaging lens 400.

第4図は回転多面鏡300へ指向させる光ビーム40を
回転多面鏡300の回転軸320に直角にした第3の実
施例の側面図である。
FIG. 4 is a side view of a third embodiment in which the light beam 40 directed toward the rotating polygon mirror 300 is perpendicular to the rotation axis 320 of the rotating polygon mirror 300.

この場合には平行光ビーム30を半透明鏡141で反射
させてさらに円柱レンズ200を介し、光ビーム40の
ように回転軸320に直角に入射させる。
In this case, the parallel light beam 30 is reflected by the semi-transparent mirror 141 and further passes through the cylindrical lens 200 to be incident at right angles to the rotation axis 320 like the light beam 40.

反射鏡面310によって反射された光ビーム60は光ビ
ーム40とは逆向きに進行して半透明鏡141を通過し
、平行な光ビーム70となって結像レンズ400によっ
て像面上に光点90を形成する。
The light beam 60 reflected by the reflective mirror surface 310 travels in the opposite direction to the light beam 40 and passes through the semi-transparent mirror 141, becoming a parallel light beam 70 and forming a light spot 90 on the image plane by the imaging lens 400. form.

回転多面鏡300の平行度誤差による走査線の走査方向
の偏倚が除去される有様は前の2つの実施例の場合と同
様である。
The manner in which the deviation in the scanning direction of the scanning line due to the parallelism error of the rotating polygon mirror 300 is removed is the same as in the previous two embodiments.

この実施例では光ビームが像面に達するまでに半透明鏡
141を各一度ずつ反射および通過するので利用光量が
典型的には1/4になるが、光ビームは常に円柱レンズ
200および結像レンズ400の光軸を含む面内を通過
するので、これらレンズの収差の影響を受けにくいとい
う利点をもつ。
In this embodiment, the light beam reflects and passes through the semi-transparent mirror 141 once each before reaching the image plane, so the amount of light used is typically reduced to 1/4, but the light beam always passes through the cylindrical lens 200 and the image forming surface. Since the light passes through a plane that includes the optical axis of the lens 400, it has the advantage of being less susceptible to the effects of aberrations of these lenses.

これまでに説明した3つの実施例では、焦点距離の異な
る主軸および副軸を有する光学素子として円柱レンズを
用いた場合を説明したが、前記の定義にあてはまる光学
素子であれば全て本発明に利用できる。
In the three embodiments described so far, a cylindrical lens was used as an optical element having a major axis and a minor axis with different focal lengths, but any optical element that meets the above definition can be used in the present invention. can.

第5図は焦点距離の異なる主軸および副軸を有する光学
素子としてアナモルフィック・レンズを用いる第4の実
施例の光学系の説明をするための図である。
FIG. 5 is a diagram for explaining an optical system of a fourth embodiment using an anamorphic lens as an optical element having a major axis and a minor axis having different focal lengths.

第5図aはその側面図、第5図すはその平面図である。Fig. 5a is a side view thereof, and Fig. 5a is a plan view thereof.

焦点距離の異なる主軸および副軸を有する光学素子20
0として、主軸および副軸に関連した焦点距離がそれぞ
れfl、f1’のアナモルフィック・レンズを考える。
Optical element 20 having major and minor axes with different focal lengths
0, consider an anamorphic lens with focal lengths fl and f1' associated with the major and minor axes, respectively.

前述した定義よりfl<f、’であるから f1´=f1+a1 (al>O)・・(1)とする。According to the above definition, fl<f,' f1'=f1+a1 (al>O) (1).

アナモルフィック・レンズ200の主軸を回転多面鏡3
00の回転軸320に直角になるようにし、アナモルフ
ィック・レンズ200と回転多面鏡300の反射鏡面3
10との距離をアナモルフィック・レンズ200の主軸
に関連した焦点距離f1に等しくなるように設定する。
The main axis of the anamorphic lens 200 is rotated by a polygon mirror 3.
The reflective mirror surface 3 of the anamorphic lens 200 and the rotating polygon mirror 300
10 is set equal to the focal length f1 relative to the principal axis of the anamorphic lens 200.

第5図aの側面図に描かれているように平行ビーム30
はアナモルフィック・レンズ200により回転多面鏡3
00の反射鏡面310上に集束される。
Parallel beam 30 as depicted in the side view of Figure 5a
is a rotating polygon mirror 3 using an anamorphic lens 200.
00 is focused onto the reflective mirror surface 310.

回転多面鏡により反射され偏向される光ビーム60は、
アナモルフィック・レンズ200を再び通過することに
よって平行光ビーム70となり、アナモルフィックな結
像レンズ400からその副軸に関連した焦点距離f2´
の距離にある像面上に光点90を結像する。
The light beam 60 reflected and deflected by the rotating polygon mirror is
By passing through the anamorphic lens 200 again, a parallel light beam 70 is formed and leaves the anamorphic imaging lens 400 with a focal length f2' related to its minor axis.
A light spot 90 is imaged onto the image plane at a distance of .

回転多面鏡に平行度誤差があって反射鏡面が310’の
ように傾いていても、反射された光ビーム60’はアナ
モルフィック・レンズ200を通過すると平行光ビーム
70′となり、これは光ビーム70とも平行であるので
像面上では光点90と同一位置に集束されて、回転多面
鏡の平行度誤差による走査線の走査方向と直角な方向の
偏倚が除去される。
Even if there is a parallelism error in the rotating polygon mirror and the reflecting mirror surface is tilted like 310', the reflected light beam 60' becomes a parallel light beam 70' when it passes through the anamorphic lens 200, which is a parallel light beam 70'. Since it is also parallel to the beam 70, it is focused on the same position as the light spot 90 on the image plane, and the deviation in the direction perpendicular to the scanning direction of the scanning line due to the parallelism error of the rotating polygon mirror is eliminated.

第5図すの平面図においては、平行光ビーム30はアナ
モルフィックレンズ200を通過してゆっくりと集束す
る光ビーム40となり、回転多面鏡によって反射され偏
向された光ビームは反射鏡面310からalなる距離に
集束される。
In the plan view of FIG. 5, the parallel light beam 30 passes through the anamorphic lens 200 and becomes the slowly converging light beam 40, and the light beam reflected and deflected by the rotating polygon mirror is reflected from the reflective mirror surface 310 into the al focused at a distance of

今、有効偏向角の両端における反射光ビームを60aお
よび60bとすれば、これらはそれぞれ点aおよびbに
集束する。
Now, if the reflected light beams at both ends of the effective deflection angle are 60a and 60b, they are focused on points a and b, respectively.

光ビーム60aおよび60bはアナモルフィック・レン
ズ200を通ると、それぞれ点aおよびbの虚像点a´
およびb′から発散する光ビーム70aおよび70bと
なる。
When light beams 60a and 60b pass through anamorphic lens 200, they form virtual image points a' at points a and b, respectively.
and b', resulting in light beams 70a and 70b that diverge.

虚像点a′およびb’の位置をアナモルフィック・レン
ズ200の前方a2の距離とすれば なる関係がある。
If the positions of virtual image points a' and b' are set to the distance a2 in front of the anamorphic lens 200, the following relationship holds.

光ビーム70aおよび70bは、アナモルフィックな結
像レンズ400の主軸に関連した焦点距離をf2とし、
アナモルフィック・レンズ200と結像レンズ400の
距離をa2′としたとき、 なる関係を満すように結像レンズ400の主軸および副
軸に関連した焦点距離f2.f2’を選ぶことによって
像面上に光点90aおよび90bを形成する。
Light beams 70a and 70b have a focal length f2 relative to the principal axis of anamorphic imaging lens 400;
When the distance between the anamorphic lens 200 and the imaging lens 400 is a2', the focal length f2. By selecting f2', light spots 90a and 90b are formed on the image plane.

この実施例では回転多面鏡300の回転方向330と像
面上の走査方向332とは逆向きになる。
In this embodiment, the rotation direction 330 of the rotating polygon mirror 300 and the scanning direction 332 on the image plane are opposite to each other.

第6図は焦点距離の異なる主軸および副軸を有する光学
素子として反射型の光学素子を用いた場合の光学系を示
しており、第6図aは放物筒鏡を用いる第5の実施例の
側面図で、第6図すは円筒鏡を用いる第6の実施例の側
面図である。
Fig. 6 shows an optical system using a reflective optical element as an optical element having a main axis and a sub-axis with different focal lengths, and Fig. 6a shows a fifth embodiment using a parabolic cylindrical mirror. FIG. 6 is a side view of a sixth embodiment using a cylindrical mirror.

第6図aにおいて平行光ビーム30を放物筒鏡200の
光軸に平行に入射させると放物筒鏡200から反射され
た光ビーム40はその焦点の位置に線像50を形成する
In FIG. 6a, when a parallel light beam 30 is made incident parallel to the optical axis of the parabolic tube mirror 200, the light beam 40 reflected from the parabolic tube mirror 200 forms a line image 50 at its focal point.

放物筒鏡200と回転多面鏡300の反射鏡面310と
の距離を放物筒鏡200の焦点距離f1になるように配
置すれば、反射鏡面310で反射された光ビーム60は
放物筒鏡200で反射されて再び放物筒鏡の光軸に平行
な平行光ビーム70となる。
If the distance between the parabolic tube mirror 200 and the reflecting mirror surface 310 of the rotating polygon mirror 300 is arranged so that the focal length f1 of the parabolic tube mirror 200 is reached, the light beam 60 reflected by the reflecting mirror surface 310 will be reflected by the parabolic tube mirror. 200 and becomes a parallel light beam 70 parallel to the optical axis of the parabolic tube mirror.

光ビーム70は結像レンズ400によりその焦点距離f
2の距離にある像面上に光点90を結像する。
The light beam 70 is passed through the imaging lens 400 to its focal length f
A light spot 90 is imaged onto the image plane at a distance of 2.

反射鏡面310に平行度誤差があってそこかり反射され
た光ビーム60′が光ビーム60とずれて生じても、放
物筒鏡で反射された光ビーム70´は光ビーム70と平
行な平行光ビームとなり、結像レンズ400によって像
面上の90の位置に光点を結像して回転多面鏡300の
平行度誤差による走査線の走査方向と直角方向の偏倚が
除去される。
Even if there is a parallelism error in the reflecting mirror surface 310 and the light beam 60' reflected there is shifted from the light beam 60, the light beam 70' reflected by the parabolic cylinder mirror is parallel to the light beam 70. The light beam becomes a light beam, and a light spot is imaged at a position 90 on the image plane by the imaging lens 400, thereby eliminating the deviation of the scanning line in the direction perpendicular to the scanning direction due to the parallelism error of the rotating polygon mirror 300.

この実施例では反射鏡面310への入射光ビーム40と
反鏡光ビーム60のなす角度αが大きくてもよい。
In this embodiment, the angle α between the incident light beam 40 and the reflected light beam 60 on the reflective mirror surface 310 may be large.

第6図すにおいて円筒鏡200と反射鏡面310との距
離を円筒鏡200の焦点距離へになるように配置すれば
第6図aで説明した放物筒鏡を用いた実施例の場合と同
様にして回転多面鏡の平行度誤差による走査線の走査方
向と直角方向の偏倚を除去することができる。
If the distance between the cylindrical mirror 200 and the reflecting mirror surface 310 in FIG. 6 is arranged so as to match the focal length of the cylindrical mirror 200, it will be the same as in the case of the embodiment using the parabolic cylindrical mirror explained in FIG. 6a. By doing so, it is possible to remove the deviation of the scanning line in the direction perpendicular to the scanning direction due to the parallelism error of the rotating polygon mirror.

この実施例では反射鏡面310へ入射する光ビーム40
と反射光ビーム60とのなす角αが小さくて、円筒鏡2
00の光軸近傍のみを利用することが必要である。
In this embodiment, the light beam 40 incident on the reflective mirror surface 310
Since the angle α between the cylindrical mirror 2 and the reflected light beam 60 is small, the cylindrical mirror 2
It is necessary to use only the vicinity of the optical axis of 00.

以上の説明においては本発明の光ビーム走査装置への入
射光ビームは平行な光ビームであるが、このような光ビ
ームは公知の各種の光源および光学系によって作成され
る。
In the above description, the light beam incident on the light beam scanning device of the present invention is a parallel light beam, but such a light beam is created by various known light sources and optical systems.

またこの入射光ビームは必ずしも平行な光ビームである
必要はない。
Further, this incident light beam does not necessarily have to be a parallel light beam.

たとえば平行な光ビームをはじめに焦点距離の異なる主
軸および副軸を有する光学素子に入射させる代りに、像
面上に光点を結像させるための結像光学系を通して前記
の光学素子に平行な光ビームが入るようにしてもよい。
For example, instead of starting a parallel beam of light into an optical element having major and minor axes of different focal lengths, the parallel beam of light passes through an imaging optics to form a spot on an image plane. It is also possible to allow a beam to enter.

そのためには任意の光ビームを結像光学系からその焦点
距離だけ離れた位置にその光ビームを収束させたのち結
像光学系を通すことによって平行な光ビームを前記の光
学素子へ入射させることができる。
To do this, an arbitrary light beam is converged at a position separated by its focal length from the imaging optical system, and then the parallel light beam is made incident on the optical element by passing it through the imaging optical system. I can do it.

また上記の光ビームの収束される位置は反射鏡を利用す
れば適当な位置にすることができる。
Further, the position where the light beam is converged can be adjusted to an appropriate position by using a reflecting mirror.

以上説明した6つの実施例によって明らかなように、本
発明によれば回転多面鏡に平行度誤差があっても走査線
の走査方向と直角な方向の偏倚を除去することができる
As is clear from the six embodiments described above, according to the present invention, even if there is a parallelism error in the rotating polygon mirror, the deviation in the direction perpendicular to the scanning direction of the scanning line can be removed.

しかも本発明では焦点距離の異なる主軸および副軸を有
する光学素子を1個だけ用いればよいので、光学系が簡
単化されると共に安価となる。
Moreover, in the present invention, only one optical element having a main axis and a sub-axis with different focal lengths needs to be used, so the optical system is simplified and inexpensive.

さらに特開昭48−49315号明細書に記載されてい
る2枚の円柱レンズを用いる装置では、2枚の円柱レン
ズのそれぞれを回転多面鏡の反射鏡面と関連して決めら
れる位置と方位に設置しなければならないのに対し、本
発明では焦点距離の異なる主軸および副軸を有する光学
素子1個だけを回転多面鏡の反射鏡面と関連して決めら
れる位置と方位に設置すればよく、光学系の設定が容易
になる。
Furthermore, in the device using two cylindrical lenses described in JP-A No. 48-49315, each of the two cylindrical lenses is installed at a position and orientation determined in relation to the reflecting surface of the rotating polygon mirror. In contrast, in the present invention, only one optical element having a main axis and a sub-axis with different focal lengths needs to be installed at a position and orientation determined in relation to the reflecting mirror surface of the rotating polygon mirror, and the optical system The settings become easier.

さらにまた特開昭48−49315号明細書に記載され
ている装置では回転多面鏡への入射光ビームが偏向され
る面と同一面内にあるために、入射光ビームの反射鏡面
に対する入射角を大きくとらなければならず、従って反
射鏡面によって入射角ビームがけられを受けやすいとい
う欠点があるが、本発明では回転多面鏡への入射光ビー
ムを偏向面と同一面内にとる必要がないので入射光ビー
ムの反射鏡面に対する入射角を小さくとることができ、
従って反射鏡面による入射光ビームのけられを小さくす
ることができる。
Furthermore, in the device described in JP-A-48-49315, since the incident light beam to the rotating polygon mirror is in the same plane as the deflecting plane, the angle of incidence of the incident light beam with respect to the reflecting mirror surface is However, in the present invention, the incident light beam to the rotating polygon mirror does not need to be in the same plane as the deflecting surface, so the incident angle beam is easily vignetted by the reflecting mirror surface. The angle of incidence of the light beam on the reflecting mirror surface can be made small,
Therefore, the vignetting of the incident light beam due to the reflective mirror surface can be reduced.

このことは同一の入射光ビーム径に対しては本発明を用
いた場合の方が有効偏向角を大きくすることができ、ま
た同一の有効偏向角に対しては本発明を用いた場合の方
が入射光ビーム径を大きくすることができるので像面で
の解像度を高くすることができる。
This means that for the same incident light beam diameter, the effective deflection angle can be made larger when using the present invention, and for the same effective deflection angle, when using the present invention, the effective deflection angle can be made larger. Since the diameter of the incident light beam can be increased, the resolution on the image plane can be increased.

以上述べたように本発明の光ビーム走査装置は従来のも
のよりも格段に改良されたものであり、その実用的価値
は極めて高いものである。
As described above, the light beam scanning device of the present invention is significantly improved over the conventional one, and its practical value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の光学系の配置図、第2
図aおよびbはそれぞれ本発明の第1の実施例での光ビ
ームの有様を示す側面図および平面図、第3図は本発明
の第2の実施例での光ビームの有様を示す側面図、第4
図は本発明の第3の実施例での光ビームの有様を示す側
面図、第5図aおよびbはそれぞれ本発明の第4の実施
例での光ビームの有様を示す側面図および平面図、第6
図aは本発明の第5の実施例での光ビームの有様を示す
側面図、第6図すは本発明の第6の実施例での光ビーム
の有様を示す側面図である。 100:光源装置、200:焦点距離の異なる主軸およ
び副軸を有する光学素子、300:回転多面鏡、400
:結像光学系。
FIG. 1 is a layout diagram of the optical system of the first embodiment of the present invention, and FIG.
Figures a and b are a side view and a plan view, respectively, showing the state of the light beam in the first embodiment of the present invention, and Figure 3 shows the state of the light beam in the second embodiment of the present invention. Side view, 4th
The figure is a side view showing the state of the light beam in the third embodiment of the present invention, and FIGS. 5a and 5b are side views showing the state of the light beam in the fourth embodiment of the invention. Plan, 6th
Figure a is a side view showing the state of the light beam in the fifth embodiment of the present invention, and Figure 6 is a side view showing the state of the light beam in the sixth embodiment of the present invention. 100: Light source device, 200: Optical element having a main axis and a sub-axis with different focal lengths, 300: Rotating polygon mirror, 400
: Imaging optical system.

Claims (1)

【特許請求の範囲】[Claims] 1 回転多面鏡、焦点距離が互に異なる主軸および副軸
を有する光学素子及び結像光学系を含む光ビーム走査装
置において、入射する光ビームを前記光学素子を介する
ことにより前記回転多面鏡の反射面上にその回転軸と垂
直な線像を形成せしめ、前記反射鏡面からの反射光ビー
ムを再び前記光学素子を介してから前記結像光学系によ
って走査面上に光点を結像せしめるようにそれぞれを配
置したことを特徴とする光ビーム走査装置。
1. In a light beam scanning device including a rotating polygon mirror, an optical element having a main axis and a minor axis with different focal lengths, and an imaging optical system, an incident light beam is reflected by the rotating polygon mirror by passing through the optical element. A line image perpendicular to the rotation axis is formed on the surface, and the reflected light beam from the reflecting mirror surface is passed through the optical element again, and then a light spot is imaged on the scanning surface by the imaging optical system. A light beam scanning device characterized in that each of these is arranged.
JP50124040A 1975-10-15 1975-10-15 Hikari Bee Mususasouchi Expired JPS588B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP50124040A JPS588B2 (en) 1975-10-15 1975-10-15 Hikari Bee Mususasouchi
US05/732,393 US4054361A (en) 1975-10-15 1976-10-14 Beam scanning device with line image formed by and reflected to optical element
GB42664/76A GB1562635A (en) 1975-10-15 1976-10-14 Beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50124040A JPS588B2 (en) 1975-10-15 1975-10-15 Hikari Bee Mususasouchi

Publications (2)

Publication Number Publication Date
JPS5248331A JPS5248331A (en) 1977-04-18
JPS588B2 true JPS588B2 (en) 1983-01-05

Family

ID=14875517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50124040A Expired JPS588B2 (en) 1975-10-15 1975-10-15 Hikari Bee Mususasouchi

Country Status (3)

Country Link
US (1) US4054361A (en)
JP (1) JPS588B2 (en)
GB (1) GB1562635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034915U (en) * 1983-08-17 1985-03-09 トヨタ車体株式会社 Ventilation system at the rear of the vehicle
JPH059210Y2 (en) * 1986-04-24 1993-03-08
US20180217544A1 (en) * 2017-01-30 2018-08-02 Kyocera Document Solutions Image forming apparatus detecting status of motor

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274703A (en) * 1977-08-01 1981-06-23 Xerox Corporation High-efficiency symmetrical scanning optics
JPS54111362A (en) * 1978-02-20 1979-08-31 Canon Inc Two-dimensional scanning optical system
JPS6052409B2 (en) * 1978-10-19 1985-11-19 富士写真フイルム株式会社 Light beam scanning device
US4284994A (en) * 1979-07-30 1981-08-18 Eikonix Corporation Laser beam recorder
EP0121593A3 (en) * 1980-04-11 1984-11-28 Coulter Systems Corporation Optical system for imaging an electrophotographic member
US4355860A (en) * 1980-09-29 1982-10-26 Xerox Corporation Double pass scanning system
US4397521A (en) * 1980-09-29 1983-08-09 Xerox Corporation Double pass optical system for raster scanners
GB2128765B (en) * 1982-10-16 1986-07-16 Ferranti Plc Scanning measurement system with a convecting element
JPS60233616A (en) * 1984-05-07 1985-11-20 Canon Inc Optical scanning device
US4630276A (en) * 1984-10-09 1986-12-16 Aeronca Electronics, Inc. Compact laser scanning system
US4643569A (en) * 1985-06-18 1987-02-17 Lincoln Laser Company Dual beam laser inspection apparatus
US5004311A (en) * 1989-10-27 1991-04-02 Sri International Beam scanning method and apparatus
US5742038A (en) 1990-09-28 1998-04-21 Symbol Technologies, Inc. Beam shaping for optical scanners
JP3170847B2 (en) * 1992-02-14 2001-05-28 キヤノン株式会社 Solid-state image sensor and optical device using the same
US5278691A (en) * 1992-06-24 1994-01-11 Eastman Kodak Company Symmetrical overfilled polygon laser scanner
JP3193546B2 (en) * 1993-01-14 2001-07-30 旭光学工業株式会社 Reflective scanning optical system
US5448364A (en) * 1993-03-22 1995-09-05 Estek Corporation Particle detection system with reflective line-to-spot collector
JP3335259B2 (en) * 1994-10-27 2002-10-15 旭光学工業株式会社 Reflective scanning optical device
US5936756A (en) * 1996-01-10 1999-08-10 Ricoh Company Ltd. Compact scanning optical system
US5959702A (en) * 1996-10-04 1999-09-28 Goodman; John Mott Lensless video projector
US6252715B1 (en) * 1997-03-13 2001-06-26 T. Squared G, Inc. Beam pattern contractor and focus element, method and apparatus
US5986792A (en) * 1998-02-03 1999-11-16 Farlight Corporation Lighting system sequencer and method
US6014272A (en) * 1998-05-22 2000-01-11 Eastman Kodak Company Retroreflective lens
US6556352B2 (en) * 2000-08-23 2003-04-29 Apollo Instruments Inc. Optical coupling system
US6462883B1 (en) * 2000-08-23 2002-10-08 Apollo Instruments Inc. Optical coupling systems
JP5259669B2 (en) * 2010-09-27 2013-08-07 株式会社日立ハイテクノロジーズ Defect inspection apparatus and defect inspection method
CN104062757B (en) * 2014-06-30 2016-04-13 太原理工大学 A kind of PHASE DISTRIBUTION method for designing for phased array multiple beam 3-D scanning

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3087987A (en) * 1960-02-15 1963-04-30 Dick Co Ab Scanner system
US3771850A (en) * 1971-08-04 1973-11-13 Ibm Scan angle multiplier of constant aperture
US3750189A (en) * 1971-10-18 1973-07-31 Ibm Light scanning and printing system
US3972583A (en) * 1972-01-25 1976-08-03 Redifon Limited Scanning devices
JPS4898844A (en) * 1972-03-29 1973-12-14
DE2306185A1 (en) * 1973-02-08 1974-08-15 Agfa Gevaert Ag METHOD AND DEVICE FOR COMPENSATING THE PYRAMID DEFECT OF A MIRROR WHEEL
JPS5845003B2 (en) * 1973-09-07 1983-10-06 富士写真フイルム株式会社 laser beam
US3873180A (en) * 1973-09-10 1975-03-25 Ampex Light beam scanning system with scan angle demagnification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034915U (en) * 1983-08-17 1985-03-09 トヨタ車体株式会社 Ventilation system at the rear of the vehicle
JPH059210Y2 (en) * 1986-04-24 1993-03-08
US20180217544A1 (en) * 2017-01-30 2018-08-02 Kyocera Document Solutions Image forming apparatus detecting status of motor

Also Published As

Publication number Publication date
JPS5248331A (en) 1977-04-18
US4054361A (en) 1977-10-18
GB1562635A (en) 1980-03-12

Similar Documents

Publication Publication Date Title
JPS588B2 (en) Hikari Bee Mususasouchi
US5585955A (en) Polygonal mirror optical scanning system
US3520586A (en) Entrant beam optical scanner
US5181137A (en) Light scanning apparatus
US4796961A (en) Multi-beam scanning optical system
US4123135A (en) Optical system for rotating mirror line scanning apparatus
JPS5820403B2 (en) Kaitentamenkiyouno Heikoudono Gosao Jiyokiyosuruhouhou
JPH0627904B2 (en) Laser beam scanning optics
EP0288970B1 (en) Optical system for flyingspot scanning system
JPS5845003B2 (en) laser beam
US4099829A (en) Flat field optical scanning system
US4796965A (en) Optical scanning device
JPS61296326A (en) Optical scanner
JP3198750B2 (en) Optical scanning device
KR20050110687A (en) Post-objective scanning device
JPS62278521A (en) Light beam scanning device
JP2970053B2 (en) Optical scanning device
JPH063616A (en) Polygon scanner
JPH0544646B2 (en)
JP2984018B2 (en) Horizontal synchronization detection optical system of scanning optical device
JP3206947B2 (en) Scanning optical device
JPH02105110A (en) Scanning method for plural beams
JPS61185717A (en) Optical beam scanner
JP2565944B2 (en) Optical scanning device
JPS5820405B2 (en) Hikari Bee Mususasouchi