JPS5889869A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5889869A
JPS5889869A JP56187631A JP18763181A JPS5889869A JP S5889869 A JPS5889869 A JP S5889869A JP 56187631 A JP56187631 A JP 56187631A JP 18763181 A JP18763181 A JP 18763181A JP S5889869 A JPS5889869 A JP S5889869A
Authority
JP
Japan
Prior art keywords
oxide film
film
gate
polysilicon
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56187631A
Other languages
Japanese (ja)
Other versions
JPS6312389B2 (en
Inventor
Jun Fukuchi
福地 順
Ichizo Kamei
亀井 市蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP56187631A priority Critical patent/JPS5889869A/en
Publication of JPS5889869A publication Critical patent/JPS5889869A/en
Publication of JPS6312389B2 publication Critical patent/JPS6312389B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To reduce the effect of the eaves of first polycrystal silicon, by forming a thick oxide film, with an oxide film an a part other than that directly below a first gate region remaining, ethcing away a first oxide film on an active region forming a second element, and forming a second gate oxide film and an interlayer insulating film. CONSTITUTION:The first gate oxide film 2 is formed on a P type substrate 1, and a first gate silicon film 3, wherein phosphorus is doped, is provided. Then oxidation is performed in a steam zone, and an oxide film 4 is formed. Thereafter the oxide film 4 is etched. With the oxide film 4 remaining only on the polycrystal silicon with a thickness of about 600Angstrom , oxidation is performed in the steam zone. The second gate oxide film 4' and the interlayer insulating film 4 are simultaneoualy formed. The second gate polycrystal silicon film 5 is further formed. The narrowed part 6 of the interlayer insulating film 4 is not observed in this embodiment.

Description

【発明の詳細な説明】 本発明は、2層ポリシリコン膜を有する半導体装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device having a two-layer polysilicon film.

CCDや高密度のダイチミックメモリー、スタティック
メモリー等の高密度集積回路では、2層−ポリシリコン
ゲー)MO8構造“が川伝られている。
In high-density integrated circuits such as CCDs, high-density dichroic memory, and static memory, the 2-layer polysilicon (MO8) structure is widely used.

これらの構造では、上記2つのポリシリコン導電膜の間
を絶縁する眉間絶縁膜を必要としている。
These structures require a glabella insulating film that insulates between the two polysilicon conductive films.

高密度9寸法縮小化を指向するvt、纏xの代表的な製
造工程では、この層間絶縁膜形歳には、例えば8 ’K
 Ia OC8(5elective 0xide C
oating ofSilicon gate の略称
)法が用いられている。この方法は被酸化シリコン表面
の不純物濃度の差によシ、酸化速度が異なることを利用
した膜厚の異なる酸化膜の同時形成線である。この5K
LOC8法を用いて、第1のゲート電極となるポリシリ
コン膜止め酸化膜(層間絶縁膜)と、基板シリコン表面
に設け゛る第2のゲート酸化膜とを同時に形成する。ポ
リシリコン上と基板シリコンの部分で不純物濃度が異な
る。例えばポリシリコンのリン濃度10” of’ 、
 基板f)yj−fy素濃度1o16aIrsトスると
、900℃で約i倍、800’Cで4倍、ポリシリコン
上の方が酸化速度が速い。しかし1000°C以上では
酸化速度の差はなくなる。この方法が2層ポリシリコン
ゲー)MO8構造を有するVLSIデバイスのポリシリ
コン膜電極間の容量を低減できかつデバイスの性能を向
上できる製造工程として用いられることが知られている
In the typical manufacturing process of VT, which aims for high-density 9-dimensional reduction, the interlayer insulating film shape is, for example, 8'K.
Ia OC8 (5elective Oxide C
A method (abbreviation for oating of Silicon gate) is used. This method utilizes the fact that oxidation rates differ due to differences in impurity concentration on the silicon surface to be oxidized, and oxide films of different thicknesses are simultaneously formed. This 5K
Using the LOC8 method, a polysilicon film stopper oxide film (interlayer insulating film) that will become the first gate electrode and a second gate oxide film provided on the silicon substrate surface are simultaneously formed. The impurity concentration differs between the polysilicon layer and the substrate silicon layer. For example, the phosphorus concentration of polysilicon is 10''of',
When the substrate f) yj-fy elemental concentration is 1o16aIrs, the oxidation rate on polysilicon is about i times faster at 900°C and 4 times faster at 800'C. However, above 1000°C, the difference in oxidation rate disappears. It is known that this method can be used as a manufacturing process that can reduce the capacitance between polysilicon membrane electrodes of a VLSI device having a two-layer polysilicon MO8 structure and improve the performance of the device.

以下従来例を第1図に従って説明する。P型(100)
12Ω−1の基板1上に500人の第1の酸化膜2を形
成し、この上に、リンをドープした(不純物濃度102
0clIr3)第1の所すシリコン膜3を4000人の
厚さに被着し、ついで、間膜3をフォトエツチングによ
りゲート部だけ残す。
A conventional example will be explained below with reference to FIG. P type (100)
A first oxide film 2 of 500 layers was formed on a substrate 1 of 12Ω-1, and phosphorus was doped thereon (impurity concentration 102
0clIr3) A first silicon film 3 is deposited to a thickness of 4,000 mm, and then the interlayer film 3 is photo-etched to leave only the gate portion.

次にNH4F : HF = 5 : 1のエツチング
液で、上記第1のゲートポリシリコン膜3直下の酸化膜
2のみを残し、それ以外の酸化膜をエツチング除去する
(第1図(a))。900’C水蒸気圏内で酸化して、
1000人の層間絶縁膜4と、500人の第2ゲート酸
化膜4′とを形成する。(第1図φ))そして、さらに
、リン−をドープした第2のポリシリコン膜6を上記層
間絶縁膜4および第2ゲート酸化4′上に被着して第1
ゲート電極3第2ゲート電極6の2層ゲート構造に形成
する。(1図(C))従来法の問題点は破線で囲った部
分6で示した層間絶縁膜のくびれ構造にある。このくび
れ部分6は第1のゲートポリシリコン電極膜3をマスク
として、第1ゲート領域以外の酸化膜2のエツチング除
去の際、第1ポリシリコンゲート3直下へのエツチング
の入シ込みがある″こと及びS X L OC84によ
る第1のゲートポリシリコン膜3のエッジエの反り上り
により、第1図で示すように、このポリシリコン膜3の
先端側壁の下方部分で、層間絶縁膜4が極端に薄くなっ
てくびれを生じ、それが絶縁耐圧の低下、さらにひどい
場合にはピンホールの発生による絶縁劣化を起すことが
あった。
Next, using an etching solution of NH4F:HF=5:1, only the oxide film 2 directly under the first gate polysilicon film 3 is left, and the other oxide films are removed by etching (FIG. 1(a)). Oxidizes in a 900'C water vapor sphere,
An interlayer insulating film 4 of 1000 layers and a second gate oxide film 4' of 500 layers are formed. (FIG. 1φ)) Then, a second polysilicon film 6 doped with phosphorus is deposited on the interlayer insulating film 4 and the second gate oxide 4', and the first
A gate electrode 3 and a second gate electrode 6 are formed in a two-layer gate structure. (FIG. 1(C)) The problem with the conventional method lies in the constricted structure of the interlayer insulating film shown by the portion 6 surrounded by a broken line. This constricted portion 6 is caused by etching intrusion directly under the first polysilicon gate 3 when the oxide film 2 in areas other than the first gate region is removed by etching using the first gate polysilicon electrode film 3 as a mask. As a result of this and the warpage of the edge of the first gate polysilicon film 3 due to the S The thinning caused constrictions, which lowered the dielectric strength and, in worse cases, caused pinholes to form, leading to insulation deterioration.

本発明の目的はこの欠点を解決する手攻を提供すること
である。本発明は上記ポリシリコンエツジ部酸化の際に
同時に形成される基板シリコンの酸化膜成長の影響で層
間絶縁膜にくびれのできることをできるだけ避けるため
、第1ゲート領域直下以外の酸化膜をも残したまま、第
1のゲートポリシリコン膜を酸化して、比較的厚い酸化
膜を形成した後、全面をエツチングし、第2の素子を形
成する活性領域上の第1の酸化膜をエツチング除去する
。このエツチングでは、ポリシリコン膜上と、それ以外
の部分の酸化膜厚の差が大きいので、第1の酸化膜を丁
度除去できるエツチング条件にしておけば、第1のゲー
ト部)ノシリコン膜上には十分な厚さの酸化膜を残すよ
うにエツチングできる。実験によると、ドープしたポリ
シリコン上に形成した熱酸化膜と基板シリコン上に形成
した熱酸化膜との各エツチング速度は、バッフアートフ
ッ酸液(NH4F:HF−=6=1)ノ液温20’Cに
おいて、ポリシリコン上熱酸化膜で、970人/分。
The aim of the invention is to provide a strategy to overcome this drawback. In the present invention, in order to avoid as much as possible the formation of constrictions in the interlayer insulating film due to the influence of the growth of the oxide film on the substrate silicon, which is simultaneously formed during the polysilicon edge oxidation, the oxide film is left in areas other than directly under the first gate region. After that, the first gate polysilicon film is oxidized to form a relatively thick oxide film, and then the entire surface is etched to remove the first oxide film on the active region where the second element is to be formed. In this etching, there is a large difference in the thickness of the oxide film on the polysilicon film and on the other parts, so if the etching conditions are set to just remove the first oxide film, the thickness of the oxide film on the polysilicon film (on the first gate part) will be removed. can be etched to leave a sufficiently thick oxide film. According to experiments, the etching rates of a thermal oxide film formed on doped polysilicon and a thermal oxide film formed on a substrate silicon depend on the solution temperature of a buffered hydrofluoric acid solution (NH4F:HF-=6=1). At 20'C, thermal oxide film on polysilicon, 970 people/min.

基板シリコン上で960人/分であり、顕著なエツチン
グ速度の差は認められなかった。このことから所望の膜
p1のポリシリコン上の酸化膜を残して、基板シリコン
上酸化膜を完全に除去することが可能でああという事実
が得られた。次に第2ゲーム酸化膜および層間絶縁膜を
形成することによって、第1ポリシリ−コンのひさしに
よる影響を少なくすることができる。また−第1ポリシ
リコン膜先端部で酸化膜を残して酸化することによシ、
酸化種(H2O)の基板シリコン面への拡散をおさえ、
基板シリコンの酸化を制限して、上記第1ポリシリコン
膜先端部での同ポリシリコンの反り上りを減少するとい
う効果力「ある。以下本発明の実施例について説明する
The etching rate was 960 etching per minute on the silicon substrate, and no significant difference in etching rate was observed. This has led to the fact that it is possible to completely remove the oxide film on the silicon substrate, leaving the oxide film on the polysilicon of the desired film p1. Next, by forming a second game oxide film and an interlayer insulating film, the influence of the first polysilicon canopy can be reduced. Furthermore, by oxidizing the first polysilicon film while leaving an oxide film at the tip,
Suppresses the diffusion of oxidizing species (H2O) to the silicon surface of the substrate,
There is an effect of limiting the oxidation of the silicon substrate and reducing the warpage of the polysilicon at the tip of the first polysilicon film.Examples of the present invention will be described below.

(実施例1) 第2(ffl(IL)〜(15)に製造工程順での半導
体装置の断面図を示す。たとえばP型(100)12Ω
−α基板1に第1ゲート酸化膜2をSOO人の厚さに形
成し、リンをドープした(不純物濃度10”CIr’)
 −第1のゲートポリシリコン膜3を設は兎(第2図(
a))。ツI/1で、800℃、H2: 02 = 1
.8 : 1.0で、水蒸気圏内で酸化し、酸化膜4を
形成する。
(Example 1) Sections 2 (ffl (IL) to (15)) show cross-sectional views of semiconductor devices in the order of manufacturing steps. For example, P type (100) 12Ω
-A first gate oxide film 2 was formed on the α substrate 1 to a thickness of SOO and doped with phosphorus (impurity concentration 10"CIr')
- The first gate polysilicon film 3 is formed (see Fig. 2).
a)). At TS I/1, 800℃, H2: 02 = 1
.. 8: At 1.0, it is oxidized in a water vapor atmosphere and an oxide film 4 is formed.

この場合、酸化膜厚は上記ポリシリコン膜3土で、17
00人、それ以外で1ooo人である(第2図(b))
。このとき、望ましい条件としては、ポリシリコン上に
酸化膜を残して、エツチングしなければならないため、
fきるだけこの酸化膜厚の差は大きい方が良い。次にn
J : HF = 5 : 1のエツチング液で酸化膜
4をエツチングし、ポリシリコン上のみ酸化膜4を約6
oo人の厚みに残す(第2図(C))。この場合、酸化
膜のエツチング速度は、前述のように、ポリシリコン上
あるいは。
In this case, the oxide film thickness is the above polysilicon film 3, 17
00 people, and 1ooo other people (Figure 2 (b))
. At this time, the desirable conditions are that the oxide film must be left on the polysilicon and etched.
It is better that the difference in oxide film thickness is as large as f. Then n
Etch the oxide film 4 with an etching solution of J: HF = 5:1, and remove the oxide film 4 only on the polysilicon to a thickness of about 6
Leave it to the thickness of oo person (Figure 2 (C)). In this case, the etching rate of the oxide film is higher than that on polysilicon or on polysilicon, as described above.

それ以外でも変わらない。900’C、H2: 02−
1、a : 1.Oで水蒸気圏内で酸化し、500人の
第2ゲート酸化膜4′と、1600人の層間絶縁膜4と
を同時に形成する(第2図(d))。さらに、第2のゲ
ートポリシリコン膜5を4000人の厚さに形成する(
第2図(e))。第1図、第2図を化量してわかるよう
に、第1図で示したような層間絶縁膜4のくびれ部分6
は第2図示の本実施例では観測されない。
Other than that, it doesn't change. 900'C, H2: 02-
1, a: 1. It is oxidized with O in a water vapor atmosphere to form a second gate oxide film 4' of 500 layers and an interlayer insulating film 4 of 1600 layers at the same time (FIG. 2(d)). Furthermore, a second gate polysilicon film 5 is formed to a thickness of 4000 nm (
Figure 2(e)). As can be seen by quantifying FIGS. 1 and 2, the constriction 6 of the interlayer insulating film 4 as shown in FIG.
is not observed in this embodiment shown in the second figure.

(実施例2) 層間絶縁膜の酸化条件としては、前述の如く一1oOo
′C以上では1sKLOO8法テノ酸化膜成長速度に顕
著な差がなくなるために一1000℃以度比の大きい、
実用的な温度範囲750〜860°Cが適切である。な
お、さきに示したようにポリシリコン上とそれ以外の部
分での酸化膜厚の差は大きくとらなければならない。プ
ロセスに余裕をもつためには酸化膜厚の差の大きいより
低温及び高水蒸気圧の条件が必要である。しかし低温に
なればなるほど成長速度がともに低下するので、酸化に
時間を要し実際的ではない。そのため高圧酸化法による
酸化を用い、少なくとも、その条件設定のための時間を
含めても3時間以内に所望の酸化膜が得られるようにし
た。
(Example 2) The oxidation conditions for the interlayer insulating film were as described above.
Since there is no significant difference in the growth rate of the teno oxide film using the 1s KLOO8 method at temperatures above 1000°C,
A practical temperature range of 750-860°C is suitable. As shown above, the difference in oxide film thickness between the polysilicon layer and the other portions must be large. In order to have margin in the process, conditions of lower temperature and higher water vapor pressure with a larger difference in oxide film thickness are required. However, as the temperature decreases, the growth rate also decreases, and oxidation takes time, which is impractical. Therefore, oxidation by high-pressure oxidation was used so that the desired oxide film could be obtained within at least three hours, including the time for setting the conditions.

、本実施例では、第2図(IL)〜(・)において、第
2図(a)は実施例1と同様にし、そ、の後の各工程に
したがい、まず、750’Cにおいて、水蒸気圧3.7
3kq/cdの気圏内でポリシリコン膜3上に2600
人、それ以外のところは1ooO人の酸化膜4を形成す
る(第2図(b))。次にNHaF: HF =5:1
のエツチング液で酸化膜4をエツチングし、ポリシリコ
ン膜3上に約1400人の酸化膜を残す(第2図(C)
)。以下実施例1と同様にして、第29べ一1′ ゲート酸化膜4′および厚い層間絶縁膜4を同時に形成
する(第2図(+1) 、 (e) )。ここで層間絶
縁膜4は2400人である。なお、ここでは一部の酸化
工程に高圧酸化法を用いた摂、時間が許せば、全ての酸
化工程に用いても同様の効果が得られる。
In this example, in FIGS. 2 (IL) to (・), FIG. Pressure 3.7
2600 on the polysilicon film 3 in the atmosphere of 3kq/cd
In the other areas, an oxide film 4 of 100 people is formed (FIG. 2(b)). Next, NHaF: HF = 5:1
The oxide film 4 is etched with an etching solution of about 1,400 mm, leaving an oxide film of about 1,400 layers on the polysilicon film 3 (Fig. 2 (C)).
). Thereafter, in the same manner as in Example 1, a gate oxide film 4' and a thick interlayer insulating film 4 are simultaneously formed on the 29th base 1' (FIGS. 2(+1) and (e)). Here, the thickness of the interlayer insulating film 4 is 2400. Note that although high-pressure oxidation is used for some of the oxidation steps here, the same effect can be obtained by using it for all of the oxidation steps if time permits.

本発明の上述の各実施例で得た半導体装置について、次
のような効果確認実験を行った0従来の5xLocs法
を用いた第1図(11)構造と本発明の工程に従って製
造した第2図−(6)の構造の測定試料ウエノ・をそれ
ぞれ3スライスずつ作った。
The following effect confirmation experiments were conducted on the semiconductor devices obtained in each of the above-described embodiments of the present invention. Three slices of each measurement sample Ueno having the structure shown in Figure-(6) were prepared.

このウェハは1−20チツプを含み、チップ中に上記構
造のものが4000個存在する。耐圧測定は各条件3ス
ライスから10チツプずつをまんべんなく選び(計30
点)、第1.第2ポリシリコンゲート電極間に電圧をか
けて、リーク電流が1μムに′なったときめ電圧値を耐
圧とした。また平均良品率は第1.第2ポリシリコンゲ
ート°電極間に±、16vの電圧をかけて、リーク電流
が±10nム以下のものを良品としてとり、各3スライ
ス、120チツプ測定によシ求めた。下表かられかる1
01・− ように本廃明の方法によるものは、従来法に比べて、耐
圧値のバラツキの減少が明らかであり、VLSI製造工
程へ応用して大きな効果を発揮できる。なお本発明実施
例ではポリシリコンゲートを用いたが、MoSi  ゲ
ートないしは、高融点金属硅化物を用いても良い。
This wafer contains 1-20 chips, and there are 4000 of the above structures in the chip. For pressure resistance measurements, 10 chips were evenly selected from 3 slices for each condition (30 chips in total).
point), 1st. A voltage was applied between the second polysilicon gate electrodes, and the voltage value when the leakage current reached 1 μm was determined as the withstand voltage. Also, the average non-defective product rate is 1st. A voltage of ±16 V was applied between the second polysilicon gate and the electrodes, and those with a leakage current of ±10 nm or less were considered good, and the measurements were performed on 3 slices each and 120 chips. Recipe 1 from the table below
01.-, the method according to the present invention clearly reduces the variation in breakdown voltage value compared to the conventional method, and can be applied to the VLSI manufacturing process with great effect. Although a polysilicon gate is used in the embodiment of the present invention, a MoSi gate or a high melting point metal silicide may also be used.

以上から本発明はCCD、メモリー等の2層ポリシリコ
ンゲート構造を用いたデバイスの歩留向上に大きく寄与
することがわかる。
From the above, it can be seen that the present invention greatly contributes to improving the yield of devices using a two-layer polysilicon gate structure such as CCDs and memories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(!L)〜(C)は従来例の断面図、第2図(a
) 〜(6)は本発明の一実施例を説明するための半導
体装置の断面図である。 1・・・・・・P型(100)12Ω−1シリコン基板
、2・・・・・・第1ゲート酸化膜、3・・・・・・第
1のゲートポリシリコン膜、4・・・・・・層間絶縁膜
、第2ゲート酸化膜、6・・・・・・第2のゲートポリ
シリコン膜、6・・・・・・層間絶縁膜のくびれ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 12図
Figures 1 (!L) to (C) are cross-sectional views of the conventional example, and Figure 2 (a)
) to (6) are cross-sectional views of a semiconductor device for explaining one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... P-type (100) 12Ω-1 silicon substrate, 2... First gate oxide film, 3... First gate polysilicon film, 4... ... interlayer insulating film, second gate oxide film, 6 ... second gate polysilicon film, 6 ... constriction of interlayer insulating film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)シリコ、ン基板の一生面に形成した第1の絶縁膜
上に不純物をドープしたポリシリコンあるいは高融点金
属硅化物から成る膜を第1ゲート電極に選択形成する工
程と、前記第1の絶縁膜を残置して、1000℃未満の
温度で熱酸化膜を上記第1ゲート電極上および上記第1
の絶縁膜上に形成する第1酸化工程と、前記残置した第
1の絶縁膜の所定領域の基板シリ゛コン面を露出して後
、この露出したシリコン基板面にふたた〜び第2の絶縁
膜を形成する第2酸化工程と、第2のゲート電極膜を被
!形成する工程とを含むことを特徴とする半導体装置の
製造方法。
(1) A step of selectively forming a film made of impurity-doped polysilicon or high melting point metal silicide as a first gate electrode on a first insulating film formed on the entire surface of a silicon substrate; A thermal oxide film is formed on the first gate electrode and the first gate electrode at a temperature of less than 1000° C., leaving an insulating film of
After the first oxidation step of forming on the insulating film and exposing the silicon surface of the substrate in a predetermined region of the remaining first insulating film, a second oxidation step is again performed on the exposed silicon substrate surface. A second oxidation step to form an insulating film and a second gate electrode film! 1. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
(2)酸化1桓を高圧酸化雰囲気で行うことを特徴とす
る特許請求範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the oxidation is performed in a high-pressure oxidizing atmosphere.
JP56187631A 1981-11-20 1981-11-20 Manufacture of semiconductor device Granted JPS5889869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56187631A JPS5889869A (en) 1981-11-20 1981-11-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187631A JPS5889869A (en) 1981-11-20 1981-11-20 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5889869A true JPS5889869A (en) 1983-05-28
JPS6312389B2 JPS6312389B2 (en) 1988-03-18

Family

ID=16209485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187631A Granted JPS5889869A (en) 1981-11-20 1981-11-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5889869A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198855A (en) * 1984-03-23 1985-10-08 Nec Corp Manufacture of semiconductor integrated circuit device
JPS615574A (en) * 1984-06-20 1986-01-11 Hitachi Micro Comput Eng Ltd Manufacture of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394780A (en) * 1977-01-14 1978-08-19 Hitachi Ltd Manufacture of semiconductor device
JPS558062A (en) * 1978-07-03 1980-01-21 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor
JPS5559778A (en) * 1978-10-30 1980-05-06 Chiyou Lsi Gijutsu Kenkyu Kumiai Method of fabricating semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5394780A (en) * 1977-01-14 1978-08-19 Hitachi Ltd Manufacture of semiconductor device
JPS558062A (en) * 1978-07-03 1980-01-21 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor
JPS5559778A (en) * 1978-10-30 1980-05-06 Chiyou Lsi Gijutsu Kenkyu Kumiai Method of fabricating semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198855A (en) * 1984-03-23 1985-10-08 Nec Corp Manufacture of semiconductor integrated circuit device
JPS615574A (en) * 1984-06-20 1986-01-11 Hitachi Micro Comput Eng Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS6312389B2 (en) 1988-03-18

Similar Documents

Publication Publication Date Title
JPS61142739A (en) Manufacture of semiconductor device
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JPS607389B2 (en) Manufacturing method of semiconductor device
KR900001652B1 (en) Semiconductor device and manufacturing method thereof
JPH0380338B2 (en)
JPS62113421A (en) Manufacture of semiconductor device
JPS6364057B2 (en)
JPS5889869A (en) Manufacture of semiconductor device
JPH0682652B2 (en) Method for forming silicon thermal oxide film
JPS58132950A (en) Manufacture of semiconductor device
JPS6178138A (en) Manufacture of semiconductor device
KR960006339B1 (en) Fabricating method of semiconductor device
JPS5892268A (en) Manufacture of semiconductor device
KR950013791B1 (en) Making method of gate electrode on the buried contact
JPS59189624A (en) Electrode formation of silicon semiconductor device
JPH03165515A (en) Contact forming method
JPH05868B2 (en)
JPH0324066B2 (en)
JPS60163466A (en) Manufacture of semiconductor device
JPS58106847A (en) Manufacture of semiconductor device
JPS63202956A (en) Manufacture of semiconductor integrated circuit
JPS59161071A (en) Manufacture of semiconductor device
JPS60101969A (en) Manufacture of semiconductor device
JPS5858814B2 (en) Manufacturing method of insulated gate semiconductor device
JPS62257761A (en) Manufacture of semiconductor integrated circuit