JPS5887649A - Artifact detector - Google Patents

Artifact detector

Info

Publication number
JPS5887649A
JPS5887649A JP56185411A JP18541181A JPS5887649A JP S5887649 A JPS5887649 A JP S5887649A JP 56185411 A JP56185411 A JP 56185411A JP 18541181 A JP18541181 A JP 18541181A JP S5887649 A JPS5887649 A JP S5887649A
Authority
JP
Japan
Prior art keywords
picture
white blood
controller
input
projection histogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56185411A
Other languages
Japanese (ja)
Inventor
Akihide Hashizume
明英 橋詰
Ryuichi Suzuki
隆一 鈴木
Jun Motoike
本池 順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56185411A priority Critical patent/JPS5887649A/en
Publication of JPS5887649A publication Critical patent/JPS5887649A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To improve the processing speed, by detecting the artifact at the stage of input of a picture, and transferring to the next objective processing without the characteristic pickup and discriminating processing at the input and succeeding steps. CONSTITUTION:A sample set on a microscope 31 is irradiated with a light source 32, the transmitted light is received at a photoelectric converter 33, a target like a white blood corpuscle is detected and focused with a microscope stage drive controller 34. Further, a picture to detect a white blood corpuscle is inputted from a photoelectric converter 35, the picture is converted into a digital picture at an A/D converter 36 and inputted to a one-frame memory 37. Simultaneously, the picture is applied to a maximum/minimum detection circuit 39 of a picture processor 38. A threshold value suitable for the detection of the nucleus of the white blood corpuscle is applied to a discrimination controller 42 at the device 38, the threshold value calculated at a controller 42 is applied to a binary circuit 40 and a projection histogram producing circuit 41 of the processor 38 to calculate a parameter defined with the controller 42, the parameter is applied to the controller 34 to detect the articraft at the stage of input.

Description

【発明の詳細な説明】 本発明a、血液像自動分析&亀のアーティファクト検出
に関するもので、特に、近接拳接触した複数個の白血球
(以下pluralと記す)をアーティファクトとして
検出するのに好適なアーティファクト愼出映諷に−する
DETAILED DESCRIPTION OF THE INVENTION The present invention a relates to automatic blood image analysis and turtle artifact detection, and is particularly suitable for detecting as an artifact a plurality of white blood cells (hereinafter referred to as plural) in close fist contact. To make an imitation of a movie.

本発明の目的は、白液像自動分析装置において、分析対
象でない白血球以外のアーティファクトとくにplur
al t−検出する袈11t−提供することにある。
An object of the present invention is to use an automatic white fluid image analyzer to detect artifacts other than white blood cells, which are not the target of analysis, especially plur.
alt-detecting robe 11t-to provide.

白血球とアーティファクト(plural 、血球のこ
われ、染色カス等)を識別する方法としては。
As a method to distinguish white blood cells from artifacts (plural, broken blood cells, staining scum, etc.).

白血球を特徴づけるパラメータ例えは核面積、核の平均
濃度、核胞体比等を用いて白血球の特徴空間上で両者を
区別する方法が考えられる。しかし。
A possible method is to distinguish between the two in the characteristic space of white blood cells using parameters that characterize white blood cells, such as nuclear area, average nuclear concentration, and nuclear cell ratio. but.

pluralは完全な形態を有する白血球が複数11!
Il近接して存在しているものでめシ、上記の特徴パラ
メータの抽出を待たずに、−1象人力の丸めの白血球の
位1t−求めるための情報から体のようにして検出が可
能である。すなわち、入力切り出し領域に対する白血球
の核部分の占める割合を考えれば、複数個の白血球が存
在する場合は、板面積の大きい白血球かfill存在す
る場合に収べて上記の割合か小さい。
Plural has multiple 11 white blood cells with perfect morphology!
If the number of white blood cells exists in close proximity to each other, it can be detected like a body without waiting for the extraction of the above feature parameters, from the information to find the number of white blood cells in a rounded number of -1 elephant human power. be. That is, considering the ratio of the nucleus of a white blood cell to the input extraction region, when a plurality of white blood cells are present, the above ratio is smaller than when a white blood cell with a large plate area or a fill is present.

位置を求めるための情報は1県1図に示すように、入力
画面1に存在する白血球の位置を求めるため、適当な濃
度レベルを設定して二値化した核バタン21に水平・垂
直方向に射影計数した射影ヒストグラム3.4から求め
られる。上記射影ヒストグラムにおいて、血小板等率さ
いものを除去するため計数閾値5を設定し、水平射影ヒ
ストグラムの最小直61最大ti?、画直射影ヒストグ
ラムの最小1118.を大1ik 9 t″求め、これ
から白血球の核がその内部に含まれる切p出し領域10
.および切シ出し領域10t−一定値分大きくして白血
球全体がその内部に含まれる入力領域11t−求める。
Information for determining the position is as shown in Figure 1 for each prefecture.In order to determine the position of the white blood cells present on the input screen 1, set an appropriate concentration level and apply the information to the binarized nuclear button 21 horizontally and vertically. It is obtained from the projection histogram 3.4 obtained by counting the projections. In the above projection histogram, a counting threshold value 5 is set in order to remove the platelet equal ratio particles, and the minimum straight line 61 maximum ti? of the horizontal projection histogram is set. , the minimum of the direct projection histogram is 1118. 1ik 9 t'' is calculated, and from this the cut out area 10 in which the nucleus of the white blood cell is contained is calculated.
.. Then, an input region 11t in which all the white blood cells are included is determined by enlarging the cutting region 10t by a certain value.

上記諸量から次のようにして5plural t−検出
・・・・・・ (1) ただし vpRJ(すI垂直射影ヒストグラム4HPR,J(j
):水平射影ヒストグラム3VMIN  !切シ出し領
域水平方向最大値8VMAX  :切シ出し領域撫直方
向最大1に9HMIN  S切り出し惟域水平方向厳小
値6HMAX  :切シ出し領域水平方向最大値7と定
義する。しかし、この充てん率は、儀数個の白血球の相
対位置により大きく変化するため、この相対位置を 射影領域縦横比: 籏わし、上記光てん率と射影領域縦横北上それぞれ縦・
横軸にとると、第2図に斜線で示すようなplural
 検出域21が求まる。これは、標本上のテンプリング
ピッチが0.25μmのときで。
From the above quantities, 5plural t-detection is performed as follows... (1) However, vpRJ(suI vertical projection histogram 4HPR,J(j
): Horizontal projection histogram 3VMIN! Cutting area horizontal maximum value 8VMAX: Cutting area horizontal direction maximum value 1 to 9HMINS Cutting area horizontal direction minimum value 6HMAX: Cutting area horizontal maximum value 7. However, this filling rate varies greatly depending on the relative position of the number of white blood cells, so this relative position is calculated as the projection area aspect ratio:
When taken on the horizontal axis, the plural
The detection area 21 is determined. This is when the template pitch on the specimen is 0.25 μm.

光てん率の定義式の分母が3600以上の白血球。White blood cells with a denominator of 3,600 or more in the photon ratio definition formula.

pluralについて1分布を求めた結末であり、ここ
に入ったものIplural として検出し、#、却す
る。
This is the result of finding one distribution for plural, and anything that enters here is detected as Iplural and # is rejected.

以下1本発明の一実施例f:第3図によシ説明する。顯
微鏡31にセットされた標本(図示せず)を光源32で
照射し、その透過光を前面に光学フィルタを肩する光篭
叢換執直33で受け、朧畝鏡ステージ駆# tfflJ
 # !直34で白血球らしきものを検出し、焦点合せ
全行なう、その恢、前面に光学フィルタを有する光電変
換装置35で白血球の位IIIを求めるための画像を入
力し、A/D変換器36でディジタル画像に変換した信
号を、lフレームメモリ37に入力する。メモリ37に
入力すると同時に画像処理113Bに含まれる濃度の最
大・最小検出回路39に上記信号を入力し1画像内の濃
度最小値・最大iiLをもとめ、これから白血球の核を
抽出するのに通し′fI−閣値を識別?fllj御装置
42で算出する。次に核を抽出する上記閾値を二値化回
路400基準値として設定し、メモリ37の画像を二値
化回路40に入力して、核の二値化パターンを求め、上
記二値化回路の出力管射影ヒスドグ2ム生成回441に
入力して、水平・珈直方向の射影ヒストグラムを出力す
る。上記射影セストゲ2ムを識別ItlJ# 装置に人
力し1式(1)、 (2)で定義されるパラメータを算
出し、白血球かpluralかの判定を行なう。plu
ral ならば、白血球の分類に必貴なtP!t41.
ハラメータの抽出処理をスキップして1次の対象をさが
すため顧倣鏡ステージ駆動制御装置1k34を介してス
テージを動かす。白血球として入力し九個数が一定1直
になるまで、この動作を繰返す訳でるる。
An embodiment f of the present invention will be described below with reference to FIG. A specimen (not shown) set in a mirror microscope 31 is irradiated with a light source 32, and the transmitted light is received by a light cage lens 33 which has an optical filter on the front.
#! Detect what appears to be white blood cells with a direct 34 and complete focusing. Then, a photoelectric conversion device 35 having an optical filter on the front side inputs an image for determining the white blood cell level III, and an A/D converter 36 converts the image into a digital image. The signal converted into an image is input to the l-frame memory 37. At the same time as the input to the memory 37, the above signal is input to the maximum/minimum concentration detection circuit 39 included in the image processing 113B to obtain the minimum and maximum concentration iiL within one image, and from this, the nuclei of white blood cells are extracted. fI-Identify the cabinet value? It is calculated by the fllj control device 42. Next, the threshold value for extracting the nucleus is set as the reference value of the binarization circuit 400, and the image in the memory 37 is input to the binarization circuit 40 to obtain the binarization pattern of the nucleus. It is input to the output tube projection histogram generation circuit 441 and outputs a projection histogram in the horizontal and vertical directions. The above-mentioned projection sest game is manually inputted into the identification ItlJ# device, the parameters defined by equations (1) and (2) are calculated, and it is determined whether it is a white blood cell or a plural cell. plu
If ral, tP is essential for classifying leukocytes! t41.
In order to skip the harameter extraction process and search for the primary object, the stage is moved via the copying mirror stage drive control device 1k34. This operation is repeated until the number of white blood cells is input as 9 and reaches a constant value of 1.

ここで、識別制御装置42としては小形計算機が考えら
れる。また、光電変換装[33は光電変換装[35で兼
用する構成、あるいはメモリ37を削除し、ステージを
止めて標本そのものの偉を必要回数入力する構成、ろる
いは−傷処理!&置38の徐耗を識別制御装置42で代
行する構成も考えられるが、いずれも処理速度の点から
良くない。
Here, a small computer can be considered as the identification control device 42. In addition, the photoelectric conversion device [33 can be used in combination with the photoelectric conversion device [35], or the memory 37 can be deleted, the stage can be stopped, and the quality of the specimen itself can be entered as many times as necessary. Although it is possible to consider a configuration in which the identification control device 42 takes over the wear and tear of the &

本夾施例によれは1画像の入力段階でアーティファクト
特にpluralの検出かでき、入力以降の%像抽出・
識別処理を行なうことなく1次の対象の処理に移れるた
め、逃埋速直の向上に効果がある。なお1本夾施例によ
シ、 pluralの約90%を検出することができた
According to this example, artifacts, especially plurals, can be detected at the input stage of one image, and % image extraction and
Since it is possible to move on to the processing of the primary object without performing identification processing, it is effective in improving the speed and accuracy of escape. In addition, in one example, about 90% of plural was able to be detected.

以上述べた如く本発明によれば1%徴抽出・繊別処理を
行なうことなく画像の入力段階でpi uralの検出
かで@、処理速芙向上の効果がある。
As described above, according to the present invention, the processing speed can be significantly improved by detecting pi ural at the image input stage without performing 1% feature extraction and classification processing.

【図面の簡単な説明】[Brief explanation of drawings]

弗1図は、白血球の1iilEi内位1ilLf:求め
るための諸量を示しfcIIk式図、第2図は、 pl
ural検出域を示した図、第3図は本発明の一実施例
を示すブロック図である。 l・・・画面全域、2・・・核二11に化バタン、3・
・・水平方向射影ヒストグラム、4・・・垂直方向射影
ヒストグラム、5・・・低頻度除外開直、6・・・切り
出し領域垂直方向最小値、7・・・切り出し領域水平方
向最大値。 8・・・切シ出し領域垂直方向最小値、9・・・切シ出
し領域垂直方向最大値、10・・・切り出し領域、11
・・・入力領域、21・・・plural検出域、31
・・・顕微鏡、32・・・光源、33・・・光電変AI
装置、34・・・幽&説ステージ駆動制##C11,3
5・・・光電変換装置。 36・・・A/Di換岳、37・・・lフレームやメモ
リ。 38・・・画像地理表置、39・・・最大・最小横出回
k。 40・・・二1区化回&、41・・・射影ヒストグラム
生成回路、42・・・識別twlJ#装置。 VJI   図 々71F ’vl 1へ映種比 第 3  図
Figure 1 shows the various quantities for determining the internal 1ilLf of leukocytes, and Figure 2 shows the fcIIk formula.
FIG. 3, which shows the ural detection area, is a block diagram showing an embodiment of the present invention. l...Entire screen, 2...Cut to nuclear 211, 3.
. . . Horizontal projection histogram, 4. Vertical projection histogram, 5. Low frequency exclusion aperture, 6. Minimum value in the vertical direction of the cutting area, 7. Maximum value in the horizontal direction of the cutting area. 8... Minimum value of cutting area in vertical direction, 9... Maximum value of cutting area in vertical direction, 10... Cutting area, 11
...input area, 21...plural detection area, 31
...Microscope, 32...Light source, 33...Photoelectric transformation AI
Device, 34...Yu & theory stage drive system ##C11,3
5...Photoelectric conversion device. 36... A/Di Kasegake, 37... l frame and memory. 38...Image geographic table location, 39...Maximum/minimum lateral rotation k. 40... 21 segmentation times &, 41... Projection histogram generation circuit, 42... Identification twlJ# device. VJI figure 71F 'vl 1 to image type ratio figure 3

Claims (1)

【特許請求の範囲】[Claims] 光’に変換手段によシ入力された画像の二値化画像を作
成する手段と、上記二櫨化画像の射影ヒストグラム金求
める手段と、上記射影ヒストグラムと所定のしきい11
kとを比較し、上記射影ヒストグラムの厳小櫃°敢大1
[t−算出する手段と、上記射影ヒストグラムと最小値
、最大値を用いて、上記最小111−最大値によって制
限された領域内に存在する対象の占める割合と上記領域
の縦横比とを算出する手段とを具備し、この算出手段の
出力を用いて上記入力画像内に複数1−近接・接触して
存在する対象を検出することを特徴とするアーティファ
クト検出装置。
means for creating a binarized image of the image inputted by the converting means into light, means for obtaining a projection histogram of the binarized image, and a means for determining the projection histogram and a predetermined threshold
k, and the above projection histogram is
[Using the t-calculating means, the projection histogram, the minimum value, and the maximum value, calculate the proportion occupied by the object existing within the area limited by the minimum 111-maximum value and the aspect ratio of the area. 1. An artifact detection device, comprising: means for detecting a plurality of objects that are present in close proximity or contact in the input image using the output of the calculation means.
JP56185411A 1981-11-20 1981-11-20 Artifact detector Pending JPS5887649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56185411A JPS5887649A (en) 1981-11-20 1981-11-20 Artifact detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56185411A JPS5887649A (en) 1981-11-20 1981-11-20 Artifact detector

Publications (1)

Publication Number Publication Date
JPS5887649A true JPS5887649A (en) 1983-05-25

Family

ID=16170313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56185411A Pending JPS5887649A (en) 1981-11-20 1981-11-20 Artifact detector

Country Status (1)

Country Link
JP (1) JPS5887649A (en)

Similar Documents

Publication Publication Date Title
JP3215175B2 (en) Particle analyzer
CA1161271A (en) Method and apparatus for measuring mean cell volume of red blood cells
JP6197659B2 (en) Detection control device, program, and detection system
JP2874008B2 (en) Particle aggregation pattern judgment device
US4175859A (en) Apparatus for automated classification of white blood cells
JP2014044050A (en) Image processing device, program, and image processing system
JP2013196682A (en) Group-of-people detection method and group-of-people detector
JPH10506462A (en) Method and apparatus for detecting inappropriate conditions for automated cytological scoring
CN105241811A (en) Multilevel focusing automatic image acquisition method and system thereof
US20220383629A1 (en) Label-free cell classification and screening system based on hybrid transfer learning
JPS5887649A (en) Artifact detector
JP3165429B2 (en) Aggregation image judgment method
JPH10302067A (en) Pattern recognition device
KR101963514B1 (en) Apparatus and method for classifying object based on hierarchical structure of image data features
JPS5830049B2 (en) Automatic reticulocyte measurement device
JP2599942B2 (en) Reticulocyte counter
Liu et al. Detection and Classification of Malaria Parasite Based on Improved YOLOv5 Model
JPH0443311B2 (en)
JPH11306362A (en) Image analyzing device
JPS5815737B2 (en) Cybo Shinsouchi
US20240037967A1 (en) Blood analyser with out-of-focus image plane analysis and related methods
JPH0125104B2 (en)
Woods et al. A cue generator for crack detection
JP2011122998A (en) Surface defect inspection method of disk and inspection device
JP2908245B2 (en) Object identification device