JPS5887273A - Parts having ceramic coated layer and their production - Google Patents

Parts having ceramic coated layer and their production

Info

Publication number
JPS5887273A
JPS5887273A JP56183784A JP18378481A JPS5887273A JP S5887273 A JPS5887273 A JP S5887273A JP 56183784 A JP56183784 A JP 56183784A JP 18378481 A JP18378481 A JP 18378481A JP S5887273 A JPS5887273 A JP S5887273A
Authority
JP
Japan
Prior art keywords
coating layer
ceramic
component
alloy
ceramic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56183784A
Other languages
Japanese (ja)
Other versions
JPH0251978B2 (en
Inventor
Yoshiaki Kojima
児島 慶亨
Tsukasa Ogawa
宰 小川
Naotatsu Asahi
朝日 直達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56183784A priority Critical patent/JPS5887273A/en
Publication of JPS5887273A publication Critical patent/JPS5887273A/en
Publication of JPH0251978B2 publication Critical patent/JPH0251978B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce heat resistant parts having a corrosion resistant and heat resistant protecting covering, by melt spraying an Ni-base alloy contg. Cr, etc. on a heat resistant metallic material constituting said parts, and further forming a ceramic layer having fine cracks thereon. CONSTITUTION:Base materials of gas turbine parts constituted of heat resistant metallic materials are preheated to 700-1,200 deg.C surface temp. thereof and the powder of an alloy consisting of an Ni-based alloy contg. Cr and >=1 kind among Al, Y and Si and having higher temp. corrosion resistance than that of said heat resistant matallic materials is melt sprayed on the surfaces of said parts in a low oxygen partial pressure atmosphere of about <=10<-3> Torr whereby coating layers are formed. Ceramic powder contg. ZrO2 and >=1 kind among CaO, MgO and Y2O3 is melt sprayed in the same low oxygen partial pressure atmosphere as that mentioned above to form ceramic coating layers thereon, and is then cooled quickly, whereby cracks of 1-50mum width are formed at 10- 500mum intervals. It is effective for improving adhesiveness of the alloy layers and the ceramic layers to add 3-30wt% Zr to said Ni-base alloy.

Description

【発明の詳細な説明】 本発明はセラミック被覆層を有する部品及びその製造法
に係シ、特に耐食性並びに耐熱性保護被覆を施されたガ
スタービン部品及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a component having a ceramic coating layer and a method for manufacturing the same, and more particularly to a gas turbine component provided with a corrosion-resistant and heat-resistant protective coating and a method for manufacturing the same.

ガスタービンは、高温で稼動されるほど高い効率を発揮
するので、その稼動温度の上昇を絶えず希求されている
。そのことは、高温ガス流にさらされる部品に、それに
対応できる耐熱性と耐食性をそなえることを要求する。
Gas turbines exhibit higher efficiency as they are operated at higher temperatures, so there is a constant desire to increase the operating temperature. This requires that components exposed to high-temperature gas flows have corresponding heat resistance and corrosion resistance.

炭化ケイ素、サーメット等耐熱性の良いセラミックや複
合材料には。
For ceramics and composite materials with good heat resistance such as silicon carbide and cermet.

製造法や強度等になお問題があるので、現状では、ガス
タービン部品は金属材料を基本に製造されている。しか
し、ニッケル基、コバルト基などの耐熱性材料は、その
使用を100OC以下に限定される。それ故、それらが
ガスタービン部品に適用されるに当っては、冷却あるい
は熱遮蔽する方法が種々検討されて、きた。
Since there are still problems with manufacturing methods, strength, etc., gas turbine parts are currently manufactured primarily from metal materials. However, the use of heat-resistant materials such as nickel-based and cobalt-based materials is limited to 100 OC or less. Therefore, various methods for cooling or thermally shielding gas turbine components have been investigated when they are applied to gas turbine components.

熱遮蔽は主に1部品本体の金属材(以下母材と称する)
の表面にセラミック層を形成することによって行なわれ
、セラミックの低い熱伝導率と高いふく対車とによって
、部品の温度を低減する上で有効であった。ただ、この
ような被覆層は熱サイクルの反復等によって、使用中母
材から剥離しその機能を失う傾向があった。それ故、剥
離の主因である金属とセラミックの膨張係数の相違に基
づく熱応力を緩和するために、金属母材とセラミック層
との中間に両者を混合ないし複合してなる層を設け(例
えば特開昭55−113880など)、あるいはセラミ
ック層に、高温、長時間の熱処理によって微細な割れを
形成させ(例えば特開昭56−54905)た部品など
、種々の提案がなされている。それらはそれぞれ改善さ
れてはいるが、熱サイクル試験の成績からその程度は限
定されたもので、一層の寿命向上をはかることが必要で
あると認められた。
Heat shielding is mainly made of metal material (hereinafter referred to as base material) as a single component body.
This was done by forming a ceramic layer on the surface of the ceramic, and was effective in reducing the temperature of the component due to the low thermal conductivity and high resistance to heat of the ceramic. However, such coating layers tend to peel off from the base material during use and lose their functionality due to repeated thermal cycles. Therefore, in order to alleviate the thermal stress caused by the difference in expansion coefficients between metal and ceramic, which is the main cause of peeling, a layer made of a mixture or composite of the metal base material and the ceramic layer is provided between the metal base material and the ceramic layer (for example, Various proposals have been made, such as parts in which fine cracks are formed in a ceramic layer by heat treatment at high temperature and for a long time (for example, Japanese Patent Application Laid-Open No. 56-54905). Although each of these has been improved, the results of thermal cycle tests have shown that the extent of the improvement has been limited, and it has been recognized that it is necessary to further improve the lifespan.

本発明は、このような状況に対応すべく被覆の構成や処
理過程を詳しく検討した成果であって、延長された寿命
を有する耐熱、耐食性被覆を施されたガスタービン部品
を提供することを目的としている。         
      横1−.9その特徴は、耐熱金属材料で構
成されたIごタービン部品において、その表面に設けら
れた前記耐熱金属材料より高温耐食性に富む金属被覆層
の上に、微細な割れを有するセラミック被覆層が形成さ
れていることである。
The present invention is the result of a detailed study of the structure and treatment process of the coating in order to respond to such situations, and the purpose of the present invention is to provide a gas turbine component coated with a heat-resistant and corrosion-resistant coating that has an extended lifespan. It is said that
Horizontal 1-. 9 The feature is that in turbine parts made of heat-resistant metal materials, a ceramic coating layer with fine cracks is formed on the metal coating layer that has higher high-temperature corrosion resistance than the heat-resistant metal material provided on the surface. This is what is being done.

本発明においては、耐熱材料(母材)の表面に、使用雰
囲気下において該母材よりも耐食性に富んでいる合金被
覆層が設けられている。
In the present invention, the surface of the heat-resistant material (base material) is provided with an alloy coating layer that has higher corrosion resistance than the base material in the use atmosphere.

その形成に当っては、該合金の粉末を、酸素分圧10−
3トール以下に制御された雰囲気の中で、予熱された母
材にプラズマ溶射する方法によるのが適当である。雰囲
気中の酸素分圧を制限することによって、溶射の際該合
金層に生じやすい酸化皮膜等による欠陥を、最少限に抑
制することができる。また、予熱によって溶射中の母材
の表面温、度を約700〜1200tT程度に保持する
ことが好ましく、それによって空孔等の少ない稠密な合
金被覆層の形成が可能となる。その結果得られた被覆層
は、高温腐食等の作用から母材を保護するとともに、セ
ラミック被覆層の下地としての重要な役割を担うことが
できる。なお、予熱温度が低すぎれば溶射粒子は急冷さ
れるため欠陥の多い被覆層が形成され、また上記より高
くすることは母材や被覆層の変形などを生ずるので、好
ましくないことは言うまでもない。
For its formation, powder of the alloy is heated to an oxygen partial pressure of 10-
It is appropriate to use a method of plasma spraying onto a preheated base material in an atmosphere controlled to 3 Torr or less. By limiting the oxygen partial pressure in the atmosphere, defects caused by oxide films and the like that are likely to occur in the alloy layer during thermal spraying can be suppressed to a minimum. Further, it is preferable to maintain the surface temperature of the base material during thermal spraying at about 700 to 1200 tT by preheating, thereby making it possible to form a dense alloy coating layer with few pores. The resulting coating layer protects the base material from effects such as high-temperature corrosion, and can play an important role as a base for the ceramic coating layer. It goes without saying that if the preheating temperature is too low, the sprayed particles will be rapidly cooled, resulting in the formation of a coating layer with many defects, and if the preheating temperature is too high, it will cause deformation of the base material and the coating layer, so it goes without saying that this is not preferable.

金属被覆層は公知の組成を使用でき、例えばニッケルに
クロム、アルミニウム、イツトリウムおよびケイ素から
なる群から選ばれた少なくとも1種の元素を含む合金が
有用である。さらに、合金にジルコニウムを3〜30重
量%の範囲で含有させることは、該合金被覆層とその上
に綬けられるセラミック被覆層との密着力を高めるので
、好ましい。ジルコニウム含有量の効果を高めるには3
〜30重量%が望ましい。このジルコニウムの添加効果
は、ジルコニウムの酸化物生成の自由エネルギーが著し
く小さいので、合金およびセラミック被覆形成の際、低
酸素分圧下においてごく薄い酸化膜を生じ、セラミック
層に対する合金膜の整合性釜高めることによるように推
定される。
A known composition can be used for the metal coating layer. For example, an alloy containing nickel and at least one element selected from the group consisting of chromium, aluminum, yttrium, and silicon is useful. Furthermore, it is preferable that the alloy contains zirconium in a range of 3 to 30% by weight, since this increases the adhesion between the alloy coating layer and the ceramic coating layer placed thereon. To enhance the effect of zirconium content 3
~30% by weight is desirable. The effect of adding zirconium is that the free energy of zirconium to form oxides is extremely small, so when forming alloys and ceramic coatings, a very thin oxide film is formed under low oxygen partial pressure, which improves the consistency of the alloy film with the ceramic layer. It is estimated that this may be the case.

本発明においては、前記耐食性合金層の上に、微細な割
れを、有するセラミック被覆層が設けられている。該層
は、先ず、酸素分圧10−3)−ル以下に制御された゛
雰囲気中で、表面温度が該セラミックの畳結晶化温度以
上でしかも母材および被覆層の合金それぞれの融点より
も低い温度であるように熱せられた前記合金で被覆され
た母材上に、セラミック粒子を溶射することによってそ
れを被覆し、次いで、該被覆層の表面に冷媒を吹きつけ
てそれを急冷させ割れを生じさせることによって形成さ
れる。
In the present invention, a ceramic coating layer having fine cracks is provided on the corrosion-resistant alloy layer. The layer is first formed in an atmosphere controlled to have an oxygen partial pressure of 10-3) or less, and the surface temperature is higher than the crystallization temperature of the ceramic and lower than the respective melting points of the base material and the alloy of the coating layer. The ceramic particles are coated by thermal spraying onto the base material coated with the alloy heated to a temperature of formed by causing

雰囲気中の酸素分圧が10−3トールより高いときには
、合金層は、表面の酸化を防止し、母材からの剥離を防
止し、母材との整合性を得るには10””)−ル以下の
酸素分圧で溶射するのがよい。
When the oxygen partial pressure in the atmosphere is higher than 10-3 Torr, the alloy layer should be 10"" to prevent surface oxidation, prevent delamination from the base material, and obtain consistency with the base material. It is best to spray at an oxygen partial pressure of less than 100 ml.

酸素分圧が10 ”3トール以下に制御された雰囲気中
では、合金層中の例えばアルミニウム、イツトリウム、
チタンなど酸化物生成の自由エネルギーが著しく小さな
元素の酸化は起り得るけれども、その酸化層は極めて薄
い′ので合金層と母材との整合性が損われることはなく
、一方1合金層のセラミック層との整合性には好影響を
もたらす。
In an atmosphere where the oxygen partial pressure is controlled to 10"3 Torr or less, aluminum, yttrium,
Although oxidation of elements such as titanium, which have extremely low free energy of oxide formation, can occur, the oxidation layer is so thin that the integrity of the alloy layer and the base material is not compromised; on the other hand, the ceramic layer of one alloy layer This has a positive impact on consistency with

、 また、溶射時に、母材の表面温度を前記のような範
囲に維持することによって、溶射されたセラミック粒子
は、合金層に到達しても、従来法におけるように急に低
い温度になることなく、延長された時間の間該表面にお
いて液相ないし軟化状態にあり、草の上に溶射粒子が逐
次衝突し集積され′る。従って、粒子相互間に不連続境
界あるいは空孔などは生じに<<、その結果として稠密
1強固なセラミック被覆層が合金被覆層の上に形成され
る。また、仮に該層内に、一般的な溶射層に特有な積層
状組織が一部生じても、本発明の条件下では再結晶化に
よって減少もしくはほとんど消失する。
In addition, by maintaining the surface temperature of the base material within the above range during thermal spraying, the temperature of the sprayed ceramic particles does not suddenly drop to a low temperature even when they reach the alloy layer, unlike in conventional methods. Instead, it remains in a liquid or softened state on the surface for an extended period of time, and the spray particles successively impinge and accumulate on the grass. Therefore, no discontinuous boundaries or voids occur between the particles, and as a result, a dense and strong ceramic coating layer is formed on the alloy coating layer. Further, even if a part of the laminated structure peculiar to a general thermal sprayed layer occurs in the layer, it is reduced or almost disappears by recrystallization under the conditions of the present invention.

本発明において、セラミックは公知の材料でよく、例え
ばジルコニアと、酸化カルシウム、マグネン乙イツトリ
アからなる群から選ばれた1種以上の散化物とを含む材
料などが有用である。
In the present invention, the ceramic may be a known material, such as a material containing zirconia and one or more dispersants selected from the group consisting of calcium oxide and magnene nitria.

セラミック被覆層の厚さは約1〜350μm程度でよい
。熱遮蔽の効果を得るためには、少なくとも厚さ1μm
以上とすることが望ましい。また。
The thickness of the ceramic coating layer may be approximately 1 to 350 μm. In order to obtain the effect of heat shielding, the thickness must be at least 1 μm.
It is desirable to set the above. Also.

350μ晶以上に厚くなると、冷媒噴射によってセラミ
ック層が十分急速に冷却されないので、生ずる割れは幅
1間隔ともに大きなものとなり、熱応力の緩和に役立つ
微細な割れを形成させることができない。
When the thickness exceeds 350μ, the ceramic layer is not cooled quickly enough by the coolant injection, so the cracks that occur become large in both width intervals, making it impossible to form fine cracks that are useful for alleviating thermal stress.

さて、所望の厚さに形成され前記温度になお熱せられた
状態にあるセラミック被覆層表面に、冷媒が吹きつけら
れて該被覆層を急冷する。
Now, a refrigerant is blown onto the surface of the ceramic coating layer, which has been formed to a desired thickness and is still heated to the above temperature, to rapidly cool the coating layer.

冷媒としてはアルゴン、ヘリウム、窒素などの不活性ガ
スが使用される。それらの噴射による急冷の結果、セラ
ミック被覆層には、第1図に示されるように、該層の厚
さ方向にほぼ直線状に成長した微細な割れが生ずる。そ
の割れの幅および間隔は、層厚のほか冷却条件に依存し
、任意に調整されることができる。熱応力を十分に緩和
するためには、割れの幅9間隔ともに小さいことが望ま
しい。具体的には、割れの幅1〜50μm1間隔10〜
500μm程度にすることによって、従来法よりかなり
すぐれた成績が得られることが、熱サイクル試験によっ
て判明した。そして、本発明によれば幅1〜5μmの割
れを間隔10〜50μmで形成することも可能である。
Inert gases such as argon, helium, and nitrogen are used as refrigerants. As a result of the rapid cooling by these jets, fine cracks are generated in the ceramic coating layer that grow approximately linearly in the thickness direction of the layer, as shown in FIG. The width and spacing of the cracks depend on the layer thickness as well as the cooling conditions, and can be adjusted as desired. In order to sufficiently alleviate thermal stress, it is desirable that both crack widths and intervals are small. Specifically, the crack width is 1 to 50 μm, and the interval is 10 to 50 μm.
A thermal cycle test revealed that by setting the thickness to about 500 μm, considerably better results than the conventional method could be obtained. According to the present invention, it is also possible to form cracks with a width of 1 to 5 μm at intervals of 10 to 50 μm.

これは、セラミック被覆層が稠密で強度にすぐれ、しか
も、下地の稠密で強固な合金被覆層によく密着している
ことによる。もし、両層間の接着が弱ければ急冷時に層
間剥離し、また、セラミック層に内部欠陥があっても急
冷時にはそれが障害となって、何れにせよ好ましい効果
的割れは形成されない。
This is because the ceramic coating layer is dense and has excellent strength, and also adheres well to the underlying dense and strong alloy coating layer. If the adhesion between the two layers is weak, delamination will occur during quenching, and if there are internal defects in the ceramic layer, they will become a hindrance during quenching, and in any case, the desired effective cracks will not form.

なお、セラミック被覆層の割れ部位以外の部分は、割れ
の発生後もその特長を保持している。従って、本発明の
セラミック被覆層は長期にわたって熱遮蔽の役をはだし
、その下の耐食性合金被覆層と相まって、例えばライナ
ー、トラジションビース、ノズル、ブレードなど高温に
さらされるガスタービン部品の寿命を延長することがで
きる。
Note that the parts of the ceramic coating layer other than the cracked part retain their characteristics even after the cracking occurs. Therefore, the ceramic coating layer of the present invention provides a long-term thermal shielding role and, in combination with the underlying corrosion-resistant alloy coating layer, extends the lifespan of gas turbine components exposed to high temperatures, such as liners, transition beads, nozzles, and blades. Can be extended.

実施例1 ニッケル基耐熱合金鋼からなるガスタービン部品の表面
を清浄化し、該表面をアルミナ製グリッドを用いてプラ
スチングした。それから、排気装置を具備した密閉器内
で、雰囲気中の酸素分圧を10−3トール以下に制御し
つつ、表面温度700〜1200Cにあるよう予熱され
た部品に%Ni−50重量%、Cr−12重量%A1合
金粉末をプラズマ溶射した。酸素分圧の制御のため、溶
射に先立ち、容器を10′″2〜10″′3トールに排
気し、その後アルゴンを760トールになるまで導入す
る操作を数回〈シ返して、酸素分圧全io−’!−−ル
以下にした。さらに、溶射中は排気装置を運転し、容器
内圧力を100〜150トールに保持した。酸素分圧は
、固体電解質を用いた酸素センサーによって測った。
Example 1 The surface of a gas turbine component made of nickel-based heat-resistant alloy steel was cleaned, and the surface was plasted using an alumina grid. Then, in a closed chamber equipped with an exhaust system, while controlling the oxygen partial pressure in the atmosphere to below 10-3 Torr, parts were preheated to have a surface temperature of 700 to 1200 C, %Ni-50% by weight, Cr. -12% by weight A1 alloy powder was plasma sprayed. In order to control the oxygen partial pressure, prior to thermal spraying, the vessel was evacuated to 10'''2 to 10'''3 Torr, and then argon was introduced until the pressure reached 760 Torr. All io-'! --I made it below 1. Furthermore, during thermal spraying, an exhaust system was operated to maintain the pressure inside the container at 100 to 150 Torr. Oxygen partial pressure was measured by an oxygen sensor using a solid electrolyte.

また、部品の表面予熱は補助加熱装置もしくはプラズマ
ジェットにより、その温度は、放射率を補正した光高温
計で測定した。
Further, the surface of the component was preheated using an auxiliary heating device or a plasma jet, and the temperature was measured using an optical pyrometer corrected for emissivity.

上記の条件で、約50μm厚の合金層を、部品表面に均
一に被覆した。次いで、前記と同様の条件で、ZrO2
−12重量%Y 20 s粉末を、合金層の表面温度7
00〜120Orに保たれた部品に溶射し、約10μm
厚のセラミック層を被覆した。
Under the above conditions, an approximately 50 μm thick alloy layer was uniformly coated on the part surface. Next, under the same conditions as above, ZrO2
-12 wt% Y20s powder was added to the alloy layer at a surface temperature of 7.
Thermal spraying is carried out on parts maintained at 00 to 120 Or, approximately 10 μm.
Coated with a thick ceramic layer.

溶射終了後、直ちに該部品のセラミック層表面にアルゴ
ンを吹きつけて、セラミック層のみを急冷させ、該層に
割れを発生させた。その後、部品全体を自然放冷させた
。走査型電子顕微鏡により観察したところ、幅1〜5μ
mの割れが間隔10〜50μmの範囲で−1に生じてい
た。その割れは、第1図のようにセラミック層の厚さ方
向にほぼ直線的に成長しており、大部分が該層の下部に
達していた。該部品に熱サイクル試験を課したところ、
表の成績を得た。熱サイクル試験条件は次のとおりであ
る。加熱時の温度は900Cで冷却時は室温で加熱時間
は5分間、冷却速度は70tl?/秒の熱サイクルであ
る。扁2は溶射終了後のセラミック層表面の冷却条件を
変えた場合の結果で、A1に比べ冷却用アルゴンガス量
が1/2である。
Immediately after the thermal spraying was completed, argon was blown onto the surface of the ceramic layer of the part to rapidly cool only the ceramic layer, causing cracks to occur in the layer. Thereafter, the entire part was allowed to cool naturally. When observed with a scanning electron microscope, the width was 1 to 5 μm.
-1 cracks occurred at intervals of 10 to 50 μm. As shown in FIG. 1, the cracks grew almost linearly in the thickness direction of the ceramic layer, and most of them reached the bottom of the layer. When the part was subjected to a thermal cycle test,
I got the grade on the table. The thermal cycle test conditions are as follows. Temperature during heating is 900C, cooling time is at room temperature, heating time is 5 minutes, cooling rate is 70tl? /second thermal cycle. Flat 2 shows the result when the cooling conditions of the ceramic layer surface after thermal spraying are changed, and the amount of cooling argon gas is 1/2 compared to A1.

冷却速度を直接測定することは困難で−あるが、冷却時
間から求めた計算では約1O−3r/秒程度と推察され
うる。なお、屋3は公知(例えば特開昭56−5490
5 )の方法で行なった場合に比べ、本発明の方法によ
る部品においては約10倍から100倍以上の熱サイク
ルに対する長寿命化の結果が得られた。
Although it is difficult to directly measure the cooling rate, it can be estimated to be about 10-3 r/sec based on calculations from the cooling time. Incidentally, Ya 3 is known (for example, Japanese Patent Application Laid-Open No. 56-5490)
5) Compared to the case of using the method of 5), the parts obtained by the method of the present invention have a lifespan of about 10 to 100 times longer with respect to thermal cycles.

(○損傷なし ×剥離) 実施例2 実施例1と同様の溶射条件でNi−50重量%。(○No damage x peeling) Example 2 Ni-50% by weight under the same thermal spraying conditions as in Example 1.

Cr−12重量%A、、e合金にzrを加えた合金を溶
射し、次にZrO212重量%Y’203を実施例1と
同様の方法で溶射した。zr量を種々変化させた場合の
試験片について金属合金溶射層、ZrO2−12重量%
YtOs溶射層の密着力について調べた。密着力の評価
は直径30mm、長さ50胴の円。
An alloy obtained by adding Zr to a Cr-12% by weight A, e alloy was thermally sprayed, and then ZrO2 and 12% by weight Y'203 were thermally sprayed in the same manner as in Example 1. Metal alloy sprayed layer, ZrO2-12% by weight for test pieces with various Zr amounts
The adhesion of the YtOs sprayed layer was investigated. The adhesion strength was evaluated using a circle with a diameter of 30 mm and a length of 50 mm.

柱状試料の円形端面に上記溶射層を形成し、その上に接
着剤を用いて同じ寸法の円柱状試料(溶射層なし)を接
着し、それらを引張り、破断強度から溶射層の密着力を
求めた。破断はいずれも金属合金層とZ’Oz  12
重量%Y2O3溶射層の境界部分であった。
Form the sprayed layer on the circular end face of the columnar sample, adhere a columnar sample of the same size (without the sprayed layer) on top of it using an adhesive, pull it, and determine the adhesion of the sprayed layer from the breaking strength. Ta. Both fractures occurred in the metal alloy layer and Z'Oz 12
% by weight at the boundary between the Y2O3 sprayed layers.

その結果は、第1図に示すとおりで、ジルコニウムを3
重量%桿度以上含有させることによって、密着力を2倍
ないしそれ以上に高めることができることが判明した。
The results are shown in Figure 1.
It has been found that the adhesion can be doubled or more by containing more than % by weight of rod.

父、実施例1と同様の熱サイクル試験の結果、実施例1
とほぼ同等もしくはそれ以上の良好な結果が得られた。
Father, results of heat cycle test similar to Example 1, Example 1
Results were obtained that were almost the same or better.

なお、本発明において実施例1および2で用いたN i
−50重量’/n、Cr−12重量%A−e。
In addition, in the present invention, N i used in Examples 1 and 2
-50 wt'/n, Cr-12 wt% Ae.

ZrO,−12重量%Y2O3に特に限定されることは
ない。
It is not particularly limited to ZrO, -12% by weight Y2O3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガおタービン部品の模式的部分断面図
であり、第2図は合金層のジルコニウム含量と合金層・
セラミック層間の密着力との関係を示す。 l・・・セラミック層、2・・・割れ%3・・・合金層
、4・・・¥2 1ト量
FIG. 1 is a schematic partial sectional view of the gas turbine component of the present invention, and FIG. 2 shows the zirconium content of the alloy layer and the alloy layer.
The relationship with the adhesion between ceramic layers is shown. l...Ceramic layer, 2...Crack %3...Alloy layer, 4...¥2 1 ton quantity

Claims (1)

【特許請求の範囲】 1、耐熱金属材料で構成された部品において、該部品は
その表面に設けられた前記耐熱金属材料より高温耐食性
に富む金属被覆1及び該被覆層上に形成された微細な割
れを有するセラミック被覆とを有することを特徴とする
セラミック被覆層を有する部品。 2、前記金属被覆層は、クロムと、アルミニウム。 イツトリウムおよびケイ素からなる群から選ばれた少な
くとも1種とを含有するNi基合金からなる特許請求の
範囲第1項記載のセラミック被覆層を有する部品。 3、前記Ni基合金がジルコニウムを3〜30重量%含
有する特許請求の範囲第2項記載のセラミック被覆層を
有する部品。 4、前記セラミック被覆層は幅1〜50μmの割れが間
隔10〜500μmで形成されている特許請求の範囲第
1項、第2項もしくは第3項に記載のセラミック被覆層
を有する部品。 5、前記セラミック被覆層はジルコニアと、酸化カルシ
6ム、マグネシアおよびイツトリアからなる群から選ば
れた少なくとも1種とを含有する特許請求の範囲第1項
ないし第4項のいずれかに記載のセラミック被覆層を有
する部品。 6、前記部品は高温燃焼ガスにさらされるガスタービン
構成部品である特許請求の範囲第1項〜第5項のいずれ
かに記載のセラミック層を有する部品。 7、耐熱金属材料から構成された赤≠≠=−半部品の製
造法において、 (a)  前記耐熱金属材料より高温耐食性に富む合金
粉末を、低酸素分圧雰囲気中で、前記部品の表面に溶射
し被覆する工程、 (b)  セラミック粉末を、低酸素分圧雰囲気中で前
記金属被覆層の表面に溶射する工程。 および (C)  前記セラミック被覆層を形成後急袷すること
により該層に微細な割れを形成する工程。 を包含することを特徴とするセラミック被覆層を有する
#≠≠!零ネ部品の製造方法。 8、前記工程(a)において部品が、表面温度で700
〜1200rに予熱されている特許請求の範囲第7項記
載のセラミック被覆層を有する部品の一製造方法。 9、 前記工程(b)において部品が、セラミックの再
結晶化温度よりも高く、該耐熱材料および合金のそれぞ
れの融点以下の表面温度に予熱されている特許請求の範
囲第7項もしくは第8項記載のセラミック被覆層を有す
る部品の製造方法。 10、前記部品は高温燃焼ガスにさらされるガスタービ
ン構成部品である特許請求の範囲第7項〜第
[Claims] 1. A component made of a heat-resistant metal material, which has a metal coating 1 provided on its surface that has higher high-temperature corrosion resistance than the heat-resistant metal material, and a fine microstructure formed on the coating layer. 1. A component having a ceramic coating layer, characterized in that it has a ceramic coating layer having cracks. 2. The metal coating layer is made of chromium and aluminum. A component having a ceramic coating layer according to claim 1, which is made of a Ni-based alloy containing at least one member selected from the group consisting of yttrium and silicon. 3. A component having a ceramic coating layer according to claim 2, wherein the Ni-based alloy contains 3 to 30% by weight of zirconium. 4. A component having a ceramic coating layer according to claim 1, 2 or 3, wherein cracks with a width of 1 to 50 μm are formed at intervals of 10 to 500 μm in the ceramic coating layer. 5. The ceramic according to any one of claims 1 to 4, wherein the ceramic coating layer contains zirconia and at least one member selected from the group consisting of calcium oxide, magnesia, and ittria. Parts with a coating layer. 6. The component having a ceramic layer according to any one of claims 1 to 5, wherein the component is a gas turbine component exposed to high temperature combustion gas. 7. In a method for manufacturing a red≠≠=- half part made of a heat-resistant metal material, (a) an alloy powder having higher high-temperature corrosion resistance than the heat-resistant metal material is applied to the surface of the part in a low oxygen partial pressure atmosphere. (b) spraying ceramic powder onto the surface of the metal coating layer in a low oxygen partial pressure atmosphere; and (C) a step of forming fine cracks in the ceramic coating layer by steepening the layer after forming it. #≠≠! Manufacturing method for zero parts. 8. In step (a), the part has a surface temperature of 700
A method for manufacturing a component having a ceramic coating layer according to claim 7, wherein the component is preheated to ~1200 r. 9. In the step (b), the component is preheated to a surface temperature higher than the recrystallization temperature of the ceramic and lower than the respective melting points of the heat-resistant material and alloy. A method for manufacturing a component having a ceramic coating layer as described. 10. Claims 7 to 10, wherein the component is a gas turbine component exposed to high-temperature combustion gas.
JP56183784A 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production Granted JPS5887273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56183784A JPS5887273A (en) 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56183784A JPS5887273A (en) 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production

Publications (2)

Publication Number Publication Date
JPS5887273A true JPS5887273A (en) 1983-05-25
JPH0251978B2 JPH0251978B2 (en) 1990-11-09

Family

ID=16141872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56183784A Granted JPS5887273A (en) 1981-11-18 1981-11-18 Parts having ceramic coated layer and their production

Country Status (1)

Country Link
JP (1) JPS5887273A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204382A (en) * 1985-03-07 1986-09-10 Nissei Plastics Ind Co Tie-bar for mold opening and shutting device
JPS6473063A (en) * 1987-09-14 1989-03-17 Babcock Hitachi Kk Thermal spraying method
US4882109A (en) * 1985-08-02 1989-11-21 Ngk Insulators, Ltd. Process of preparing zirconia-coated silicon nitride sintered member
US5032557A (en) * 1990-07-02 1991-07-16 Tocalo Co., Ltd. Thermal spray material and and thermal sprayed member using the same
JPH03223455A (en) * 1990-01-29 1991-10-02 Sugitani Kinzoku Kogyo Kk Ceramic thermal spraying material
US5082741A (en) * 1990-07-02 1992-01-21 Tocalo Co., Ltd. Thermal spray material and thermal sprayed member using the same
JPH04131363A (en) * 1990-09-20 1992-05-06 Japan Atom Energy Res Inst Plasma-sprayed film
DE4433514A1 (en) * 1993-09-20 1995-03-23 Hitachi Ltd Self-regenerable coating material and process for its preparation
JPH11158599A (en) * 1997-10-02 1999-06-15 Mtu Motoren & Turbinen Union Muenchen Gmbh Heat insulating layer and its production
JPH11222661A (en) * 1997-11-18 1999-08-17 Sermatech Internatl Inc Strain-allowable ceramic coating
JPH11229108A (en) * 1997-12-19 1999-08-24 United Technol Corp <Utc> Method for applying sprayed coating and blade of gas turbine engine formed by this method
JPH11229109A (en) * 1997-12-19 1999-08-24 United Technol Corp <Utc> Heat resistant top coat and coating system
JP2003138368A (en) * 2001-07-31 2003-05-14 General Electric Co <Ge> Thermal barrier coating
JP2006097042A (en) * 2004-09-28 2006-04-13 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine
JP2006144061A (en) * 2004-11-18 2006-06-08 Toshiba Corp Thermal barrier coating member, and its forming method
JP2007039808A (en) * 2005-08-04 2007-02-15 United Technol Corp <Utc> Method of forming segmented ceramic spray coating on substrate, and apparatus for applying segmented ceramic coating
JP2008095193A (en) * 2006-10-05 2008-04-24 United Technol Corp <Utc> Segmented abradable coating and process for applying the same
US7449251B2 (en) 2003-12-18 2008-11-11 Hitachi, Ltd. Heat resistant article having thermal barrier coating
JP2009299192A (en) * 2009-09-24 2009-12-24 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine
JP2012018928A (en) * 1999-12-10 2012-01-26 Tokyo Electron Ltd Processing unit, corrosion resistant member and method of manufacturing corrosion resistant member
US8586169B2 (en) 2006-03-31 2013-11-19 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155255A (en) * 1991-12-03 1993-06-22 Nissan Motor Co Ltd Mounting structure for automotive engine
JP6083710B2 (en) * 2011-10-26 2017-02-22 株式会社ディ・ビー・シー・システム研究所 Method for producing heat-resistant alloy member

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204382A (en) * 1985-03-07 1986-09-10 Nissei Plastics Ind Co Tie-bar for mold opening and shutting device
JPH041076B2 (en) * 1985-03-07 1992-01-09 Nissei Plastics Ind Co
US4882109A (en) * 1985-08-02 1989-11-21 Ngk Insulators, Ltd. Process of preparing zirconia-coated silicon nitride sintered member
JPS6473063A (en) * 1987-09-14 1989-03-17 Babcock Hitachi Kk Thermal spraying method
JPH03223455A (en) * 1990-01-29 1991-10-02 Sugitani Kinzoku Kogyo Kk Ceramic thermal spraying material
US5032557A (en) * 1990-07-02 1991-07-16 Tocalo Co., Ltd. Thermal spray material and and thermal sprayed member using the same
US5082741A (en) * 1990-07-02 1992-01-21 Tocalo Co., Ltd. Thermal spray material and thermal sprayed member using the same
JPH04131363A (en) * 1990-09-20 1992-05-06 Japan Atom Energy Res Inst Plasma-sprayed film
DE4433514A1 (en) * 1993-09-20 1995-03-23 Hitachi Ltd Self-regenerable coating material and process for its preparation
JPH11158599A (en) * 1997-10-02 1999-06-15 Mtu Motoren & Turbinen Union Muenchen Gmbh Heat insulating layer and its production
JPH11222661A (en) * 1997-11-18 1999-08-17 Sermatech Internatl Inc Strain-allowable ceramic coating
JPH11229109A (en) * 1997-12-19 1999-08-24 United Technol Corp <Utc> Heat resistant top coat and coating system
JPH11229108A (en) * 1997-12-19 1999-08-24 United Technol Corp <Utc> Method for applying sprayed coating and blade of gas turbine engine formed by this method
JP2012018928A (en) * 1999-12-10 2012-01-26 Tokyo Electron Ltd Processing unit, corrosion resistant member and method of manufacturing corrosion resistant member
JP2003138368A (en) * 2001-07-31 2003-05-14 General Electric Co <Ge> Thermal barrier coating
US7449251B2 (en) 2003-12-18 2008-11-11 Hitachi, Ltd. Heat resistant article having thermal barrier coating
JP4607530B2 (en) * 2004-09-28 2011-01-05 株式会社日立製作所 Heat resistant member having a thermal barrier coating and gas turbine
US7901790B2 (en) 2004-09-28 2011-03-08 Hitachi, Ltd. High temperature component with thermal barrier coating and gas turbine using the same
JP2006097042A (en) * 2004-09-28 2006-04-13 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine
JP4568094B2 (en) * 2004-11-18 2010-10-27 株式会社東芝 Thermal barrier coating member and method for forming the same
JP2006144061A (en) * 2004-11-18 2006-06-08 Toshiba Corp Thermal barrier coating member, and its forming method
JP2007039808A (en) * 2005-08-04 2007-02-15 United Technol Corp <Utc> Method of forming segmented ceramic spray coating on substrate, and apparatus for applying segmented ceramic coating
US8586169B2 (en) 2006-03-31 2013-11-19 Mitsubishi Heavy Industries, Ltd. Thermal barrier coating member, method for producing the same, thermal barrier coating material, gas turbine, and sintered body
JP2008095193A (en) * 2006-10-05 2008-04-24 United Technol Corp <Utc> Segmented abradable coating and process for applying the same
US8007899B2 (en) 2006-10-05 2011-08-30 United Technologies Corporation Segmented abradable coatings and process(es) for applying the same
JP2009299192A (en) * 2009-09-24 2009-12-24 Hitachi Ltd Heat resistant member having thermal barrier coating and gas turbine

Also Published As

Publication number Publication date
JPH0251978B2 (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JPS5887273A (en) Parts having ceramic coated layer and their production
Di Girolamo et al. Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings
US4861618A (en) Thermal barrier coating system
EP1995350B1 (en) High temperature component with thermal barrier coating
US5391404A (en) Plasma sprayed mullite coatings on silicon-base ceramics
US7998601B2 (en) Sandwich thermal insulation layer system and method for production
US4457948A (en) Quench-cracked ceramic thermal barrier coatings
JPH10507230A (en) Protective layer for protecting members against corrosion, oxidation and thermal overload, and method of manufacturing the same
JP2002167636A (en) Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat
WO1999018259A1 (en) Thermal barrier coating with alumina bond inhibitor
JP2002180270A (en) Method for thermal insulation of metallic base material
Sun et al. The spalling modes and degradation mechanism of ZrO 2-8 wt.% Y 2 O 3/CVD-Al 2 O 3/Ni-22Cr-10Al-1Y thermal-barrier coatings
JPS5989745A (en) Metal coating composition for high temperature
JPS63118059A (en) Adiabatic coating method and gas turbine combustor
JP3700766B2 (en) Thermal barrier coating member and thermal spraying powder
JPS641551B2 (en)
JP2001288554A (en) Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method
JPH06306640A (en) High temperature exposure material
Zhang et al. Thermal shock resistance of thermal barrier coatings modified by selective laser remelting and alloying techniques
WO1992005298A1 (en) Columnar ceramic thermal barrier coating with improved adherence
JPS61174385A (en) Ceramic-coated fire resistant member and its production
JP3413096B2 (en) Heat resistant member and method of manufacturing the same
JPS62210329A (en) Ceramic coated heat-resistant material and manufacture thereof
JPH07292453A (en) Heat shielding coating method for preventing high temperature oxidation
JPS62211387A (en) Production of ceramic coated heat resistant member