JPS5881356A - Error control system - Google Patents

Error control system

Info

Publication number
JPS5881356A
JPS5881356A JP17900181A JP17900181A JPS5881356A JP S5881356 A JPS5881356 A JP S5881356A JP 17900181 A JP17900181 A JP 17900181A JP 17900181 A JP17900181 A JP 17900181A JP S5881356 A JPS5881356 A JP S5881356A
Authority
JP
Japan
Prior art keywords
error
remainder
pattern
block
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17900181A
Other languages
Japanese (ja)
Other versions
JPH0312500B2 (en
Inventor
Hideo Kobayashi
英雄 小林
Hidetaka Yanagidaira
柳平 英孝
Kazuo Kawai
一夫 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP17900181A priority Critical patent/JPS5881356A/en
Publication of JPS5881356A publication Critical patent/JPS5881356A/en
Publication of JPH0312500B2 publication Critical patent/JPH0312500B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

PURPOSE:To perform not only error detection, but also error correction of an error-detected frame, by using information before a decision on a received signal, i.e. analog weight, by adding a simple circuit to an ARQ demodulator and an error detector. CONSTITUTION:A demodulator 51 strictly discriminates a received signal and also extracts the analog weight of every element. The extracted analog weight is applied to an analog weight storage part 52 to store the increasing-order number of pieces of analog weight information and current reception decision results. On the basis of the reception decision result of an element with small analog weight, an error pattern estimating device 53 estimates an error bit pattern. A remainder arithmetic device 54 divides the polynominal of the obtained bit error pattern by a generating polynominal G(x) to find a current remainder. A remainder pattern composing device 55 composes a remainder by using said remainder. A deciding device 59 finds a pattern with a remainder 0 in the sum of the remainder of the composing device 55 and that of the remainder arithmetic device 57 and when the pattern with a remainder 0 is not found, a request to resend is sent to a transmission side through a line 602.

Description

【発明の詳細な説明】 本発明は、データ伝送回線での誤り制御方式に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an error control method in a data transmission line.

データ伝送では、信頼度の高い情報を能率的に伝送する
ため、回線雑音などの通信路上の妨害によって生じる誤
りから情報を守る必要がある。このためデータ通信シス
テムでは、何らかの形で必ず誤り制御を行っている。誤
り制御の方法としては、自動再送要求方式(ARQ)や
単方向誤り訂正方式(FBC)などがある。
In data transmission, in order to efficiently transmit highly reliable information, it is necessary to protect the information from errors caused by interference on the communication path, such as line noise. For this reason, data communication systems always perform some form of error control. Error control methods include automatic repeat request (ARQ) and unidirectional error correction (FBC).

現在広く利用されているものは、ARQ方式である。こ
れは、装置化が容易であること、及びFECなどに比べ
信頼性も圧倒的に優れているなどの点からである。
The ARQ method is currently widely used. This is because it is easy to implement and has overwhelmingly superior reliability compared to FEC and the like.

しかし、ARQ方式は、1フレームの中に1ピツトでも
誤りが発生すると1フレームすべてを再送しなげればな
らなく、比効率的であるという欠点を有する。この欠点
を補うため従来から、受信側で誤り訂正できる誤りはす
べて訂正し、訂正できない誤りのみ送信側から再送して
もらおうという、ARQ方式とFEC方式の中間に位置
するノ・イプリッード方式が提案されている。しかしな
がら、ハイブリッド方式での誤り検出能力は、検出に専
念する符号と比べると劣り、しかも誤り訂正する機能が
付加されるために装置のハードウェアも複雑になるとい
う□欠点があった。
However, the ARQ method has the disadvantage that if even one pit error occurs in one frame, the entire frame must be retransmitted, and is therefore inefficient. To compensate for this drawback, a no-implied method has been proposed, which is located between the ARQ method and the FEC method, in which all errors that can be corrected are corrected on the receiving side, and only errors that cannot be corrected are retransmitted by the transmitting side. has been done. However, the error detection ability of the hybrid system is inferior to that of codes dedicated to detection, and furthermore, the addition of an error correction function has the disadvantage of complicating the hardware of the device.

また、現在広く使用されているPSK方式やQAM方式
などのディジタル変復調方式では、復調器の長期安定度
と高品質な位相修正ループを持たせるために入力データ
情報を差動符号化している。差動符号化を行うと、1エ
レメントの誤りは2エレメントの誤りに波及することか
ら、たとえグレイ符号化をほどこしたとしても最低2ピ
ツトの誤りが発生する。従って、1フレーム内の1エレ
メントの誤りは2ビツト、12エレメントの誤りは4ビ
ツトの誤りとなり、誤り訂正機能とじてFEC方式やハ
イブリッド方式を適用しようとした場合、誤り訂正能力
のすぐれた符号化を行わなければならな駒、このため復
号器の規模は非常に複線化することになる。
Furthermore, in digital modulation and demodulation systems such as the PSK system and the QAM system that are currently widely used, input data information is differentially encoded in order to provide long-term stability of the demodulator and a high-quality phase correction loop. When differential encoding is performed, an error in one element spreads to an error in two elements, so even if Gray encoding is applied, at least two pit errors will occur. Therefore, an error of 1 element in one frame becomes a 2-bit error, and an error of 12 elements becomes a 4-bit error.When trying to apply the FEC method or hybrid method as an error correction function, it is necessary to use coding with excellent error correction ability. Therefore, the scale of the decoder becomes extremely multi-wire.

本発明は、上述した従来技術の欠点を解決するものであ
り、従来のARQ方式で用いている復調器に簡単な周辺
回路を付加して、従来の誤り検出能力の他に、誤り訂正
能力を持たせることが可能となる誤り制御方式を提供す
ることを目的としている。
The present invention solves the above-mentioned drawbacks of the prior art, and adds a simple peripheral circuit to the demodulator used in the conventional ARQ system, thereby adding error correction capability in addition to the conventional error detection capability. The purpose of this study is to provide an error control method that allows

この目的を達成するための本発明の特徴は、受信信号を
復調する際に受信信号の復号前のアナログ情報を少な(
とも1ブロック分記憶し、前記誤りを検出したブロック
に対しては、該ブロックに対応する前記アナログ情報を
用いて誤りビットノ(ターンを推定し、誤推定誤りビッ
ト/(ターンに誤り検出手段を施すことにより、該推定
誤りピットパターンの中に通信路上で起った誤りピット
ノくり□−ンと同一のビットパターンが存在するか否か
を検査上、存在する場合には推定誤すビットノクターン
を基に受信判定データを制御して誤りを訂正し、存在し
ない場合には送信側に当該ブロックの再送要求を行うご
とき誤り制御方式にある。
A feature of the present invention for achieving this purpose is that when demodulating the received signal, the analog information of the received signal before decoding is reduced (
For each block in which an error has been detected, the analog information corresponding to the block is used to estimate the error bit number (turn), and an error detection means is applied to the error bit number (turn). By this, it is checked whether or not there is a bit pattern that is the same as an error pit nocturne that occurred on the communication path in the estimated error pit pattern, and if it exists, it is determined based on the bit nocturne that is estimated incorrectly. The error control method is such that the error is corrected by controlling the reception judgment data, and if the error does not exist, a request is made to the transmitting side to retransmit the block.

以下、図面により詳細に説明する。第1図は、従来のA
RQ方式の概念図を示す。本発明は5の復調器、6の誤
り検出器に関わるものである。ここで、従来のARQ方
式について若干の説明を行う。1は情報源である。2の
符号化器では、1からのにピットの情報を生成多項式よ
り決定できる(n−k)ビットの検査ピットを含むブロ
ック符号化を行う一送信符号列をF (xlとすると、
F (x)はにピットの情報と(n−k)ピットの検査
ビットより構成され、次式のように表わされる。
A detailed explanation will be given below with reference to the drawings. Figure 1 shows the conventional A
A conceptual diagram of the RQ method is shown. The present invention relates to 5 demodulators and 6 error detectors. Here, some explanation will be given regarding the conventional ARQ method. 1 is the information source. In encoder No. 2, one transmission code string that performs block encoding including (n-k) bits of check pits whose pit information can be determined from generation polynomial from No. 1 is F (xl),
F (x) is composed of pit information and inspection bits of (n−k) pits, and is expressed as follows.

F(xl = M(xi x  −R(x)= G(x
i・Q(Xl        ・・・・・・・・・・・
・(11但し、M(x)は(k−1)次以下の情報多項
式であり、G(x)は検査ビットを作成する生成多項式
である。
F(xl = M(xi x - R(x) = G(x
i・Q(Xl ・・・・・・・・・・・・
(11) However, M(x) is an information polynomial of degree (k-1) or less, and G(x) is a generator polynomial for creating check bits.

Q (X)はM(xi −x”−kをG (x)で割ツ
タ時の商であり、R(xlはその時の剰余すなわち検査
ビットを示す。
Q (X) is the quotient when M(xi −x”−k is divided by G (x)), and R(xl indicates the remainder, that is, the check bit.

又、M(x) 、 R(xiは、入力データ情報ao−
ak−1、検査ビットb。−brr−に−1を使うこと
により次式によって表わされる。
Also, M(x), R(xi is the input data information ao-
ak-1, check bit b; By using -1 for -brr-, it is expressed by the following equation.

M(X=a、+a1x+a、x’+−−−−−・+ak
>x   (2)R(xl=bo+b、x+b2x2+
・・””+bn−1.tx(3)従って、送信符号列F
(x)はG(xlで割り切れるように情報符号列M(x
)に検査ピッ) R(x)を付加していることになる。
M(X=a, +a1x+a, x'+----・+ak
>x (2) R(xl=bo+b, x+b2x2+
...””+bn-1. tx(3) Therefore, the transmission code string F
(x) is an information code sequence M(x
) is added with the test pitch R(x).

今、4の伝送路上で雑音によって誤りを受けるとすると
、その時の誤り符号列B(x)は次式で表わされる。
Now, if an error occurs due to noise on the transmission path of 4, the error code string B(x) at that time is expressed by the following equation.

E(x)=eo+e、x+e、x”+・−・・−+en
−IX   (4)但し、e、は、1番目のビットが誤
っている場合は1であり、誤っていない場合はOである
。従って、式(4)を使うことにより受信符号列F’(
xlは次式によって表わされる。
E(x)=eo+e, x+e, x”+・−・・−+en
-IX (4) However, e is 1 if the first bit is incorrect, and O if it is not incorrect. Therefore, by using equation (4), the received code string F'(
xl is expressed by the following equation.

F’(x)= F(x) + E(xl       
−−(5)次に、受信符号列F’(x)は6の誤り検出
器において、生成多項式〇(x)で割り切れるか否かで
受信ブロックの中の誤りの有無が検査される。剰余がO
であればそのフレーム内には誤りがないことがわかり、
そのまま7の復号器に出力される。もし剰余が0でない
場合は、フレーム内に誤りがあることから再送要求を6
02の帰還路を通して送信側へ送る。
F'(x) = F(x) + E(xl
--(5) Next, the received code string F'(x) is checked in the error detector 6 to see if there is an error in the received block by checking whether it is divisible by the generating polynomial 〇(x). The remainder is O
If so, you know that there is no error in that frame,
It is output as is to the decoder 7. If the remainder is not 0, there is an error in the frame and a retransmission request will be sent.
It is sent to the transmitting side through the return path of 02.

このような操作により信頼度の高いデータ伝送が実現で
きる。しかし、以上述べたような方式では、例えば、1
フレーム1000ピツトで構成されているとすると、そ
の中の1ビツトの誤りに対しても1フレ一ム分すなわち
1000ビツトの再送をしなければならなかった。
Through such operations, highly reliable data transmission can be realized. However, in the method described above, for example, 1
Assuming that a frame consists of 1000 pits, even if there is a 1-bit error in the frame, 1 frame, or 1000 bits, must be retransmitted.

本発明は、以下に述べるような誤りエレメントとその時
の受信信号状態との相関性を利用することにより3〜4
ビット程度までの誤りを訂正しζ上記欠点を補うもので
ある。又、本発明の装置化も比較的容易である。
The present invention utilizes the correlation between error elements and the received signal state at that time as described below.
It corrects errors up to the bit level and compensates for the above drawbacks. Furthermore, it is relatively easy to implement the present invention into an apparatus.

5の復調器では、受信信号の判定はスレッショールドを
境に1かOかだけを決定するHard Dicisio
n(硬判定)であり、判定前の受信信号の持っているア
ナログ情報は考慮してシ・なかった。
In the demodulator No. 5, the judgment of the received signal is based on Hard Dicisio, which only determines whether it is 1 or O based on the threshold.
n (hard decision), and analog information possessed by the received signal before the decision was not taken into consideration.

しかし、伝送路が白色鍍音でモデル化できるような例え
ば衛星回線などのような場合、誤りとその時のアナログ
情報とは非常に大きな相関がある。
However, in cases where the transmission path can be modeled using white dots, such as a satellite line, there is a very strong correlation between errors and the analog information at that time.

ここでアナログ情報とは、受信信号レベルからいちばん
近い判定スレッショールドまでの距離のことである。従
って、その距離が短いほど受信信号は誤っている確率が
大きく、逆に距離が長いほど受信信号は正しく受信され
ている確率が大きいことになる。以後、アナログ情報を
表わす距離のことをアナログ重みと呼ぶ。
The analog information here refers to the distance from the received signal level to the nearest decision threshold. Therefore, the shorter the distance, the greater the probability that the received signal is incorrect, and conversely, the longer the distance, the greater the probability that the received signal is correctly received. Hereinafter, the distance representing analog information will be referred to as analog weight.

第2図に誤りと、その時のアナログ重みとの関係を2値
の場合について計算した結果を示す。第2図は、nビッ
トの受信信号を硬判定し、その中にmビットの誤りが発
生したとし、その時mビットの誤りビットの持つアナロ
グ重みがn個のアナログ重みの中で小さい方から数えて
M番目までの中にすべて含まれている場合の確率をmく
3.M<;:10、M〉mについて計算した結果である
。図かられかるように、S/N(信号電力対雑音電力比
)がある程度高い所で畔、誤りビットとその時のアナロ
グ重みとの間には非常に大きな相関があることがわかる
FIG. 2 shows the result of calculating the relationship between the error and the analog weight at that time for a binary case. Figure 2 shows the case where a hard decision is made on an n-bit received signal, and an m-bit error occurs in the received signal, and then the analog weight of the m-bit error bit is counted from the smallest of the n analog weights. Multiply the probability by m when all items are included up to Mth.3. This is the result of calculation for M<;:10, M>m. As can be seen from the figure, when the S/N (signal power to noise power ratio) is high to some extent, there is a very large correlation between the error bit and the analog weight at that time.

本発明では、このアナログ重みと符号の持つ誤り検出能
力とを併用することにより誤り訂正を行うものである。
In the present invention, error correction is performed by using both the analog weight and the error detection ability of the code.

すなわち、硬判定によるフレーム単位のデータを誤り検
出器を用いてフレーム内の誤りの有無を検査し、誤りが
なければそのまま復調データとして出方し、誤りが存在
することが誤り検出器−より検出されれば、以下のよう
な操作を行い誤り訂正を行う。
In other words, hard-decision frame-by-frame data is checked for the presence or absence of errors within the frame using an error detector, and if there are no errors, it is output as demodulated data as it is, and the error detector detects the presence of errors. If so, perform the following operations to correct the error.

nビットのアナログ重みの中から最も小さいビット、2
番目、3番目に小さいビットなどに対応する次数のe、
をlとおくこ、とによって、式(4)のような誤りパタ
ーンを作成する。例えば、2個の最も小さいアナログ重
みを考慮する場合、これに、対応する次数をm7. m
2とすると、推定誤りパターンは次式で表わされる。
The smallest bit among the n bits of analog weight, 2
e of the order corresponding to the th, third smallest bit, etc.
By setting , to l, an error pattern as shown in equation (4) is created. For example, if we consider the two smallest analog weights, we can assign the corresponding order m7. m
2, the estimated error pattern is expressed by the following equation.

又、考慮するアナログ重みの数をm、 、 m、 、 
m303個を考え、その中で2ピツトまでの誤りだけを
訂正するような場合の推定誤りパターンは、次式のよう
に表わされる。
Also, the number of analog weights to be considered is m, , m, ,
The estimated error pattern in the case where m303 errors are considered and only errors up to 2 pits among them are corrected is expressed as the following equation.

次に、式(5)で表わされる硬判定復調データF’(x
lに式(6) 、 (力などのように表わされる推定誤
りパターンをそれぞれたし込むことにより得られるF“
(Xlは、次式によって表わされる。
Next, hard-decision demodulated data F'(x
F” obtained by adding the estimated error patterns expressed as (6) and (force, etc.) to l, respectively.
(Xl is expressed by the following formula.

F’(Xl=F(Xl十E(Xl十Ei(Xl   ・
・・・−・・曲−(8)(i=1〜り ここで、もし伝送路上で起こる誤りパターンE(xlと
同じものがEs(xlの中にあるとすると、F”(幻は
次式の関係よりF(xlの送信データ列となり、誤り訂
正ができたことになる。
F'(Xl=F(Xl×E(Xl×Ei(Xl ・
...... Song - (8) (i = 1~) Here, if the error pattern E (xl) that occurs on the transmission path is in Es (xl, then F'' (phantom is From the relationship in the equation, the transmission data string is F(xl), and error correction has been completed.

E(xl 申Bl (Xl = 0       ・・
−曲・・・・−(91F’(x) = F(xl   
     曲曲曲aO)もし、E、(xlの中にE(x
)と同じものがない場合には、(B(xl + Ei(
XI )がG(xiで割り切ることができず剰余が出て
、誤り訂正ができなかったことがわかる。この場合は、
従来のARQ方式と同様に送信側に再送要求を行う。
E(xl Bl (Xl = 0...
-Song...-(91F'(x) = F(xl
Song aO) If E, (xl contains E(x
), if there is no same thing as (B(xl + Ei(
It can be seen that the error correction was not possible because G(xi) could not be divided by G(xi) and there was a remainder.
Similar to the conventional ARQ method, a retransmission request is made to the transmitting side.

ここで、本発明の誤り訂正を行うことによる誤り検出能
力の劣化度について述べる。
Here, the degree of deterioration of the error detection ability due to the error correction of the present invention will be described.

例えば、(n−k)次の生成多項式により得られるも最
小距離4のハミング符号を誤り検出符号として用いた場
合、誤り検出器で誤りが検出されなような手法で誤り訂
正を行った場合の誤り検出能力は、次式によって表わさ
れる。
For example, if a Hamming code with a minimum distance of 4 obtained by an (n-k) order generator polynomial is used as an error detection code, the error correction will be performed using a method that does not detect errors in the error detector. The error detection ability is expressed by the following equation.

但し、lは推定誤りパターン数を示す。従って、lが小
さい場合は、はとんど誤り検出能力を劣化することなく
誤り訂正が可能となる。
However, l indicates the number of estimated error patterns. Therefore, when l is small, error correction is possible without deteriorating the error detection ability.

第3図に本発明によるブロック誤り率の計算結果(曲線
(b))を示す。計算例は、n = 1000、n−に
=16、/=6の場合について示す。又、図中には従来
のブロック誤り率(曲線(a))も合わせて示す。図よ
り8./’N−to dBで比較すると、本発明の手法
は、従来の手法に比べて、ブロック誤り率は約3000
倍程度改善されていることがわかる。
FIG. 3 shows the calculation results (curve (b)) of the block error rate according to the present invention. A calculation example is shown for the case where n=1000, n-=16, /=6. The figure also shows the conventional block error rate (curve (a)). From the figure 8. /'N-to dB, the method of the present invention has a block error rate of about 3000 compared to the conventional method.
It can be seen that this has been improved by about twice as much.

又、これは、本手法を5elective Repea
t ARQ方式、5ETRAN AR,Q方式、Go−
Back−N ARQ方式に適用した場合のスループッ
ト特性(伝送効率)で比較すると第4図のようになる。
Also, this method can be applied to 5elective Repeat
t ARQ method, 5ETRAN AR, Q method, Go-
A comparison of throughput characteristics (transmission efficiency) when applied to the Back-N ARQ method is shown in FIG.

第4図で実線(alは従来の5elective Re
peat ARQ方式の特性、黒点はこのARQ方式に
本発明を適用した場合の特性、点線(b)は従来の8E
TRAN ARQ方式の特性、X点はこのARQ方式に
本発明を適用した場合の特性、1点鎖線(C)は従来の
Go−Back−NARQ方式の特性、白点はこのAR
Q方式に本発明を適用した場合の特性である。なお第4
図の各グラフで、応答遅延ブロック数N(誤りが発生し
た時さかのぼって再送するブロックの数)は、N=12
8である。第4図より、本発明の適用により、各ARQ
方式共にスループット特性が大幅に改善されることがわ
かる。
In Fig. 4, the solid line (al is the conventional 5elective Re
The characteristics of the peat ARQ method, the black dots are the characteristics when the present invention is applied to this ARQ method, and the dotted line (b) is the characteristic of the conventional 8E
Characteristics of the TRAN ARQ method, X points are the characteristics when the present invention is applied to this ARQ method, dashed line (C) is the characteristics of the conventional Go-Back-NARQ method, and white points are the characteristics of this ARQ method.
These are the characteristics when the present invention is applied to the Q method. Furthermore, the fourth
In each graph in the figure, the number of response delay blocks N (the number of blocks to be retransmitted retroactive to when an error occurred) is N = 12.
It is 8. From FIG. 4, it can be seen that by applying the present invention, each ARQ
It can be seen that the throughput characteristics are significantly improved for both methods.

次に本発明による一実施例について説明する。Next, an embodiment according to the present invention will be described.

第5図に本発明の受信部の概略図を示す。51の復調器
では、受信信号を従来の復調器と同様に、硬判定する操
作と同時にエレメントごとのアナログ重みを取り出す操
作を行う。52のアナログ重み記憶部では、アナログ重
みを小さい順に何個かと、その時の受信判定結果を記憶
する。53の誤りパターン推定器では、52で得られた
アナログ重みの小さいエレメントの受信判定結果から誤
りビットパターンを推定する。ここで推定する誤りビッ
トパターンハ、式(6)テはE、(Xl、 B2(xi
、式(7)ではE、(X)。
FIG. 5 shows a schematic diagram of the receiving section of the present invention. The demodulator No. 51 performs an operation of making a hard decision on the received signal, as well as an operation of extracting an analog weight for each element, in the same way as a conventional demodulator. The analog weight storage section 52 stores the number of analog weights in descending order and the reception determination result at that time. The error pattern estimator 53 estimates an error bit pattern from the reception determination result of the element with a small analog weight obtained in 52. The error bit pattern estimated here is E, (Xl, B2(xi
, E, (X) in equation (7).

B2(XI 、 B、(xlなとのように1工レメント
分だけでよい。馴の剰余演算器では、53で得られた誤
りビットパターンの多項式を生成多項式〇(xiで割り
、その時の剰余を求める。55の剰余パターン合成器で
は、父で得られた剰余を使って式(6)のE、(x)、
式(7)のB、(xl −Es(XI 、E、(xlに
相当する誤りビットパターンなG (x)で割った時の
剰余を合成する。これは、次式の関係を使って合成して
いる。
B2(XI, B, The remainder pattern synthesizer of 55 uses the remainder obtained in the father to calculate E, (x),
B in Equation (7), (xl -Es(XI, E, (xl) is the error bit pattern corresponding to G (x). are doing.

E、(x) −xfJ + X”2      −・・
・(121Es(xl / G(X) −Qrn、(X
) + Qm、(X)但し、Qr、、(Xl 、 Qn
、2(Xlはx1″l 、 Xm2をそれぞれG(xl
で割った時の商であり、R,、、(xl 、 R□2(
x)はその時の剰余である。従ってE、(X)をG (
x)で割った時の剰余は、独立にEI TX)、 B2
(XlをG(xlで割ツタ時の剰余の和になっている。
E, (x) −xfJ + X”2 −・・
・(121Es(xl / G(X) -Qrn, (X
) + Qm, (X) However, Qr, , (Xl , Qn
, 2(Xl is x1″l, Xm2 is G(xl
It is the quotient when divided by R,,, (xl, R□2(
x) is the remainder at that time. Therefore, E, (X) is G (
The remainder when divided by x) is independently EI TX), B2
(It is the sum of the remainders when dividing Xl by G(xl.

これより、55の剰余パターン合成器では、式(6)に
相当するすべての誤りパターン推定器ての剰余が求まっ
たことになる。
From this, in the 55 remainder pattern synthesizers, the remainders of all error pattern estimators corresponding to equation (6) have been found.

郭のデータ記憶部では、1フレ一ム分の硬判定データを
蓄える。57の剰余演算器では、1フレ一ム分の硬判定
データ符号列をG(xlで割った時の剰余を求めている
。59の判定器では、55よら得られる剰余と57より
得られる剰余の和の中から0となる剰余パターンを見つ
け出す回路であり、もし、剰余の和がOとなる剰余パタ
ーンが存在しない場合は61のSWをb側にし、再送要
求を602を通して送信側へ送る。又、0となる剰余パ
ターンが存在する時は61のSWをa側にし、55の剰
余パターン合成器から出力されているどのパターンかの
情報を出力する。62の推定誤りパターン合成器では、
式(6) 、 (7)に相当する誤りパターンすべてを
合成しており、59の情報からその中の1つを選び出す
Guo's data storage unit stores one frame's worth of hard decision data. The remainder calculation unit No. 57 calculates the remainder when one frame's worth of hard-decision data code string is divided by G(xl. The judgment unit No. 59 calculates the remainder obtained from 55 and 57. This is a circuit that finds a remainder pattern that becomes 0 from the sum of the remainders. If there is no remainder pattern that makes the sum of the remainders O, the SW 61 is set to the b side and a retransmission request is sent to the transmitting side through 602. Also, when there is a remainder pattern that becomes 0, the SW 61 is set to the a side, and information about which pattern is output from the remainder pattern synthesizer 55 is output.In the estimated error pattern synthesizer 62,
All error patterns corresponding to equations (6) and (7) are combined, and one of them is selected from 59 pieces of information.

これより、伝送路上で発生したと思われる誤りパターン
E(x)と同じパターンを選び出すことができる。
From this, it is possible to select a pattern that is the same as the error pattern E(x) that is thought to have occurred on the transmission path.

次に、63の和算器により式(8)の操作が行われ、式
(9)の関係から硬判定データは誤り訂正され、復調デ
ータとして601を通して復号器に送られる。
Next, the operation of equation (8) is performed by the adder 63, and the hard decision data is error-corrected based on the relationship of equation (9), and is sent to the decoder through 601 as demodulated data.

本発明は、エレメント単位でアナログ重みを観測してい
ることから、変調器で差動符号化を行ったとしても、5
3の誤りパターン推定器では、2エレメントにわたる誤
りビットパターンを推定することができる。
Since the present invention observes analog weights on an element-by-element basis, even if the modulator performs differential encoding, the
The error pattern estimator No. 3 can estimate error bit patterns over two elements.

例えば、同期検波差動4相PSK方式の場合、あるエレ
メントが誤る時必ず隣りの判定領域で誤っていると仮定
すると(S、/Nが高い所では、はとんどこのような誤
り方をする。)、その時の2エレメントにわたる誤りビ
ットパターンは、以下に示す4通りだけである。
For example, in the case of the synchronous detection differential 4-phase PSK method, assuming that when an error occurs in a certain element, it always occurs in the adjacent judgment area (in areas where S, /N is high, this type of error is most likely to occur). ), then there are only four error bit patterns over the two elements as shown below.

同様忙、同期検波差動8相PSKの場合は、以  5下
に示す9通りだけである。
Similarly, in the case of synchronous detection differential 8-phase PSK, there are only 9 methods shown below.

従って、硬判定結果とアナログ重みの状態を見ることに
より、閏で作成する誤りビットパターンは 15容易に
作成できる。
Therefore, by looking at the hard decision results and the state of the analog weights, 15 error bit patterns can be easily created using a leap.

以上詳細に述べたように本発明は、従来のARQ1 方式の復調器と誤り検出器に簡単な回路を付加するだけ
で、今まで誤り検出するだけであったものを、誤り検出
されたフレームをアナログ重みとい 加う受信信号の判
定前の情報を使うことにより、誤り訂正も行うことがで
きる誤り制御方式であるので、簡単な回路により信頼度
及び伝送能力の高い通信方式を得ることができる。
As described in detail above, the present invention is capable of detecting error-detected frames by simply adding simple circuits to the conventional ARQ1 demodulator and error detector. This is an error control method that can also perform error correction by using pre-judgment information of the received signal called analog weights, so it is possible to obtain a communication method with high reliability and transmission performance using a simple circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のARQ方式の概略を示す図、第2図は誤
りとその時のアナログ重みとの相関を示す図、第3図は
本発明によるS、/’Nに対するブロック誤り率特性を
示す図、第4図は本発明を種々のARQ方式に適用した
場合のスループット特性を示す図、第5図は本発明によ
る復調器と誤り検出器の一実施例を示す概略図である。 51・・・・・・・・・復調器 52・・・・・・・・・アナログ重み記憶部53・・・
・・・・・・誤りパターン推定器特許出願人 国際電信電話株式会社 特許出願代理人 弁理士  山  本  恵  −
FIG. 1 is a diagram showing an outline of the conventional ARQ method, FIG. 2 is a diagram showing the correlation between errors and analog weights at that time, and FIG. 3 is a diagram showing block error rate characteristics for S, /'N according to the present invention. 4 are diagrams showing throughput characteristics when the present invention is applied to various ARQ methods, and FIG. 5 is a schematic diagram showing an embodiment of a demodulator and an error detector according to the present invention. 51... Demodulator 52... Analog weight storage unit 53...
...Error pattern estimator patent applicant International Telegraph and Telephone Co., Ltd. Patent application representative Patent attorney Megumi Yamamoto −

Claims (1)

【特許請求の範囲】[Claims] 送信側においては送信すべき情報データを誤り検出符号
でブロック符号化した後変調して通信路に送出し、受信
側では受信信号を復調して受信判定データを得、該受信
判定データのブロック毎に誤り検出を行い、誤りを検出
したブロックについては送信側に再送要求をすることに
よって誤りを制御するごとき誤り制御方式において、前
記受信信号を復調する際に受信信号の復号前のアナログ
情報を少なくとも1ブロック分記憶し、前記誤りを検出
したブロックに対しては該ブロックに対応する前記アナ
ログ情報を用いて誤りビットパターンを推定し、誤推定
誤りビットパターンに誤り検出手段を施すことにより該
推定誤りビットパターンの中に前記通信路上で起った誤
りビットパターンと同一のビットパターンが存在するか
否かを検査し、存在する場合には前記推定誤りビットパ
ターンを基に前記受信判定データを制御して誤りを訂正
し、存在しない場合には送信側に当該ブロックの再送要
求を行うことを特徴とする誤り制御方式。
On the transmitting side, the information data to be transmitted is block encoded with an error detection code, then modulated and sent to the communication channel, and on the receiving side, the received signal is demodulated to obtain reception judgment data, and each block of the reception judgment data is In an error control method that performs error detection and controls errors by requesting the transmitting side to retransmit blocks in which errors are detected, at least the analog information before decoding of the received signal is extracted when demodulating the received signal. One block is stored, and for a block in which an error has been detected, an error bit pattern is estimated using the analog information corresponding to the block, and an error detection means is applied to the incorrectly estimated error bit pattern to detect the estimation error. It is checked whether or not a bit pattern that is the same as an error bit pattern that occurred on the communication path exists in the bit patterns, and if it exists, the reception judgment data is controlled based on the estimated error bit pattern. An error control method characterized by correcting the error by using the block, and requesting the transmitting side to retransmit the block if it does not exist.
JP17900181A 1981-11-10 1981-11-10 Error control system Granted JPS5881356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17900181A JPS5881356A (en) 1981-11-10 1981-11-10 Error control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17900181A JPS5881356A (en) 1981-11-10 1981-11-10 Error control system

Publications (2)

Publication Number Publication Date
JPS5881356A true JPS5881356A (en) 1983-05-16
JPH0312500B2 JPH0312500B2 (en) 1991-02-20

Family

ID=16058375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17900181A Granted JPS5881356A (en) 1981-11-10 1981-11-10 Error control system

Country Status (1)

Country Link
JP (1) JPS5881356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999497B2 (en) 2000-03-15 2006-02-14 Matsushita Electric Industrial Co., Ltd. Data transmitting apparatus and data transmitting method
US7215642B2 (en) 2000-05-22 2007-05-08 Matsushita Electric Industrial Co., Ltd. System and method for regulating data transmission in accordance with a receiver's expected demodulation capacity
JP2009081766A (en) * 2007-09-27 2009-04-16 Sony Corp Receiving apparatus, receiving method, information processor, information processing method, and program
WO2010116616A1 (en) * 2009-03-30 2010-10-14 日本電気株式会社 Relay apparatus and distribution control method of stream distribution system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789349A (en) * 1980-11-22 1982-06-03 Nec Corp Decoder for error correction code

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789349A (en) * 1980-11-22 1982-06-03 Nec Corp Decoder for error correction code

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999497B2 (en) 2000-03-15 2006-02-14 Matsushita Electric Industrial Co., Ltd. Data transmitting apparatus and data transmitting method
US7215642B2 (en) 2000-05-22 2007-05-08 Matsushita Electric Industrial Co., Ltd. System and method for regulating data transmission in accordance with a receiver's expected demodulation capacity
JP2009081766A (en) * 2007-09-27 2009-04-16 Sony Corp Receiving apparatus, receiving method, information processor, information processing method, and program
WO2010116616A1 (en) * 2009-03-30 2010-10-14 日本電気株式会社 Relay apparatus and distribution control method of stream distribution system

Also Published As

Publication number Publication date
JPH0312500B2 (en) 1991-02-20

Similar Documents

Publication Publication Date Title
US6427219B1 (en) Method and apparatus for detecting and correcting errors using cyclic redundancy check
US6195396B1 (en) Encoding/decoding system using 16-QAM modulation encoded in multi-level blocks
EP1675295A2 (en) System and method for forward error correction decoding using soft information
US6956924B2 (en) Efficient implementation of a decision directed phase locked loop (DD-PLL) for use with short block code in digital communication systems
JPH0810879B2 (en) Demodulator
US4110735A (en) Error detection and correction
JPS62122349A (en) Method and device for data error correction in modem
US7046743B2 (en) Demodulator for demodulating digital modulated signals
KR101694789B1 (en) Modulation method and device implementing a differential modulation, and corresponding demodulation method and device, signal, and computer program products
US5850403A (en) Process of selectively protecting information bits against transmission errors
US4346472A (en) Method and apparatus for eliminating double bit errosion in a differential phase shift keying system
US20040081247A1 (en) Apparatus for adaptive resolution of phase ambiguity value
US20030123595A1 (en) Multi-pass phase tracking loop with rewind of future waveform in digital communication systems
US20030103582A1 (en) Selective reed-solomon error correction decoders in digital communication systems
JPS5881356A (en) Error control system
US6781447B2 (en) Multi-pass phase tracking loop with rewind of current waveform in digital communication systems
US20030128777A1 (en) Decision directed phase locked loops (DD-PLL) with multiple initial phase and/or frequency estimates in digital communication systems
US20090154623A1 (en) Frame-Synchronization Method and Device
KR101737106B1 (en) Method and apparatus for robust and high efficiency fec frame header recovery
US7164734B2 (en) Decision directed phase locked loops (DD-PLL) with excess processing power in digital communication systems
JP2006511993A (en) Data retransmission method using symbol rearrangement on Galois field
JPH066400A (en) Bit likelihood arithmetic unit
US5717723A (en) Apparatus for use in equipment providing a digital radio link between a fixed radio unit and a mobile radio unit
JP4188769B2 (en) Transmission method and apparatus, reception method and apparatus, and communication system using them
EP0639913B1 (en) Method for resolving phase ambiguities in a DPSK radio link