JPS5880506A - Coat thickness meter - Google Patents

Coat thickness meter

Info

Publication number
JPS5880506A
JPS5880506A JP17857481A JP17857481A JPS5880506A JP S5880506 A JPS5880506 A JP S5880506A JP 17857481 A JP17857481 A JP 17857481A JP 17857481 A JP17857481 A JP 17857481A JP S5880506 A JPS5880506 A JP S5880506A
Authority
JP
Japan
Prior art keywords
coating
thickness
coating film
coat thickness
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17857481A
Other languages
Japanese (ja)
Inventor
Masatoshi Fukada
深田 雅敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP17857481A priority Critical patent/JPS5880506A/en
Publication of JPS5880506A publication Critical patent/JPS5880506A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • G01B17/025Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness for measuring thickness of coating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To continuously measure coat thickness when coating and to control coat thickness easily and exactly, by computing it from irradiation of high frequency waves and measurement of reflected waves. CONSTITUTION:A coat thickness meter consisting of an oscillator 4, receiver 6, computer 7, converter 8, display device 9, etc. is attached to a coater 1. It computes the thickness wet coat 5 through emitted high frequency waves and received reflected waves, converts it in accordance with an angle of the coater 1, the kind of coating material, components of its volatile metter, etc., and displays its dry coat thickness on the device 9, thus permitting easy and exact control of coat thickness to be executed by this method of coating and simultaneous measuring coat thickness.

Description

【発明の詳細な説明】 この発明は、船舶の外板等の大きな構□造物の塗装に際
し、湿塗膜を測定することにより塗膜厚の管理を容易に
するようにした塗膜厚測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a coating film thickness measuring device that facilitates the management of coating film thickness by measuring the wet coating film when painting large structures such as the outer panels of ships. Regarding.

従来、船のように大きな構造物の塗装は、第1図に示す
ように、エアレススプレーガンまたはエアスプレーガン
(以下スプレーガンという)からなる塗装機(1)を用
いて塗装を行なっておシ、被塵装体(2)の表面に塗膜
(3)を形成している。
Conventionally, large structures such as ships have been painted using a coating machine (1) consisting of an airless spray gun or air spray gun (hereinafter referred to as spray gun), as shown in Figure 1. A coating film (3) is formed on the surface of the dust receiving body (2).

ところで、塗装本来の目的である防錆機能が、所期の目
的を達成するための管理方法の1つとして一1塗膜厚管
理がある。
By the way, one of the management methods for achieving the intended purpose of rust prevention, which is the original purpose of coating, is 11 coating film thickness management.

しかし従来、この塗膜厚管理は、塗膜が乾燥した後、電
磁石、永久磁石、超音波等を利用した測定器具によシ塗
膜厚を計測し、所定の膜厚に達していない所は再び塗装
を行なっている。また、この場合、測定個所も全ての点
を網羅することは不可能であり、そのため、数平方メー
計ルに1個所という割合で抽出検査を行なっているのが
現状である。したがって、この場合、完全に塗膜厚管理
が行なわれているとはいえなく1.また、この塗膜厚検
査および再塗装は、塗膜厚管理がきびしければきびしい
程、大きな労力と時間を要している。
However, conventionally, this coating thickness management has been done by measuring the coating thickness after the coating has dried using a measuring device that uses electromagnets, permanent magnets, ultrasonic waves, etc. Painting is being done again. Furthermore, in this case, it is impossible to cover all the measurement points, and therefore, the current situation is that the inspection is carried out at one point every several square meters. Therefore, in this case, it cannot be said that the coating film thickness is completely controlled; 1. Furthermore, the more severe the coating thickness control, the more labor and time are required for this coating film thickness inspection and repainting.

この発明は、前記の点に留意してなされたものであり、
塗装機自体に、超音波またはレザー光線のような高周波
を用いて塗膜厚を測定する器、具を装着しておき、塗装
を行ないながら逐次塗膜厚を測定することにより、塗膜
厚管理を行ない、従来多くの労力と時間を要していた塗
膜厚測定および再塗装という作業を省略することができ
るものであり、つぎにこの発明を、その実施例を示した
第2図以下の図面とともに、詳細に説明する。
This invention was made with the above points in mind,
The coating machine itself is equipped with a device or tool that measures coating film thickness using high frequency waves such as ultrasonic waves or laser beams, and the coating thickness can be controlled by sequentially measuring coating thickness while painting. This invention can be used to eliminate the work of coating film thickness measurement and repainting, which conventionally required a lot of labor and time. This will be explained in detail with reference to the drawings.

第2図に示すように、スプレーガンからなる塗装機(1
)に、超音波またレザー光線のような高周波を投射する
高周波発信器(4)と、塗装機(1)により形成された
被塗装体(2)の表面の湿塗膜(5)の表面および被塗
装体(2)の表面からの前記高周波の反射波を受信する
高周波受信器(6)と、前記高周波の投射波と反射波と
から湿塗膜(5)の膜厚を演算する演算機(7)と、湿
塗膜(5)の膜厚から乾燥塗膜の膜厚を換算する換算機
(8)と、乾燥塗膜の膜厚を表示する表示器(9)とを
、一体に装着したものであり、使用する塗料の比重、揮
発分の比重、塗料中の揮発分の割合などがインプットで
きる機能を有し、塗料中の揮発分に引火を与えないよう
な防爆ケースに納められておシ、かつ、軽量化を計るた
め、マイクロコンヒユーターを内蔵している。
As shown in Figure 2, a coating machine (1
), a high frequency transmitter (4) that projects high frequency waves such as ultrasonic waves or laser beams, and a wet coating film (5) on the surface of the object to be coated (2) formed by the coating machine (1) and a high-frequency receiver (6) that receives the high-frequency reflected wave from the surface of the object to be painted (2); and a computer that calculates the film thickness of the wet coating film (5) from the high-frequency projected wave and the reflected wave. (7), a converter (8) that converts the thickness of the dry coating film from the thickness of the wet coating film (5), and an indicator (9) that displays the thickness of the dry coating film are integrated. It has a function that allows input of the specific gravity of the paint used, the specific gravity of the volatile content, the ratio of volatile content in the paint, etc., and is housed in an explosion-proof case that does not ignite the volatile content in the paint. It has a built-in microcomputer to make it compact and lightweight.

ところで、塗装中に測定される塗膜厚は、湿塗膜厚であ
り、乾燥塗膜厚とは異なる。
By the way, the coating thickness measured during painting is a wet coating thickness, which is different from a dry coating thickness.

しかし、乾燥塗膜厚と湿塗膜厚の間には、っぎのような
関係があるため、湿塗膜厚を測定することにより、乾燥
塗膜厚も求めることができる。
However, since there is a relationship between the dry coating thickness and the wet coating thickness, the dry coating thickness can also be determined by measuring the wet coating thickness.

乾燥塗膜厚Dd=W(λ−1□□) = ADw (x−イー) ここで、Aは塗料の比重、Wは塗付量(g/ff11)
、Bは揮発分の比重、Sは塗料中の揮発分の割合(ト)
である。
Dry coating thickness Dd = W (λ-1□□) = ADw (x-E) Here, A is the specific gravity of the paint, and W is the amount of coating (g/ff11)
, B is the specific gravity of volatile matter, S is the proportion of volatile matter in the paint (g)
It is.

つぎに、乾燥塗膜厚を表示する方法としては、数値によ
る表示、またはたとえば乾燥塗膜厚で100戸塗るとす
れば、乾燥塗膜厚で100.11塗った時点) で表示装置に可聴警報または可視警報を発するものであ
る。この場合膜厚設定スイッチが必要である。
Next, the dry paint film thickness can be displayed numerically, or, for example, if 100 houses are painted with a dry paint film thickness, the dry paint film thickness is 100.11 times (at the time when the paint is applied) an audible alarm is displayed on the display device. or give a visual alarm. In this case, a film thickness setting switch is required.

また、湿塗膜厚を測定する方法としては、本装置の機能
上直接塗膜に触れることなく計れるものでなければなら
ないので、超音波またはレザー光線のような高周波を塗
膜および被塗装体(2)の表面に照射し、その反射波か
ら塗膜厚を計算する。
In addition, as a method for measuring the wet coating film thickness, it is necessary to be able to measure the wet coating film thickness without directly touching the coating film due to the functionality of this device. 2) Irradiate the surface and calculate the coating thickness from the reflected wave.

一方、被塗装体(21には塗料の付着をよくするために
、第3図に示すように、アンカーパターンという凹凸が
つけられており、このアンカーパターンの凹凸は、85
〜45pあシ、塗膜厚管理および防錆機能上、凸部から
塗膜表面までの膜厚Aを、所定値に保持するのが望まし
い。
On the other hand, in order to improve the adhesion of paint to the object to be painted (21), as shown in FIG.
~45p In terms of coating thickness management and rust prevention, it is desirable to maintain the film thickness A from the convex portion to the coating surface at a predetermined value.

したがって、湿塗膜厚を測定する時は、第4図に示すよ
うに、凹部からの高周波の反射波は自動的にノイズとし
て消去する機能を持たせておく。
Therefore, when measuring the wet coating thickness, a function is provided to automatically eliminate high-frequency reflected waves from the recesses as noise, as shown in FIG.

また、塗装は、被塗装体(2)の表面に常にスプレーガ
ンを直角に向けているとは限らないので、スプレーガン
が被塗装体(2)の表面に斜めに傾いていても、真の塗
膜厚が測定できるようにする。これは、塗膜の表面がほ
ぼ滑らかであるから、塗膜表面からの反射波によりスプ
レーガンの傾きを計算し、真の湿塗膜厚を導き出す。
In addition, when painting, the spray gun is not always directed at right angles to the surface of the object to be painted (2), so even if the spray gun is tilted diagonally toward the surface of the object to be painted (2), the true Make it possible to measure the coating thickness. This is because the surface of the paint film is almost smooth, so the tilt of the spray gun is calculated based on the waves reflected from the paint film surface, and the true wet paint film thickness is derived.

さらに、スプレーガンは、塗装する時、ある範囲にわた
って塗料か初霜するし、塗装パターンは、第5図に示す
ように、スプレーガンのパスとバスの間は、ある程度塗
り重ねることになるので、その塗膜断面形状は、第5図
(a)図のように゛・なると考えられる。
Furthermore, when a spray gun paints, it applies the first frost over a certain area, and as shown in Figure 5, the paint pattern requires some overlap between the passes of the spray gun and the bath. The cross-sectional shape of the coating film is thought to be as shown in FIG. 5(a).

したがって、塗膜厚の計測は、塗料初霜範囲のほぼ中央
で測定をおこなってもさしつがえないと考えられる。
Therefore, it is considered safe to measure the coating film thickness at approximately the center of the initial frost range of the coating.

つぎに、従来の塗膜管理は、トータル塗膜厚管理という
ことで、第6図に示すように、塗重ね最終塗装の行なわ
れた後、トータル塗膜厚Bを測定している。これは、従
来一般に使われている塗膜厚測定器が、被塗装体(ステ
ィール)の表面と乾燥塗膜の表面の間の膜厚しが測定で
きないためである。すなわち、前に塗った塗膜(51ま
たは(5)”の上ない。
Next, conventional paint film management is total paint film thickness management, and as shown in FIG. 6, the total paint film thickness B is measured after the final coating is performed. This is because the coating film thickness measuring instruments commonly used in the past cannot measure the film thickness between the surface of the object to be coated (steel) and the surface of the dried coating film. That is, it is not above the previously applied coating (51 or (5)").

ところで、近年省エネルギーという観点から、船体外板
の塗装は、塗膜厚管理にきびしいものを要求されている
。そして、船体外板、とくにボトム、ブートトップには
、各々防錆塗料、防汚塗料という異なる性能のものを塗
り、各々の塗料に対して塗膜を測定する必要があるため
、従来つきのようにして塗膜管理を行なっていた。
Incidentally, in recent years, from the viewpoint of energy conservation, strict control of coating film thickness has been required for coating the outer panels of ships. Then, it is necessary to apply anti-corrosion paint and anti-fouling paint, each with a different performance, to the hull outer panels, especially the bottom and boot top, and measure the coating film for each paint. I was managing the paint film.

まず、防錆塗料を塗った時点で被塗装体(ステイール)
の表面から防錆塗膜表面までの膜厚を測定する。つぎに
防汚塗料を塗った時点で再度被塗・装体(ステイール)
の表面から防汚塗膜表面までのトータル膜厚を測定する
。そして、後者の塗膜厚から前者の塗膜厚を差引くこと
により、防汚塗料の塗膜厚を計算している。しかし、こ
のように2度も塗膜厚を測定することは、大きな労力と
時間を要する。
First, when applying anti-corrosion paint, the object to be painted (stay)
Measure the film thickness from the surface of the rust preventive coating to the surface of the rust preventive coating. Next, when antifouling paint is applied, the body to be coated/covered (stay)
Measure the total film thickness from the surface to the surface of the antifouling coating. Then, the coating thickness of the antifouling paint is calculated by subtracting the former coating thickness from the latter coating thickness. However, measuring the coating film thickness twice in this way requires a great deal of effort and time.

しかし、この発明では、高周波を有する照射波および反
射波を利用するため、第6図の塗膜(5)および(5)
の膜厚CおよびDも、それぞれ塗装中に測定できる。さ
らに、塗装中に測定するため、所定の膜厚を容易に確保
できる。したがって異なった性能の塗料を塗重ねる場合
でも、それぞれについて塗膜厚を容易に管理することが
できる。
However, in this invention, since irradiated waves and reflected waves having high frequencies are used, coating films (5) and (5) in FIG.
The film thicknesses C and D can also be measured during coating, respectively. Furthermore, since the measurement is performed during painting, a predetermined film thickness can be easily ensured. Therefore, even when coating paints with different properties overlappingly, the thickness of each coating can be easily controlled.

つぎに、高周波にょる膜厚測定の原理について説明する
Next, the principle of film thickness measurement using high frequency will be explained.

第7図fa)図の実線に示すように、照射波Sに周波数
の変調された連続波を使用すると、破線に示す反射波T
が得られ、同図山)図に示すような周波数差が得られ、
同図のPの時間に相当する距離が、発信器(4)、受信
器(6)と被写体との間の距離になる。
If a continuous wave whose frequency is modulated is used as the irradiated wave S, as shown by the solid line in Fig. 7fa), the reflected wave T shown by the broken line
is obtained, and the frequency difference as shown in the figure is obtained,
The distance corresponding to time P in the figure is the distance between the transmitter (4), the receiver (6), and the subject.

なお、第8図に示すように、発信器(4)から照射され
た照射波は、アンカーパターンまたは塗膜表面で乱反射
されるが、乱反射された反射波のうち、受信器(6)に
直角に入射される反射波のみを用い、他はノイズとして
消去する。
As shown in Fig. 8, the irradiated waves emitted from the transmitter (4) are diffusely reflected by the anchor pattern or the coating surface. Only the reflected waves incident on the waveform are used, and the rest are eliminated as noise.

そして、被塗装体に塗膜が形成されると、第9    
′図(a)図に示すように、照射波Sにより塗膜表面か
らの反射波T′と、被塗装体の表面からの反射波T“と
が得られ、同図(b)図に示すような周波数差が得られ
、同図のP′の時間に相当する長さが、塗膜厚として得
られる。
When the coating film is formed on the object to be painted, the ninth
As shown in Figure (a), the irradiated wave S produces a reflected wave T' from the surface of the coating film and a reflected wave T'' from the surface of the object to be painted, and as shown in Figure (b). Such a frequency difference is obtained, and the length corresponding to the time P' in the figure is obtained as the coating film thickness.

つぎに、アンカーパターンおよび塗膜表面の凹凸からの
反射波の処理について説明する。
Next, processing of reflected waves from the anchor pattern and the irregularities on the surface of the coating film will be explained.

第1O図(a)図に示すように、アンカーパターンに照
射波が入射されると、同図(b)図に示すように、照射
波Sにより、アンカーパターンの最頂部からの反射波T
Iが得られるとともに、順次反射波T2゜T3.・・・
が得られ、アンカーパターンの最底部からの反射波Tn
が得られる。そして、前記反射波T1とTnの平均値を
アンカーパターンからの反射波とする。また、塗膜表面
の凹凸からの反射波も、その凹凸の平均を反射波とする
As shown in Fig. 1O (a), when the irradiation wave is incident on the anchor pattern, the irradiation wave S causes a reflected wave T from the top of the anchor pattern, as shown in Fig. 1(b).
I is obtained, and the reflected waves T2°T3 . ...
is obtained, and the reflected wave Tn from the bottom of the anchor pattern is
is obtained. Then, the average value of the reflected waves T1 and Tn is defined as the reflected wave from the anchor pattern. Furthermore, for reflected waves from unevenness on the surface of the coating film, the average of the unevenness is taken as the reflected wave.

つぎに、第11図に示すように、発信器(4)、受信器
(6)の測定器具に対して被塗装体(2)が傾斜してい
る場合の補正について説明する。
Next, as shown in FIG. 11, correction will be explained when the object to be coated (2) is inclined with respect to the measurement instruments of the transmitter (4) and receiver (6).

超音波またはレザー光線のような高周波は、非常に方向
性がよいため、ある程度の距離までは、測定器具の上部
0と下部(ト)の距離dは変らない。
Since high frequency waves such as ultrasound or laser beams have very good directionality, the distance d between the top 0 and bottom (T) of the measuring instrument does not change up to a certain distance.

いま、測定器具に対して被塗装体(2)が2次元的−I
A′−B′ θ =―□ ここで、A′は測定器具の上部(ロ)から被塗装体間ま
での距離、B′は測定器具の下部間から被塗装体間まで
の距離であり、上部0および下部(至)から発射される
周波数は、塗膜測定用の周波数と違えておく。また、上
部0と下部間からの周波数も互いに異なるようにしてお
くとたとえ閏からの反射波が上部倶に入ったとしても、
周波数が異なるため、ノイズとして消去される。
Now, the object to be coated (2) is two-dimensional with respect to the measuring instrument.
A'-B' θ = -□ Here, A' is the distance from the top of the measuring instrument (B) to the objects to be painted, B' is the distance from the bottom of the measuring instrument to the objects to be painted, The frequencies emitted from the top 0 and the bottom (to) are different from the frequencies for coating film measurement. Also, by making the frequencies from the upper part 0 and the lower part different from each other, even if the reflected wave from the leap enters the upper part,
Since the frequencies are different, they are erased as noise.

つぎに、第12図に示すように、測定器具に対して被塗
装体(2)が3次元的に傾いていたとすると、発信器、
受信器の構造を、第13図に示すように、中央部に塗膜
厚測定用の発信器、受信器からなる測定器具(司を設け
、その周囲に被塗装体(2)の傾き測定用のそれぞれ発
信器、受信器からなる3個の測定器具(X) 、 (Y
)、 (Z)を設け、それぞれの周波数を異ならせ、8
点を計測することによシ、立体的傾きを計算することが
でき、傾きが求まると、第12図のa′から傾きを考慮
したaを求めることができる。
Next, as shown in FIG. 12, if the object to be painted (2) is three-dimensionally inclined with respect to the measuring instrument, the transmitter,
As shown in Fig. 13, the structure of the receiver is as shown in Fig. 13.A measuring instrument (main unit) consisting of a transmitter for measuring coating film thickness and a receiver is provided in the center, and a measuring instrument (main unit) is provided around it for measuring the inclination of the object to be coated (2). Three measuring instruments (X) and (Y
), (Z) with different frequencies, 8
By measuring the points, the three-dimensional inclination can be calculated, and once the inclination is determined, a that takes the inclination into account can be determined from a' in FIG. 12.

つぎに、第14図は、塗膜厚測定のフローチャートであ
る。
Next, FIG. 14 is a flowchart of coating film thickness measurement.

以上のように、この発明の塗膜厚測定装置によると、湿
塗膜を測定することにより、塗膜厚の管理を容易にする
ことができる。
As described above, according to the coating film thickness measuring device of the present invention, coating film thickness can be easily managed by measuring a wet coating film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の塗装装置の側面図、第2図以下の図面は
この発明の塗膜厚測定装置の実施例を示し、第2図は測
定装置の側面図、第3図は被塗装体のアンカーパターン
の断面図、第4図は反射波の説明図、第5図(a)図、
(b)図はスプレーガンのパスを示す側面図、正面図、
第6図は塗膜の多層盛の側面図、第7図(a)図、(b
)図は膜厚測定原理を示す周波数図9周波数差図、第8
図は乱反射の説明図、第9図(a)図、(b)図は塗膜
厚測定の周波数図。 周波数差図、第10図(a)図、(b)図は凹凸からの
反射波の処理を示す側面図1周波数図、第11図および
第12図はそれぞれ被塗装体の2次元的および8次元的
傾きに対する修正の説明図、第13図は第12図(1)
・・・塗装機、(2)・・・被塗装体、(4)・・・発
信器、(5)・・・湿塗膜、(6)・・・受信器、(7
)・・・演算機、(8)・・・換算機。 代理人 弁理士  藤田龍太部 □ 第3図     第4図 第5図 a)        (b) 第6図 第7図 第9図 第10図 CG)(b) 第14図
Fig. 1 is a side view of a conventional coating device, Fig. 2 and the following drawings show an embodiment of the coating film thickness measuring device of the present invention, Fig. 2 is a side view of the measuring device, and Fig. 3 is an object to be coated. 4 is an explanatory diagram of reflected waves, and FIG. 5(a) is a cross-sectional view of the anchor pattern.
(b) The figure shows the path of the spray gun, a side view, a front view,
Figure 6 is a side view of multi-layer coating, Figures 7 (a) and (b).
) Figure 8 is a frequency diagram showing the principle of film thickness measurement.9 Frequency difference diagram.
The figure is an explanatory diagram of diffuse reflection, and Figures 9(a) and 9(b) are frequency diagrams of coating film thickness measurement. Frequency difference diagram, Figures 10 (a) and 10 (b) are side views showing the processing of reflected waves from unevenness. 1 frequency diagram, Figures 11 and 12 are two-dimensional and 8 An explanatory diagram of correction for dimensional inclination, Figure 13 is the same as Figure 12 (1)
...painting machine, (2) ... object to be painted, (4) ... transmitter, (5) ... wet coating film, (6) ... receiver, (7
)...Arithmetic machine, (8)...Conversion machine. Agent Patent Attorney Ryuta Fujita □ Figure 3 Figure 4 Figure 5 a) (b) Figure 6 Figure 7 Figure 9 Figure 10 CG) (b) Figure 14

Claims (1)

【特許請求の範囲】[Claims] ■ スプレーガンからなる塗装機と、該塗装機によシ形
成された被塗装体の表面の湿塗膜に高周波を照射する高
周波発信器と、前記被塗装体の表面および前記湿塗膜の
表面からの高周波の反射波を受信する高周波受信器と、
前記高周波の照射波と反射波とから前記湿塗膜の膜厚を
演算する演算機と、前記湿塗膜の膜厚から乾燥塗膜の膜
厚を換算する換算機とを備えたことを特徴とする塗膜厚
測定装置。
■ A coating machine consisting of a spray gun, a high-frequency oscillator that irradiates high frequency waves to the wet coating film formed on the surface of the object to be coated formed by the coating machine, and the surface of the object to be coated and the surface of the wet coating film. a high-frequency receiver that receives high-frequency reflected waves from the
The present invention is characterized by comprising a calculator that calculates the thickness of the wet coating film from the high-frequency irradiation wave and the reflected wave, and a converter that converts the thickness of the dry coating film from the thickness of the wet coating film. Paint film thickness measuring device.
JP17857481A 1981-11-06 1981-11-06 Coat thickness meter Pending JPS5880506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17857481A JPS5880506A (en) 1981-11-06 1981-11-06 Coat thickness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17857481A JPS5880506A (en) 1981-11-06 1981-11-06 Coat thickness meter

Publications (1)

Publication Number Publication Date
JPS5880506A true JPS5880506A (en) 1983-05-14

Family

ID=16050850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17857481A Pending JPS5880506A (en) 1981-11-06 1981-11-06 Coat thickness meter

Country Status (1)

Country Link
JP (1) JPS5880506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1023595A1 (en) * 1996-11-22 2000-08-02 Perceptron, Inc. Method and system for processing measurement signals to obtain a value for a physical parameter
JP2014193212A (en) * 2013-03-28 2014-10-09 Daio Paper Corp Roll paper and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1023595A1 (en) * 1996-11-22 2000-08-02 Perceptron, Inc. Method and system for processing measurement signals to obtain a value for a physical parameter
EP1023595A4 (en) * 1996-11-22 2003-07-09 Perceptron Inc Method and system for processing measurement signals to obtain a value for a physical parameter
JP2014193212A (en) * 2013-03-28 2014-10-09 Daio Paper Corp Roll paper and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7339382B1 (en) Apparatuses and methods for nondestructive microwave measurement of dry and wet film thickness
US7127821B1 (en) Automated method and apparatus for distance measurement
US10323931B2 (en) Method and system for aligning a terahertz sensor system
JP6187995B1 (en) Position detector using standing wave radar
JPS5880506A (en) Coat thickness meter
Daigle et al. Propagation of noise above ground having an impedance discontinuity
Hopkins On the efficacy of spatial sampling using manual scanning paths to determine the spatial average sound pressure level in rooms
Campos et al. On the multipath effects due to wall reflections for wave reception in a corner
Gentile et al. Radar-based vibration measurement on historic masonry towers
JPS5836752B2 (en) Sonic exploration method
CN208621017U (en) A kind of ultrasonic wave floor area measuring device
JPH11276978A (en) Formulation of coating film thickness in coating robot
JPH10260137A (en) Method and apparatus for detection of ripple on molten metal bath face
US20190285559A1 (en) Measurement device using x-ray reflection
JP4098652B2 (en) Film thickness simulation apparatus and method
JP2020125620A (en) Construction method of fire-resistive coating material, coating thickness management method, and coating thickness management device
JP7464222B2 (en) Sensor and painting device equipped with said sensor
JPH10267620A (en) Method and apparatus for detection of ripples on hot-dip metal bath face
JP2002096015A (en) Method of applying coating material
Tang et al. The prediction of façade effects from a point source above an impedance ground
JP3112158B2 (en) Sound source level measuring method and sound source level measuring device
JP2022091630A (en) Method for measuring thickness of coating layer
JP2540226B2 (en) How to paint the panel
JP2827903B2 (en) Control method of film thickness applied to concrete substrate
Krasnenko Sound propagation in the atmosphere above the ground surface