JPS5873253A - Optical signal transmission system - Google Patents

Optical signal transmission system

Info

Publication number
JPS5873253A
JPS5873253A JP56173507A JP17350781A JPS5873253A JP S5873253 A JPS5873253 A JP S5873253A JP 56173507 A JP56173507 A JP 56173507A JP 17350781 A JP17350781 A JP 17350781A JP S5873253 A JPS5873253 A JP S5873253A
Authority
JP
Japan
Prior art keywords
optical
terminal
optical signal
main
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56173507A
Other languages
Japanese (ja)
Other versions
JPS6232655B2 (en
Inventor
Takeshige Ichida
市田 健成
Kiyoshi Kubo
潔 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56173507A priority Critical patent/JPS5873253A/en
Publication of JPS5873253A publication Critical patent/JPS5873253A/en
Publication of JPS6232655B2 publication Critical patent/JPS6232655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection

Landscapes

  • Small-Scale Networks (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To eliminate the need for a large dynamic range in a receiving circuit, by eliminating a photo detection level at each terminal from being changed with a transmission signal from any terminal. CONSTITUTION:An output signal from terminal devices 7a-7d is converted into an optical signal with an electrooptic conversion circuits 5a-5d, coupled with the feeder fiber 10 with optical branching devices 4a-4d and transmitted to a main receiver at the termination section. The output of the device 8 is applied to a main transmitter 9, which converts an electric signal into an optical signal, and the optical signal passes through the devices 4a-4d via the 2nd feeder fiber 11 and applied to optoelectirc conversion circuits 6a-6d provided at terminal sections 7a-7d. The output of the circuits 6a-6d are applied to the terminals 7a-7d. Each terminal receives an adderss included in the signal when it is the address of itself and does not receive if different.

Description

【発明の詳細な説明】 本発明はデータバスを光伝送路におきかえ光フアイバ伝
送による特徴を生かした光信号伝送方式を提供しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to provide an optical signal transmission system that replaces a data bus with an optical transmission line and takes advantage of the characteristics of optical fiber transmission.

従来の光ネットワークは、第1図に示すT状。A conventional optical network is T-shaped as shown in FIG.

第2図に示すループ状、第3図に示すスター状の3種類
に大別される。第1図〜第3図において1は端末装置、
2は光分岐器、3は大分岐器の一種であるスターカップ
ラである。
It is roughly divided into three types: a loop shape as shown in FIG. 2, and a star shape as shown in FIG. In Figs. 1 to 3, 1 is a terminal device;
2 is an optical splitter, and 3 is a star coupler, which is a type of large splitter.

一般のT状ネットワークやループ状ネットワークは受動
的なアクセスカップラで光分岐を行なうと、端末数に比
例して分岐損失が指数関数的に増太し、端末数の増加と
ともにダイナミック−レンジの大きな光受信機を必要と
する欠点がある。
In general T-shaped networks and loop-shaped networks, when optical branching is performed using a passive access coupler, branching loss increases exponentially in proportion to the number of terminals, and as the number of terminals increases, optical fibers with a large dynamic range The disadvantage is that it requires a receiver.

スターネットワークは、分岐損失は端末数に対して対数
的にしか増加せず、比較的小さなダイナミックレンジの
光受信機で必要な規模のネットワークが構成できる特徴
があるが一方で端末の位置がスター状に配置されている
場合は良いが、ビル内の各室に端末があるような場合に
は配線が複雑化する欠点がある。
A star network has the characteristic that branching loss only increases logarithmically with respect to the number of terminals, and a network of the required scale can be constructed using optical receivers with a relatively small dynamic range. However, if there are terminals in each room in a building, the wiring becomes complicated.

本発明は上記欠点を除去しようとするものであり、以下
、・本発明の実施例を図面を参照して説明する。
The present invention aims to eliminate the above-mentioned drawbacks, and embodiments of the present invention will be described below with reference to the drawings.

第4図に示すように端末装置7d〜7dの出力信号は電
光変換回路(E/○)6a〜6dにより光信号に変換さ
れ、光分岐器4a〜4dによシ第一の幹線ファイバ1o
に結合され、終端部の主受信装置8に伝送される。主受
信装置8の出力は主発信装置9に供給される。主発信装
置9は電気信号を光信号に変換し、その光信号は第二の
幹線ファイバ11により、光分岐器4A〜4Dを通シ各
端末部7a〜7bに設けられた光電変換回路6a〜6d
に供給される。光電変換回路6a〜6dの出力は、各端
末7a〜7dに供給される。各端末7a〜7dにおいて
は、信号に含まれるアドレスが自分のアドレスであれば
受けとり、アドレスが異っておれば受けとらない。
As shown in FIG. 4, the output signals of the terminal devices 7d to 7d are converted into optical signals by the electro-optical conversion circuits (E/○) 6a to 6d, and then sent to the first trunk fiber 1o by the optical splitters 4a to 4d.
and is transmitted to the main receiving device 8 at the terminal end. The output of the main receiving device 8 is supplied to the main transmitting device 9. The main transmitter 9 converts the electrical signal into an optical signal, and the optical signal is passed through the optical splitters 4A to 4D by the second trunk fiber 11 to the photoelectric conversion circuits 6a to 6a provided at each terminal part 7a to 7b. 6d
supplied to The outputs of the photoelectric conversion circuits 6a to 6d are supplied to each terminal 7a to 7d. Each of the terminals 7a to 7d accepts the signal if the address included in the signal is its own address, and does not accept the signal if the address is different.

この通信制御手段の詳細については、Ethevnet
等で一般的であるのでここでは省略する。
For details of this communication control means, please refer to Ethevnet.
etc., so it is omitted here.

本発明によるこの方式は、どの端末からの発信信号であ
っても各端末における受光レベルが変化しないので、受
信回路に大きなダイナミックレンジを必要としないとい
う大きな特徴がある。
This method according to the present invention has a major feature in that the reception circuit does not require a large dynamic range because the level of light received at each terminal does not change regardless of the signal transmitted from any terminal.

さらに上記の特徴を利用すれば、分岐器の分岐部から幹
線への挿入および幹線から分岐部への分岐の方向が一定
であるため、分岐器の設置場所に応じて分岐比をあらか
じめ変化させて設置すれば、どこの位置にある発光レベ
ルもほぼ一定にすることができる。即ち、第2図におい
て、ファイバロス及びコネクタロスがないと仮定し、n
ヶの端末があると仮定した場合、主発信装置に近い位置
の分岐器から順に、分岐比を−、〜、□、・・・n  
 れ−1n−2 ・・・、シ、1とすれば受光レベルはどこの位置でもほ
ぼ同じ値となる。
Furthermore, if the above features are used, the direction of insertion from the branch to the main line and the direction of branching from the main line to the branch are constant, so the branch ratio can be changed in advance depending on the location of the switch. Once installed, the light emission level at any position can be made almost constant. That is, in FIG. 2, assuming that there is no fiber loss or connector loss, n
Assuming that there are 3 terminals, the branching ratios are -, ~, □, ... n in order from the branching switch closest to the main transmitter.
If R-1n-2 .

このことは、発光レベルについても同様であシ結合比を
主受信装置側から順に、 1 n’  n−1’  nつ7.・・・・・・、i、1と
すると、各端末の光電変換回路6の光出力が一定であっ
ても、主受信装置ではどの端末の信号でもほぼ一定の光
パワーで受けられることになる。このことは光パワーの
分配設計上9回路設計上、非常に設計しやすくなり、安
定化、低価格化につながるものである。
The same applies to the light emission level.The coupling ratios are set as 1 n'n-1' n in order from the main receiving device side7. ......, i, 1, even if the optical output of the photoelectric conversion circuit 6 of each terminal is constant, the main receiving device can receive the signal from any terminal with almost constant optical power. . This makes it extremely easy to design optical power distribution and nine circuits, leading to stability and cost reduction.

次に第6図を用いて本発明の特徴を生かした単線による
伝送ネットワークを説明するや基本的思想は第4図のも
のと同じであるが伝遺麟として幹線ファイバを一本とし
、端末から主受信装置の方向である上り方向に第1の光
の波長を用い、下り方向に第2の波長を用いるこ′とに
より省線化を図っている。
Next, using Figure 6, we will explain a single-wire transmission network that takes advantage of the features of the present invention.The basic idea is the same as the one in Figure 4, but the basic idea is to use a single trunk fiber, and from the terminal to the terminal. Wire saving is achieved by using the first wavelength of light in the up direction, which is the direction of the main receiving device, and using the second wavelength in the down direction.

第5図において、端末7の発信信号は、光電変換回路2
5により第1の波長λ1で発光され、分岐結合器31に
供給される。分岐結合器31の詳細については第4図に
示す。第4図において、21部におけるλ1の光パワー
をP1λ1 と現わすと(挿入損失を無視すると)次の
関係があるP2λ1”3’1″::p、a。
In FIG. 5, the signal transmitted from the terminal 7 is transmitted to the photoelectric conversion circuit 2.
5 emits light at a first wavelength λ1, and is supplied to the branching coupler 31. Details of the branching coupler 31 are shown in FIG. In FIG. 4, if the optical power of λ1 at part 21 is expressed as P1λ1, the following relationship (ignoring insertion loss) is P2λ1"3'1"::p,a.

P2λ2+P4λ2勾P1λ2 P3λ1/P2λ什P4λ2/P2λ2−軸即ちλ1に
関しては、P2の入力とP3の入力が混合され、Pl 
の出力となる。一方λ2に関してはPl  に(外部か
ら)供給された信号はP2とP4に分岐される。
P2λ2+P4λ2 slope P1λ2 P3λ1/P2λ什P4λ2/P2λ2 - Regarding the axis, that is, λ1, the input of P2 and the input of P3 are mixed,
The output is On the other hand, regarding λ2, the signal supplied to Pl (from the outside) is branched to P2 and P4.

次に第5図において、分岐結合器31に供給された光信
号は幹線ファイバ32を伝送され、終端部の光分配器3
6に供給される 光分配器36の詳細については第7図
に示す。第7図において、A点から入ったλ1の光はB
点に出力され、0点から入ったλ2の光はA点に出方さ
れる。
Next, in FIG. 5, the optical signal supplied to the branching coupler 31 is transmitted through the trunk fiber 32, and the optical signal is transmitted through the optical splitter 3 at the terminal end.
Details of the optical distributor 36 supplied to the optical system 6 are shown in FIG. In Figure 7, the light of λ1 entering from point A is B
The light of λ2 entering from point 0 is output to point A.

再び第6図において分配器36を経た上りの光信号は、
主受信装置8に到達する。主受信装置の電気出力は、主
発信装置39に供給される。この主発信装置39の発振
波長は、第2の波長λ で発振され分配器36を経て幹
線ファイバ32を下り方向に伝送される。この光信号は
上記分岐結合器31を経て、各端末部の光電変換回路6
に4給される。
Again in FIG. 6, the upstream optical signal that has passed through the distributor 36 is
It reaches the main receiving device 8. The electrical output of the main receiving device is supplied to the main transmitting device 39. The oscillation wavelength of the main oscillator 39 is oscillated at a second wavelength λ 2 and is transmitted down the trunk fiber 32 via the distributor 36 . This optical signal passes through the branch coupler 31 and then passes through the photoelectric conversion circuit 6 at each terminal.
will receive 4 salaries.

以上のように、幹線ファイバを一本にすることにより、
第2図の特徴をそこなうことなく省線化。
As mentioned above, by using only one trunk fiber,
The lines are reduced without sacrificing the features of Figure 2.

省コネクタ化が図れる。The number of connectors can be reduced.

次に第8図を用いて、本方式を拡張する場合の構成を説
明する。第8図において、本線部61と支線部62,6
3.・・・・・・からなる各部品は、第3図の場合と同
じであるが、本線部の端末部は端末装置が直接に接続さ
れず、支線部の主発信装置及び主受信装置が接続される
。即ち、本線部61の光電変換回路6の出力は、支線部
62の主発信装置39が接続され、支線部62の主受信
装置8の出力は本線部の電光変換回路26に接続される
Next, using FIG. 8, a configuration for expanding this method will be described. In FIG. 8, a main line section 61 and branch line sections 62, 6
3. The components consisting of... are the same as in Figure 3, but the terminal unit of the main line section is not directly connected to the terminal device, but the main transmitting device and main receiving device of the branch line section are connected. be done. That is, the output of the photoelectric conversion circuit 6 of the main line section 61 is connected to the main transmitting device 39 of the branch line section 62, and the output of the main receiving device 8 of the branch line section 62 is connected to the electro-optical conversion circuit 26 of the main line section.

本線部の他の端末部も同様に支線部と結合されてもよい
し、又一部端末装置がそのまま結合されよい。このよう
な構成にすると、二次元的配線を行なうことができる。
Other terminal portions of the main line portion may be similarly coupled to the branch line portion, or some terminal devices may be coupled as they are. With such a configuration, two-dimensional wiring can be performed.

即ちピル内で本線部を垂直に配線し、支線部を各階毎に
水平に配線する等考えられる。この二次元的配線にすれ
ば単に継続的につないでいく一次元的配線に比べ、最も
長い距離に設けられた端末から終端までの通過する分岐
結合器の数は少なくなり、能率的な設計が可能となる。
In other words, it is conceivable to route the main line section vertically within the pill, and route the branch line section horizontally for each floor. With this two-dimensional wiring, compared to one-dimensional wiring that simply connects continuously, the number of branch couplers that pass through from the longest terminal to the terminal is reduced, allowing for efficient design. It becomes possible.

例えば、16ケの端末を考えた場合−次元的配線では最
大16ケの分岐結合器を通過する必要があるが、二次元
的配線では最大8ケである。
For example, when considering 16 terminals, it is necessary to pass through a maximum of 16 branch couplers in a -dimensional wiring, but a maximum of 8 in a two-dimensional wiring.

これにより任意の1ケの端末から発信された信号はすべ
ての端末にほぼ同時に供給することができる。
This allows a signal transmitted from any one terminal to be supplied to all terminals almost simultaneously.

以上のように本発明によれば、どの端末からの信号によ
っても各端末の受光レベルが変動しない。
As described above, according to the present invention, the light reception level of each terminal does not vary depending on the signal from any terminal.

また分岐結合比を設置場所に応じて変化することにより
各端末の受光レベル、発光レベルがほぼ一定である。ま
た一本のファイバで伝送でき省線化が図れる。さらに、
二次元的構成ができ、プロシフ毎にまとまって配線でき
、能率のよい配線構成ができる。また光レベルの点から
も有効で平等な分配ができるものである。
Furthermore, by changing the branching/coupling ratio depending on the installation location, the light reception level and light emission level of each terminal are almost constant. In addition, it can be transmitted using a single fiber, saving wires. moreover,
A two-dimensional configuration is possible, wiring can be done in groups for each procif, and an efficient wiring configuration is possible. It also allows for effective and equal distribution in terms of light level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図はそれぞれ従来例における光ネ
ットワークの構成図、第4図は本発明の光信号伝送方式
の基本的構成を示すブロック図、第6図は同方式の他の
実施例のブロック図、第6図、第7図は第4図の一部分
の構成図、第8図は同他の実施例のブロック線図である
。 4a〜4d・・・・・・光分岐器、6a〜6d・・・・
・・電光変換回路、7a〜7d・・・・・・端末装置、
8・・・・・・主受信装置、9・・・・・・主発信装置
、10゜11・・・・・・幹線ファイバ、6a〜6d・
・・・・・光電変換回路、4A〜4D・・・・・・光分
岐器、26・・・・・光電変換回路、31・・・・・・
分岐結合器、32・・・・・幹線ファイバ、36・・・
・・・光分配器、39・・・・・−主発信装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ! 第3図 第4図 115図 \7/ 第6図 j
1, 2, and 3 are configuration diagrams of optical networks in conventional examples, FIG. 4 is a block diagram showing the basic configuration of the optical signal transmission system of the present invention, and FIG. 6 is a block diagram showing the basic configuration of the optical signal transmission system of the present invention. FIGS. 6 and 7 are block diagrams of a part of FIG. 4, and FIG. 8 is a block diagram of another embodiment. 4a to 4d... optical splitter, 6a to 6d...
...Electronic conversion circuit, 7a to 7d...Terminal device,
8... Main receiving device, 9... Main transmitting device, 10°11... Trunk fiber, 6a to 6d.
...Photoelectric conversion circuit, 4A to 4D... Optical splitter, 26... Photoelectric conversion circuit, 31...
Branch coupler, 32... Trunk fiber, 36...
...Optical distributor, 39...-Main transmitter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure! Figure 3 Figure 4 115 Figure \7/ Figure 6 j

Claims (4)

【特許請求の範囲】[Claims] (1)複数の光分岐結合器が幹線ファイバにより縦続的
につながれているT状ネットワークを備え、上記光分岐
結合器の分岐部に結合されている電光変換回路から発信
された光信号は、幹線ファイバを同一の上り方向に伝送
され、終端部に設けられた主受信装置で受光され、この
主受信装置の出力である電気信号は、主発信装置に供給
され、この−発振装置からの光信号は、同一の下り方向
に伝送されすべての端末の光電変換回路に供給されるこ
とを特徴とした光信号伝送゛方式。
(1) A T-shaped network is provided in which a plurality of optical branching couplers are cascaded by trunk fibers, and the optical signal transmitted from the electro-optical conversion circuit coupled to the branch part of the optical branching coupler is connected to the trunk fiber. The electrical signal transmitted through the fiber in the same upstream direction is received by the main receiving device installed at the end, and the output of this main receiving device is supplied to the main transmitting device, and the optical signal from this oscillating device is is an optical signal transmission method characterized by being transmitted in the same downstream direction and supplied to the photoelectric conversion circuits of all terminals.
(2)幹線ファイバとして一体のファイバを用い、上り
方向は第1の波長で伝送し、下り方向は第2の波長で伝
送し、終端部に分配器を設けた特許請求の範囲第1項記
載の光信号伝送方式。
(2) Claim 1 describes the use of an integrated fiber as the trunk fiber, transmitting at a first wavelength in the up direction, transmitting at a second wavelength in the down direction, and providing a splitter at the terminal end. optical signal transmission method.
(3)各端末の受光レベルがほぼ一定になるよう、分岐
結合器の分岐比を端末の数と位置に応−て変化1文特許
請求の範囲第1項記載の光信号伝送方式。
(3) The optical signal transmission system according to claim 1, in which the branching ratio of the branching coupler is changed according to the number and position of the terminals so that the light reception level of each terminal is almost constant.
(4)第1の伝送系の端末部の光電変換回路の出力が第
2の伝送系の主発信装置の入力に接続され、上記端末部
の電光変換回路の入力は、第2の伝送系の主受信装置の
出力が接続されることにより二
(4) The output of the photoelectric conversion circuit of the terminal section of the first transmission system is connected to the input of the main transmitter of the second transmission system, and the input of the electro-optical conversion circuit of the terminal section is connected to the input of the main transmitter of the second transmission system. By connecting the output of the main receiver,
JP56173507A 1981-10-28 1981-10-28 Optical signal transmission system Granted JPS5873253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56173507A JPS5873253A (en) 1981-10-28 1981-10-28 Optical signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56173507A JPS5873253A (en) 1981-10-28 1981-10-28 Optical signal transmission system

Publications (2)

Publication Number Publication Date
JPS5873253A true JPS5873253A (en) 1983-05-02
JPS6232655B2 JPS6232655B2 (en) 1987-07-16

Family

ID=15961803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56173507A Granted JPS5873253A (en) 1981-10-28 1981-10-28 Optical signal transmission system

Country Status (1)

Country Link
JP (1) JPS5873253A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200832A (en) * 1986-02-20 1987-09-04 エイ・ティ・アンド・ティ・コーポレーション Waveguide communication system
US7212540B2 (en) 2001-04-05 2007-05-01 Nortel Networks Limited Time slot scheduling for shared-medium communications networks
JP2011526104A (en) * 2008-06-17 2011-09-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical broadcast communication system and method
JP2012507924A (en) * 2008-10-31 2012-03-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical broadcast bus with shared optical interface
JP5257710B2 (en) * 2008-02-27 2013-08-07 日本電気株式会社 Optical integrated circuit device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200832A (en) * 1986-02-20 1987-09-04 エイ・ティ・アンド・ティ・コーポレーション Waveguide communication system
US7212540B2 (en) 2001-04-05 2007-05-01 Nortel Networks Limited Time slot scheduling for shared-medium communications networks
JP5257710B2 (en) * 2008-02-27 2013-08-07 日本電気株式会社 Optical integrated circuit device
JP2011526104A (en) * 2008-06-17 2011-09-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical broadcast communication system and method
US8391714B2 (en) 2008-06-17 2013-03-05 Hewlett-Packard Development Company, L.P. Optical broadcast systems and methods
JP2012507924A (en) * 2008-10-31 2012-03-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Optical broadcast bus with shared optical interface
US8687961B2 (en) 2008-10-31 2014-04-01 Hewlett-Packard Development Company, L.P. Optical broadcast with buses with shared optical interfaces

Also Published As

Publication number Publication date
JPS6232655B2 (en) 1987-07-16

Similar Documents

Publication Publication Date Title
KR910004403B1 (en) Optical backplane
US4233589A (en) Active T-coupler for fiber optic local networks which permits collision detection
KR970019603A (en) Curveside Circuitry for Interactive Communication Services
HU224588B1 (en) System and method for bi-directional data transfer
JPS5819044A (en) Electro-optical interface circuit
JPS5873253A (en) Optical signal transmission system
US5404241A (en) Optical communication network
JP2003234681A (en) Connector device and power line carrier communication method
JPS62278827A (en) Optical data bus type network
JPS5981935A (en) Compound optical communication system
JPS62278826A (en) Optical data bus type network
JPS58172039A (en) Optical transmission system
JPS58200644A (en) Optical bus system
JPS58101536A (en) Annular optical communication device
JPS5917743A (en) Optical branching device
Inbar Optical Channels In Distributed Processing
JPH079467Y2 (en) Optical adapter
JPS62239630A (en) Optical bus type network
JPH03127524A (en) Two-way optical data transmission system
JPH0533067Y2 (en)
JPH0468636B2 (en)
JPH1155192A (en) Optical transmission system
JPS63181545A (en) Signal multiplex transmission system
JPH06197082A (en) Optical network
JPH02205127A (en) Optical bus transmission system