JPS586415A - Thermal flow meter - Google Patents

Thermal flow meter

Info

Publication number
JPS586415A
JPS586415A JP56103397A JP10339781A JPS586415A JP S586415 A JPS586415 A JP S586415A JP 56103397 A JP56103397 A JP 56103397A JP 10339781 A JP10339781 A JP 10339781A JP S586415 A JPS586415 A JP S586415A
Authority
JP
Japan
Prior art keywords
temperature
resistor
flow rate
sensitive resistor
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56103397A
Other languages
Japanese (ja)
Inventor
Sadayasu Ueno
上野 定寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56103397A priority Critical patent/JPS586415A/en
Publication of JPS586415A publication Critical patent/JPS586415A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Abstract

PURPOSE:To obtain a thermal flow meter which can measure both the flow rate and the temperature of a fluid at one time with a simple constitution of circuit, by providing separately a terminal to draw out an output in accordance with the resistance value of a temperature compensating resistor. CONSTITUTION:A terminal is provided separately to draw out an output corresponding to the resistance value of a temperature compensating resistor 3. For instance, a terminal is connected through a joint 10 between the resistor 3 in bridge branch of temp. compensating side, and a resistance R3 to draw out the aspirated temperature signal T. An output corresponding to the resistance value of the resistor 3 can be drawn out at the joint 10. The resistance value of the resistor 3 varies by the temperature of the fluid that flows within a path 1 and shows the value corresponding to the temperature of the fluid. Thus the temperature of the fluid can be detected by the signal T.

Description

【発明の詳細な説明】 本発明は熱式流量計に関し、特に、流路中に設置される
温度依存性の感温抵抗体と温度補償抵抗体とを有しこれ
ら2つの抵抗体の温度差をは’y 一定に維持するよう
前記感温抵抗体の制御電流をバランスさせながら流量検
知信号をうる形式の熱式流量計において、流量検知信号
と同時に流体温度検知信号をも取出しうるよう改良した
熱式流量計を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal flow meter, and in particular, it has a temperature-dependent temperature-sensitive resistor and a temperature-compensating resistor installed in a flow path, and the temperature difference between these two resistors is In a thermal flowmeter of the type that obtains a flow rate detection signal while balancing the control current of the temperature-sensitive resistor to maintain a constant flow rate, an improvement has been made so that a fluid temperature detection signal can be extracted at the same time as the flow rate detection signal. The present invention provides a thermal flow meter.

自動車等のエンジン制御においては、点火時期。In the engine control of automobiles, etc., ignition timing.

空燃比、EGR(排気ガス還流システム)、或いはl5
O(アイドルスピードコントロール)等各種の制御が実
施されており、これらのエンジン制御は通常エンジン回
転数並びに吸気流量又は吸気負圧の検出信号によジエン
ジン状態を検知しながら行われている。更に、エンジン
の仕様等に応じて、冷却水の水温あるいは吸気温度等を
も検知してこれらの検知信号に基づく補正を行いながら
特定の運転状態に対応しうるエンジン制御が行われてい
る。特に、エンジンの寒冷始動時には充分濃厚な混合気
を供給して始動性を容易にする為空燃比を一時的に濃め
に制御する必要がある。前記吸気流量の検知手段として
熱式流量計が広く採用されている。この熱式流量計は吸
気通路内に設置された感温抵抗体の発熱量と放熱量との
バランス状態における該感温抵抗体への制御電流値(又
は電圧)によシ出力信号をうるものである。又、自動車
用エンジンは一20tll’ないし120Cといった広
い温度範囲で使用される為、吸気量検出値の温度補償を
行う必要があシ、この目的の為同じく温度依存性の温度
補償抵抗体を別に設け、前記感温抵抗体と温度補償抵抗
体との温度差がはソ一定になるよう各抵抗体への制御電
流をバランスさせることが行われている。    − この種の感温抵抗体と温度補償抵抗体とを有する熱式流
量計は、一方のブリッジ分岐に流路中に設置されかつ制
御電流によシ加熱される温度依存性の感温抵抗体を接続
し、他方のブリッジ分岐に流体温度によって抵抗値が変
化する温度補償抵抗体を接続したブリッジ回路を設け、
該ブリッジ回路の対角線分岐を制御電流供給用増幅器の
入力端子に接続し、前記感温抵抗体と前記温度補償抵抗
体との温度差がタデソ一定になるよう前記感温抵抗体の
電流を制御するよう構成されている。
Air fuel ratio, EGR (exhaust gas recirculation system), or l5
Various types of controls such as O (idle speed control) are implemented, and these engine controls are normally performed while detecting the engine state based on detection signals of the engine rotation speed, intake flow rate, or intake negative pressure. Furthermore, depending on the specifications of the engine, the temperature of the cooling water, the temperature of the intake air, etc. are also detected, and corrections are made based on these detection signals to perform engine control that can respond to specific operating conditions. In particular, when starting the engine cold, it is necessary to temporarily control the air-fuel ratio to be rich in order to supply a sufficiently rich air-fuel mixture to facilitate starting. A thermal flow meter is widely used as a means for detecting the intake air flow rate. This thermal flow meter obtains an output signal based on the control current value (or voltage) to the temperature-sensitive resistor installed in the intake passage when the amount of heat generated by the resistor and the amount of heat dissipated are balanced. It is. In addition, since automobile engines are used in a wide temperature range from -20tll' to 120C, it is necessary to temperature-compensate the intake air amount detection value, and for this purpose, a separate temperature-compensating resistor that is also temperature-dependent is used. The control current to each resistor is balanced so that the temperature difference between the temperature-sensitive resistor and the temperature-compensating resistor becomes constant. - Thermal flowmeters with a temperature-sensitive resistor and a temperature-compensating resistor of this type have a temperature-dependent temperature-sensitive resistor installed in the flow path in one bridge branch and heated by the control current. A bridge circuit is installed in which a temperature-compensating resistor whose resistance value changes depending on the fluid temperature is connected to the other bridge branch.
A diagonal branch of the bridge circuit is connected to an input terminal of an amplifier for controlling current supply, and the current of the temperature-sensitive resistor is controlled so that the temperature difference between the temperature-sensitive resistor and the temperature-compensating resistor becomes constant by 5 degrees. It is configured like this.

従来のこの種の熱式流量計は、もっばら吸気流量を検出
することを目的としており、吸気温度についてはこれを
出力信号として取り出す機能は備えていなかった。従っ
て、吸気温度の検出が必要なときには独立した感温素子
を別に設ける必要があった。
Conventional thermal flowmeters of this type have been designed to detect the intake air flow rate, and have not been equipped with a function to extract the intake air temperature as an output signal. Therefore, when it is necessary to detect the intake air temperature, it is necessary to separately provide an independent temperature sensing element.

本発明の目的は、極めて簡単かつコンパクトな回路構成
で本来の流量のみならず流体温度(吸気温度等)をも同
時に測定しうる熱式流量計を提供することである。
An object of the present invention is to provide a thermal flowmeter that can simultaneously measure not only the original flow rate but also the fluid temperature (intake temperature, etc.) with an extremely simple and compact circuit configuration.

本発明の特徴は、前述の如き従来の熱式流量計において
温度補償抵抗体の抵抗値に応じた出力を取り出す為の端
子を別に設ける点にある。
A feature of the present invention is that in the conventional thermal flowmeter as described above, a separate terminal is provided for taking out an output corresponding to the resistance value of the temperature compensating resistor.

即ち、本発明によれば、一方のブリッジ分岐に流路中に
設置されかつ制御電流によって加熱される温度依存性の
感温抵抗体を接続し、他方のブリッジ分岐に流体温度に
よって抵抗値が変化する温度補償抵抗体を接続したブリ
ッジ回路を備え、該ブリッジ回路の対角線分岐を制御電
流供給用増幅器の入力端子に接続し、前記感温抵抗体と
前記温度補償抵抗体との温度差がはソ一定になるよう前
記感温抵抗体の電流を閉ループ制御する熱式流量計にお
いて、前記温度補償抵抗体の抵抗値に応じた出力を取り
出す端子を設け、流体温度をも検知しうる様構成するこ
とを特徴とする熱式流量計が提供される。
That is, according to the present invention, a temperature-dependent temperature-sensitive resistor installed in the flow path and heated by a control current is connected to one bridge branch, and a temperature-dependent temperature-sensitive resistor whose resistance value changes depending on the fluid temperature is connected to the other bridge branch. A diagonal branch of the bridge circuit is connected to an input terminal of an amplifier for supplying a control current, and the temperature difference between the temperature-sensitive resistor and the temperature-compensating resistor is In a thermal flowmeter that controls the current of the temperature-sensitive resistor in a closed loop so that the current is constant, a terminal is provided to take out an output according to the resistance value of the temperature-compensating resistor, and the temperature of the fluid can also be detected. A thermal flow meter is provided which is characterized by:

以下第1図ないし第5図を参照して本発明の詳細な説明
する。
The present invention will be described in detail below with reference to FIGS. 1 to 5.

第1図は本発明による熱式流量計の一実施例を示す回路
構成図である。
FIG. 1 is a circuit diagram showing an embodiment of a thermal flowmeter according to the present invention.

第1図において、被測定流体が矢印F方向に流れる流路
(例えばエンジン吸気通路)1内には温度依存性の抵抗
体で形成された所定の抵抗値を有する感温抵抗体が設置
されている。前記流路1内には更に温度依存性の抵抗体
で構成された温度補償抵抗体3も設置されている。
In FIG. 1, a temperature-sensitive resistor having a predetermined resistance value formed of a temperature-dependent resistor is installed in a flow path (for example, an engine intake passage) 1 through which the fluid to be measured flows in the direction of arrow F. There is. A temperature compensating resistor 3 composed of a temperature-dependent resistor is also installed in the flow path 1.

電源4からはトランジスタ5のコレクタ及びエミッタを
介して分岐点Aに制御電圧が印加されている。この分岐
点Aから接続点B及び接続点Cへ至る一方のブリッジ分
岐には、流路中に設置されかつ制御電流によって加熱さ
れる温度依存性の前記感温抵抗体2と固定抵抗R3が直
列に接続されている。又、感温抵抗体と湛列に、2個の
抵抗r1’+ r2を直列接続した分圧抵抗が接続され
ている。この分圧抵抗r、、r2のいずれかの抵抗値を
調節することによりそれらの接続点Zにおける電圧を分
圧比に応じて調節することができる。
A control voltage is applied from the power source 4 to the branch point A via the collector and emitter of the transistor 5. At one of the bridge branches leading from the branch point A to the connection points B and C, the temperature-dependent temperature-sensitive resistor 2, which is installed in the flow path and heated by the control current, and a fixed resistor R3 are connected in series. It is connected to the. Further, a voltage dividing resistor in which two resistors r1'+r2 are connected in series is connected in series with the temperature-sensitive resistor. By adjusting the resistance value of any one of the voltage dividing resistors r, , r2, the voltage at the connection point Z can be adjusted according to the voltage dividing ratio.

他方のブリッジ分岐は前記接続点Cから抵抗R3、接続
点10.接続点り、温度補償抵抗体3及び抵抗8を通し
て接続点A、へ至る分岐路によって構成されている。こ
の接続点AIは増幅器7の出力側に接続された点であり
、この増幅器7のプラス相には前記接続点Bが接続され
、該増幅器7のマイナス相には前記接続点りが接続され
ている。従って、接続点A1の電圧は前記分岐点Aの電
圧に対し一定の比率を有してかシ、点Aにおける電圧変
化に応じて変化する。又、前記接続点Bと前記接続点り
はブリッジ回路の対角線分岐点をなすものである。
The other bridge branch is connected from the connection point C to the resistor R3 to the connection point 10. It is constituted by a branch path leading to the connection point A through the connection point A, the temperature compensating resistor 3, and the resistor 8. The connection point AI is connected to the output side of the amplifier 7, the connection point B is connected to the positive phase of the amplifier 7, and the connection point B is connected to the negative phase of the amplifier 7. There is. Therefore, the voltage at the connection point A1 has a constant ratio to the voltage at the branch point A and changes in accordance with the voltage change at the point A. Further, the connection point B and the connection point 1 form diagonal branch points of the bridge circuit.

前記分圧抵抗’l + ’2の接続点Zは遅延回路9を
介して増幅器6のプラス相に接続されている。
A connection point Z of the voltage dividing resistor 'l+'2 is connected to the positive phase of the amplifier 6 via a delay circuit 9.

前記接続点A1は増幅器6のマイナス相に接続されてい
る。増幅器6の出力側は前記トランジスタ5のベースに
接続されている。
The connection point A1 is connected to the negative phase of the amplifier 6. The output side of the amplifier 6 is connected to the base of the transistor 5.

以上第1図に説明した回路構成によれば、接続点Aを入
力側とし、接続点Cを接地側とするブリッジ回路の各分
岐点B、Dのブリッジバランスを閉ループ制御すること
ができ、係るバランス状態における感温抵抗体2への電
流値即ち該感温抵抗体の温度を一定にするような電流値
(制御電流)により流路1内の流賞即ち感温抵抗体1か
らの熱放散量に対応する流量を検知することができる。
According to the circuit configuration described above in FIG. The current value in the flow path 1, that is, heat dissipation from the temperature-sensitive resistor 1, is controlled by the current value (control current) that makes the temperature of the temperature-sensitive resistor 2 constant, that is, the temperature of the temperature-sensitive resistor 2 in a balanced state. The flow rate corresponding to the amount can be detected.

この検知信号は出力側ブリッジ分岐の対角線分岐点Bか
ら取り出され出力信号Vとして検知することができる。
This detection signal is taken out from the diagonal branch point B of the output bridge branch and can be detected as an output signal V.

流体温度が変化した場合には感温抵抗体2からの熱放散
量も変化するが、この場合には温度補償抵抗体3を流れ
る温度補償側プリンジ分岐の電流を、感温抵抗体2とこ
の温度補償抵抗体3との温度差がはソ一定になるように
制御することにより、温度補償を行うことができる。こ
うして、前記出力信号Vにより温度変化に関係なく流路
l内を流れる流量を正確に検出することができる。
When the fluid temperature changes, the amount of heat dissipated from the temperature-sensitive resistor 2 also changes. Temperature compensation can be performed by controlling the temperature difference with the temperature compensation resistor 3 to be constant. In this way, the output signal V can accurately detect the flow rate flowing through the flow path 1 regardless of temperature changes.

更に、第1図に示す回路構成においては、温度補償側ブ
リッジ分岐内の温度補償抵抗体3と抵抗R8との間の接
続点10から吸気温度信号Tを取り出す端子が接続され
ている。この接続点10は前記温度補償抵抗体3の抵抗
値に応じた出力を取り出しうる点である。この温度補償
抵抗体の抵抗値は流路1内を流れる流体温度によって変
化し該流体温度に対応した値を示すので、前記出力信号
Tにより流体温度を検知することができる。即ち、第1
図に示す熱式流量計の回路構成によれば、前記流量検知
信号Vと共に吸気温度信号Tをも取り田すことができ、
流量及び流体温度を同時に検出することができる。
Furthermore, in the circuit configuration shown in FIG. 1, a terminal for taking out the intake air temperature signal T is connected to a connection point 10 between the temperature compensation resistor 3 and the resistor R8 in the bridge branch on the temperature compensation side. This connection point 10 is a point from which an output corresponding to the resistance value of the temperature compensation resistor 3 can be taken out. The resistance value of this temperature compensating resistor changes depending on the temperature of the fluid flowing in the flow path 1 and shows a value corresponding to the fluid temperature, so the fluid temperature can be detected from the output signal T. That is, the first
According to the circuit configuration of the thermal flowmeter shown in the figure, it is possible to obtain the intake air temperature signal T as well as the flow rate detection signal V,
Flow rate and fluid temperature can be detected simultaneously.

第2図は本発明による熱式流量計の変更実施例を示す回
路構成図である。
FIG. 2 is a circuit diagram showing a modified embodiment of the thermal flowmeter according to the present invention.

第2図の実施例は、第1図の回路のブリッジ回路部分の
温度補償側ブリッジ分岐に吸気温信号安定化回路を接続
し、この安定化回路を介して吸気温信号Tを取り出すよ
うにした点で第1図の実施例と相違しており、その他の
構成はすべて第1図の実施例の場合と実質上同じである
。第2図においても第1図の各部分に対応する部分は夫
々同一符号で表示されておシその詳細な説明を省略する
In the embodiment shown in FIG. 2, an intake temperature signal stabilization circuit is connected to the bridge branch on the temperature compensation side of the bridge circuit portion of the circuit shown in FIG. 1, and the intake temperature signal T is taken out through this stabilization circuit. This embodiment differs from the embodiment shown in FIG. 1 in this respect, and all other configurations are substantially the same as in the embodiment shown in FIG. In FIG. 2, parts corresponding to those in FIG. 1 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第2図の実施例においては、接続点A、と同電位の接続
点11に抵抗12及び抵抗13からなる分圧抵抗が接続
され、これらの分圧抵抗間の接続点は増幅器14のマイ
ナス相に接続されている。
In the embodiment shown in FIG. 2, a voltage dividing resistor consisting of a resistor 12 and a resistor 13 is connected to a connecting point 11 having the same potential as the connecting point A, and the connecting point between these voltage dividing resistors is connected to the negative phase of the amplifier 14. It is connected to the.

一方、温度補償側ブリッジ分岐の対角線分岐点りと同り
の接続点10は増幅器14のプラス相に接続されている
。この増幅器14の出力側に吸気温信号Tを取9出す端
子が接続されている。尚、増幅器14のマイナス相入力
側と該増幅器の出力側との間に並列抵抗15が接続され
ている。
On the other hand, the connection point 10, which is the same as the diagonal branch of the bridge branch on the temperature compensation side, is connected to the positive phase of the amplifier 14. A terminal for taking out an intake air temperature signal T is connected to the output side of the amplifier 14. Note that a parallel resistor 15 is connected between the negative phase input side of the amplifier 14 and the output side of the amplifier.

第2図の構成によれば、温度補償抵抗体3の抵抗値に応
じた電圧が得られる接続点1oを増幅器14を介して端
子Tに接続したので、温度補償抵抗体3の抵抗値に応じ
た出力を適宜増幅修正した信号を吸気温信号Tとして取
り出すことができる。
According to the configuration shown in FIG. 2, the connection point 1o, where a voltage corresponding to the resistance value of the temperature compensation resistor 3 is obtained, is connected to the terminal T via the amplifier 14. A signal obtained by appropriately amplifying and correcting the output can be extracted as the intake temperature signal T.

従って、第1図によって得られる吸気温信号に比べ、所
定レベルまで増幅すると共に出力の安定化が計られた信
号を吸気温信号Tとして取り出すことができる。
Therefore, compared to the intake temperature signal obtained in FIG. 1, a signal that has been amplified to a predetermined level and whose output has been stabilized can be extracted as the intake temperature signal T.

第1図及び第2図に示す実施例において、感温抵抗体2
と並列に接続された分圧抵抗r、及びr2間の接続点Z
は遅延回路9を介して増幅器6のプラス層に接続されて
いる。以下この遅延回路を接続する理由について説明す
る。
In the embodiment shown in FIGS. 1 and 2, the temperature-sensitive resistor 2
The connection point Z between the voltage dividing resistor r and r2 connected in parallel with
is connected to the positive layer of the amplifier 6 via a delay circuit 9. The reason for connecting this delay circuit will be explained below.

第3図は第1図及び第2図に示す熱式流量計の駆動回路
の動作を例示する図であり、流量Qが図示の如く段階状
に変化した場合、流量検知信号Vは第3図中実線で示す
如くその立上シ点においては、閉ループ制御等の動作遅
れの為、なだらかに変化するが、その立下シ点において
は流量QとはyloJ様段階以上に変化する。即ち、立
上り点においては応答遅れがあシ立下り点においては応
答遅れが存在しない。
FIG. 3 is a diagram illustrating the operation of the drive circuit of the thermal flowmeter shown in FIGS. 1 and 2. When the flow rate Q changes stepwise as shown, the flow rate detection signal V is as shown in FIG. As shown by the solid line, at the rising point, the flow rate changes smoothly due to the delay in closed loop control, etc., but at the falling point, the flow rate Q changes more than the yloJ-like stage. That is, there is a response delay at the rising point and no response delay at the falling point.

第4図も第3図と同様な特性を示す図であシ、検出流量
信号Q、の立上り点及び立下り点における応答性を示す
図であり、第4図中の実線は第3図中の実線に対応して
いる。即ち、−立上り点においては曲線S1で示す如く
流量Qの段階的変化に対し応答遅れをしてなだらかに変
化するが、立下り点においては曲?fM S 2に示す
如く流量Qの段階的変化に対応して急速に変化する。
FIG. 4 is also a diagram showing the same characteristics as FIG. 3, and is a diagram showing the responsiveness at the rising and falling points of the detected flow rate signal Q. corresponds to the solid line. That is, at the -rise point, as shown by the curve S1, there is a delay in response to the stepwise change in the flow rate Q, and it changes gently, but at the -fall point, the flow rate changes smoothly. As shown in fM S 2, it changes rapidly in response to a stepwise change in the flow rate Q.

第3図及び第4図の実線で示す如く、流量に対する検出
信号の応答性が立上り点及び立下り点で異なり非対称で
あると、流路中の流れの脈動の大きさに変化があった場
合にその測度差により検出誤差が生じることになる。即
ち、脈動が比較的小さい場合には検出信号Vの積分面積
が比較的大きくなり結果として検出値が基準流量に対し
高い値を示すことになる。これに対し、脈動が大きい場
合には立上り点の応答性が遅いという影響が大きくひび
いて、脈動が小さい場合に比べその検出信号Vの値が比
較的小さくなってしまう。即ち、脈動の大小に応じて、
流量が同じ場合でもその検出信号の値が異なり、安定し
た測定を行うことができず、誤差が生じるということに
なる。
As shown by the solid lines in Figures 3 and 4, if the responsiveness of the detection signal to the flow rate is different at the rising and falling points and is asymmetrical, there is a change in the magnitude of the flow pulsation in the flow path. A detection error will occur due to the measurement difference. That is, when the pulsation is relatively small, the integral area of the detection signal V becomes relatively large, and as a result, the detected value shows a value higher than the reference flow rate. On the other hand, when the pulsation is large, the influence of slow response at the rising point becomes significant, and the value of the detection signal V becomes relatively small compared to when the pulsation is small. In other words, depending on the magnitude of the pulsation,
Even when the flow rate is the same, the values of the detection signals are different, making it impossible to perform stable measurements and causing errors.

更に、脈動率が更に大きくなると、同じ流量に対する検
出信号の値が小さくなり、脈動が小さい場合と脈動が大
きい場合において、流量が異なるにもかかわらず同一検
出信号を形成することになり、所ゆる2値問題が生ずる
。この2値問題も測定制度を高める為には解決しなけれ
ばならない問題である。
Furthermore, as the pulsation rate increases, the value of the detection signal for the same flow rate becomes smaller, and the same detection signal is formed when the pulsation is small and when the pulsation is large, even though the flow rates are different. A binary problem arises. This binary problem must also be solved in order to improve measurement accuracy.

前記遅延回路9はこの様な脈動の有無或いは大小の時に
生ずる検出誤差を低減する為のものである。即ち、第1
図及び第2図における遅延回路9として第5図に示す構
成の遅延回路を使用することによシ、立下シ点における
応答性を遅い方向に調整することにより、立上シ点及び
立下シ点における応答性を同じ様に遅らせることができ
る。即ち、立下り点における応答性を第3図及び第4図
中点線で示す如く立上シ点と同様な状態にすることによ
り、前述の脈動の有無及び大小による検出誤差を解消す
ることができる。
The delay circuit 9 is provided to reduce detection errors that occur when such pulsations are present or large. That is, the first
By using the delay circuit having the configuration shown in FIG. 5 as the delay circuit 9 in FIG. The responsiveness at the point can be similarly delayed. That is, by making the responsiveness at the falling point similar to that at the rising point as shown by the dotted line in FIGS. 3 and 4, it is possible to eliminate the detection error caused by the presence or absence of pulsation and its magnitude. .

第5図は第1図及び第2図中の遅延回路の内部構成を示
す図である。第5図において遅延回路9は2個の増幅器
16.17とこれらの増幅器の間で並列に接続された8
0回路と整流素子18とを有する。第1図及び第2図中
の接続点Zは増幅器16のプラス相に接続され、該増幅
器16の出力側は整流素子18を介して増幅器17のプ
ラス相に接続されている。増幅器17の出力側は該増幅
器のマイナス相に接続されると共に、分岐点19で分岐
された後抵抗20を介して増幅器16のマイナス相へも
接続されている。増幅器16のマイナス相は抵抗21を
介して接地されている。前記整流素子18と増幅器17
との間には抵抗比及び容量Cからなる遅延回路要素が並
列に接続されておシ、接続点Zにおける電圧が上昇する
立上り時に前記容量Cへ充電すると共に、立下る時には
容量Cから抵抗Rへ放電させ、立下シ時のみ接続点Zに
おける急激な変化に対する応答性を遅らせるようになっ
ている。この応答性遅れは容量C及び抵抗比の値によっ
て定まる時定数によるものであり、これらの値を変えて
応答性を調節することができる。例えば、実際の回路設
計においては、抵抗Rは120にΩの時容量Cを0.0
15〜0.1μF範囲内の適当な値に選定することによ
り立下り時のみ応答性を遅らせて遅延させることができ
、第3図及び第4図中点線で示す様に立上シ時と立下シ
時における応答遅れを同程度にし左右対称形にすること
ができた。この様に、立上り時及び立下シ時の応答性を
はソ同じ様に選定することにより、流路中の流れの脈動
が大きい場合或いは小さい場合、更には脈動がある場合
及びない場合における流量検出精度を安定化させること
ができる。
FIG. 5 is a diagram showing the internal structure of the delay circuit in FIGS. 1 and 2. In FIG. 5, the delay circuit 9 consists of two amplifiers 16, 17 and 8 connected in parallel between these amplifiers.
0 circuit and a rectifying element 18. A connection point Z in FIGS. 1 and 2 is connected to the positive phase of an amplifier 16, and the output side of the amplifier 16 is connected to the positive phase of an amplifier 17 via a rectifying element 18. The output side of the amplifier 17 is connected to the negative phase of the amplifier, and is also connected to the negative phase of the amplifier 16 via a resistor 20 after branching at a branch point 19 . The negative phase of the amplifier 16 is grounded via a resistor 21. The rectifying element 18 and the amplifier 17
A delay circuit element consisting of a resistance ratio and a capacitance C is connected in parallel between the capacitor C and the capacitor C when the voltage at the connection point Z rises. The response to sudden changes at the connection point Z is delayed only at the time of falling. This response delay is due to a time constant determined by the values of capacitance C and resistance ratio, and the response can be adjusted by changing these values. For example, in actual circuit design, when the resistance R is 120 Ω, the capacitance C is 0.0
By selecting an appropriate value within the range of 15 to 0.1 μF, it is possible to delay the response only at the falling edge, and as shown by the dotted lines in Figures 3 and 4, the response can be delayed at the rising edge and at the rising edge. We were able to make the response delay at the lower position the same level and create a bilaterally symmetrical design. In this way, by selecting the responsiveness at the rise and fall in the same way, the flow rate can be adjusted when the pulsation of the flow in the flow path is large or small, and when there is or is not pulsation. Detection accuracy can be stabilized.

本発明による熱式流量計の各実施例は以上説明した構成
並びに作用を有するので、従来の熱式流量計に対し、流
量検知信号の他に吸気温度(流体温度)検出信号をも同
時に取り出すことができ、更に遅延回路を閉ループ内に
設けることにより流量検出信号の温度特性の向上を計る
ことができる。
Since each embodiment of the thermal flowmeter according to the present invention has the configuration and operation described above, it is possible to simultaneously extract the intake air temperature (fluid temperature) detection signal in addition to the flow rate detection signal, unlike the conventional thermal flowmeter. Furthermore, by providing a delay circuit in the closed loop, it is possible to improve the temperature characteristics of the flow rate detection signal.

例えば、ターボ付の自動車用エンジンのマイコン制御に
あっては、過給時に吸気が断熱圧縮される為1soc/
m程度の急激な速度で吸気温が上昇し、これに応じて点
火時期を補正してノンキング防止を計る必要がある。こ
の様なノッキング防止の為には点火時期を遅らせる必要
があり、その際に吸気量のみならず吸気温度をもただち
に検出して点火時期を遅らせる様なエンジン制御を実行
する必要がある。又、ターボなしのマイコンによるエン
ジン制御でも、寒冷時或いは高温アイドル時には燃量の
霧化状態や燃焼状態が通常運転の場合と異なシ、画一的
な制御ではカバーできないので、この様な場合にも吸気
温度を検知して空燃比を調整する様なエンジン制御が必
要である。
For example, in the microcomputer control of a turbocharged automobile engine, the intake air is adiabatically compressed during supercharging, so the
The intake air temperature rises at a rapid rate of about 200 m, and it is necessary to correct the ignition timing accordingly to prevent non-king. In order to prevent such knocking, it is necessary to delay the ignition timing, and at this time, it is necessary to immediately detect not only the intake air amount but also the intake air temperature and execute engine control that delays the ignition timing. In addition, even if the engine is controlled by a microcomputer without a turbo, the atomization state and combustion state of the fuel will be different in cold weather or high-temperature idling than in normal operation, and uniform control cannot cover the situation. However, engine control is required to detect the intake air temperature and adjust the air-fuel ratio.

本発明の熱式流量計の各実施例によれば、吸気流量のみ
ならず吸気温度をも同時に検知することができるので、
この様なエンジン制御に適用する場合きわめて有効であ
る。
According to each embodiment of the thermal flowmeter of the present invention, not only the intake air flow rate but also the intake air temperature can be detected at the same time.
It is extremely effective when applied to such engine control.

更に、以上説明した各実施例によれば、感温抵抗体への
供給電流を制御する閉ループ回路内へ立下り時のみ応答
性を遅らせてこれを立上シ時と同様の応答性に補正する
手段を設けたので、特に脈動運転領域での検出誤差を低
減すると共に安定した測定を実施することができ、加え
てこの熱式流量計における特有の問題である2値問題を
も解決することができる。即ち、感温抵抗体の駆動用閉
ループ回路内に遅延回路を設けることによシ、該感温抵
抗体の温度特性を向上させることができる。
Furthermore, according to each of the embodiments described above, the responsiveness is delayed only at the time of falling into the closed loop circuit that controls the current supplied to the temperature-sensitive resistor, and this is corrected to the same responsiveness as at the time of rising. By providing this means, it is possible to reduce detection errors, especially in the pulsating operation region, and to perform stable measurements.In addition, it is also possible to solve the binary problem, which is a problem unique to this thermal flowmeter. can. That is, by providing a delay circuit in the closed loop circuit for driving the temperature-sensitive resistor, the temperature characteristics of the temperature-sensitive resistor can be improved.

以上の説明から明らかな如く、本発明によれば、流量検
出信号のみならず吸気温度検出信号をも同時に取シ出す
ことができる熱式流量計を提供することができる。
As is clear from the above description, according to the present invention, it is possible to provide a thermal flow meter that can simultaneously extract not only a flow rate detection signal but also an intake air temperature detection signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による熱式流量計の一実施例の回路構成
を例示する説明図、第2図は本発明による熱式流量計の
他の実施例の回路構成を例示する説明図、第3図は流量
Qの段階的変化に対応する流量検出信号Vの変化特性を
例示するグラフ、第4図は流量の段階的変化に対応する
立上シ時及び立下り時の流量検出信号の応答特性を例示
するグラフ、第5図は第1図及び第2図中の遅延回路の
回路構成を例示する説明図である。 1・・・流路、2・・・感温抵抗体、3・・・温度補償
抵抗体、4・・・電源、6,7・・・増幅器、9・・・
遅延回路、14・・・増幅器、A、B、C,D・・・ブ
リッジ回路の分岐点、F・・・流れ方向、Q・・・流量
、Q、・・・流量検知信号、T・・・吸気温度検出信号
、■・・・陣量検出信号。 第1 肥 第2図 第3閉 Q−」−一−しm− y      ”’ 第40 応2
FIG. 1 is an explanatory diagram illustrating the circuit configuration of one embodiment of the thermal flowmeter according to the present invention, FIG. 2 is an explanatory diagram illustrating the circuit configuration of another embodiment of the thermal flowmeter according to the present invention, and FIG. Fig. 3 is a graph illustrating the change characteristics of the flow rate detection signal V corresponding to a stepwise change in the flow rate Q, and Fig. 4 is a graph showing the response of the flow rate detection signal at rising and falling times corresponding to a stepwise change in the flow rate. The graph illustrating the characteristics, FIG. 5, is an explanatory diagram illustrating the circuit configuration of the delay circuit in FIGS. 1 and 2. DESCRIPTION OF SYMBOLS 1... Flow path, 2... Temperature sensitive resistor, 3... Temperature compensation resistor, 4... Power supply, 6, 7... Amplifier, 9...
Delay circuit, 14...Amplifier, A, B, C, D...Bridge circuit branch point, F...Flow direction, Q...Flow rate, Q,...Flow rate detection signal, T...・Intake air temperature detection signal, ■... formation amount detection signal. 1st figure 2nd figure 3 closed Q-''-1-shim-y''' No. 40 2

Claims (1)

【特許請求の範囲】 1、一方のブリッジ分岐に流路中に設置されかつ制御電
流によって加熱される温度依存性の感温抵抗体を接続し
、他方のブリッジ分岐に流体温度によって抵抗値が変化
する温度補償抵抗体を接続したブリッジ回路を備え、該
ブリッジ回路の対角線分岐を制御電流供給用増幅器の入
力端子に接続し、前記感温抵抗体と前記温度補償抵抗体
との温度差がほぼ一定になるよう前記感温抵抗体の電流
を閉ループ制御する熱式流量計において、前記温度補償
抵抗体の抵抗値に応じに出力を取出す端子を設は流体温
度をも検知しうるよう構成することを特徴とする熱式流
量計。 2、特許請求の範囲第1項の発明において、前記感温抵
抗体の電流を制御する閉ループ内に流量検知信号の立上
シ遅延回路を介在させることを特徴とする熱式流量計。
[Claims] 1. A temperature-dependent temperature-sensitive resistor installed in the flow path and heated by a control current is connected to one bridge branch, and the resistance value changes depending on the fluid temperature to the other bridge branch. A diagonal branch of the bridge circuit is connected to an input terminal of an amplifier for supplying a control current, and the temperature difference between the temperature-sensitive resistor and the temperature-compensating resistor is approximately constant. In a thermal flowmeter that controls the current of the temperature-sensitive resistor in a closed loop so that Features of thermal flowmeter. 2. The thermal flow meter according to claim 1, characterized in that a rise delay circuit for a flow rate detection signal is interposed in the closed loop that controls the current of the temperature-sensitive resistor.
JP56103397A 1981-07-03 1981-07-03 Thermal flow meter Pending JPS586415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56103397A JPS586415A (en) 1981-07-03 1981-07-03 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56103397A JPS586415A (en) 1981-07-03 1981-07-03 Thermal flow meter

Publications (1)

Publication Number Publication Date
JPS586415A true JPS586415A (en) 1983-01-14

Family

ID=14352920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56103397A Pending JPS586415A (en) 1981-07-03 1981-07-03 Thermal flow meter

Country Status (1)

Country Link
JP (1) JPS586415A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139448U (en) * 1984-08-15 1986-03-12 日本電子機器株式会社 Hot wire flowmeter for internal combustion engines
JPS63129824U (en) * 1987-02-19 1988-08-24
JPH01100423A (en) * 1987-10-14 1989-04-18 Japan Electron Control Syst Co Ltd Operating condition detector for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139448U (en) * 1984-08-15 1986-03-12 日本電子機器株式会社 Hot wire flowmeter for internal combustion engines
JPS63129824U (en) * 1987-02-19 1988-08-24
JPH01100423A (en) * 1987-10-14 1989-04-18 Japan Electron Control Syst Co Ltd Operating condition detector for internal combustion engine

Similar Documents

Publication Publication Date Title
US4462376A (en) Method and apparatus for determining and controlling the exhaust gas recirculation rate in internal combustion engines
JPH05171984A (en) Method of detecting temperature
US20070024119A1 (en) Thermal type flow measuring apparatus
JPS58135916A (en) Thermal flow meter for internal combustion engine
JPS6140924B2 (en)
US4384484A (en) Gas flow measuring device
JPS586415A (en) Thermal flow meter
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JP3105609B2 (en) Heating resistor type air flow meter
JP2681569B2 (en) Intake air flow rate detection device for internal combustion engine
JP3041025B2 (en) Internal combustion engine control device
JP2001153702A (en) Method for correcting measuring error of heat generating resistor type air flow measuring apparatus
JPH0715395B2 (en) Intake air flow rate measuring device
JPS6014181Y2 (en) Internal combustion engine air flow detector
JPH0143883B2 (en)
JPH0341072Y2 (en)
JPH0351710Y2 (en)
JPS5828621A (en) Thermal flow meter
JPH07198438A (en) Temperature sensitive intake air flow rate detector of internal engine
JPH0812096B2 (en) Intake air flow rate detection device for internal combustion engine
JPS6013446B2 (en) Gas flow measuring device
JP2612386B2 (en) Supercharging pressure detection device for supercharged internal combustion engine
JPH0633824A (en) Intake air flow date detecting device for internal combustion engine
JPH04255552A (en) Temperature sensing intake air flow measuring device
JPS60100720A (en) Hot wire type flow meter