JPS5856500A - Wiring system for multilayer printed board - Google Patents

Wiring system for multilayer printed board

Info

Publication number
JPS5856500A
JPS5856500A JP15497781A JP15497781A JPS5856500A JP S5856500 A JPS5856500 A JP S5856500A JP 15497781 A JP15497781 A JP 15497781A JP 15497781 A JP15497781 A JP 15497781A JP S5856500 A JPS5856500 A JP S5856500A
Authority
JP
Japan
Prior art keywords
wiring
layers
layer
printed board
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15497781A
Other languages
Japanese (ja)
Other versions
JPH033398B2 (en
Inventor
本多 賢弘
直樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15497781A priority Critical patent/JPS5856500A/en
Publication of JPS5856500A publication Critical patent/JPS5856500A/en
Publication of JPH033398B2 publication Critical patent/JPH033398B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は電気機器の配線組立に使用する多層プリント板
の配線方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wiring method for a multilayer printed board used for wiring assembly of electrical equipment.

近年1半導体の発達に伴い一気機器の回路構成は高速化
および高密度化され、該電気機器の向路における配線お
よび実装方法についても高度の技術が要求されるように
なっている。特に高集積度の半導体を積載して、その結
線に使用する合成樹脂積層叛1合成樹脂フィルムあるい
はセラミダク砂上に配線導体を形成し、搭@を部品の配
合を行ういわゆるプリント板等に要求される性能は限り
なく同上している。
2. Description of the Related Art In recent years, with the development of semiconductors, the circuit configurations of electronic devices have become faster and more dense, and advanced technology is also required for the wiring and mounting methods of the electrical devices. In particular, it is required for so-called printed boards, etc., which are loaded with highly integrated semiconductors and used for wiring, forming wiring conductors on synthetic resin film or ceramic sand, and compounding parts. The performance is infinitely the same.

従来、これ等のプリント板等は半導体およびその他の部
品の取付けならびに部品端子の相互配線を行うため、直
父座標による例えば2.54−ピクチの正方格子を想定
し、その任意の格子交点上に部品取付けおよび配線の中
継端子ならびに多層間の相互接続機能を兼ねてスルーホ
ールランド(以下THPと省略)を設け、各絶縁板の面
上に配置される配線用導体はTHP間にX軸およびX軸
平行としてTHP間を相互接続していた。
Conventionally, in order to attach semiconductors and other parts to these printed boards and interconnect component terminals, a square lattice of, for example, 2.54-pictures is assumed based on orthogonal coordinates, and a grid is placed on any intersection point of the lattice. A through-hole land (hereinafter abbreviated as THP) is provided to serve as a relay terminal for parts mounting, wiring, and interconnection between multiple layers, and wiring conductors placed on the surface of each insulating board are placed between the THPs on the X-axis and The THPs were interconnected as being parallel to the axis.

J1図(a)に従来のX、Y軸間線層による多層プリン
ト叛の分離構成斜視図を示す。第1図において1はTH
P、2は配線、3は絶縁板である。通常X、Y軸配軸層
線層割した場合、第1図(b)の配線経路モデル図に示
すように任意のTHPlのP。
Fig. J1 (a) shows a perspective view of the separated configuration of a conventional multilayer printed fabric with line layers between the X and Y axes. In Figure 1, 1 is TH
P and 2 are wiring, and 3 is an insulating plate. Normally, when the layers are divided along the X and Y axes, the P of any THPl is determined as shown in the wiring route model diagram of FIG. 1(b).

9間を電気接続する配線は原則として両点を通るX、Y
軸平行線に分解し、その交点を中継点RまたはR′ と
しP−R,R−Qまたはp−R′、R’−Qに分割して
配線を行い、各X、Y軸配軸配向層内与えられた2点を
結ぶ最短距離を選択する。従って、各々のX、Y軸配線
層内における配線経路は、主とするXまたはY軸平行線
によって配線密耗 度を上げ、補助としてこれと垂直な〆配線方向の直交座
標によっている。THPlのff1ltlに見られるT
HP接続部分における斜行線分は、第2図(a)(b)
の配線パターン図に示すように隣接するTHPlをTH
PIの格子上で直結する場合を除き、THPtとTHP
lを避けて走る格子帯部に配線経路を選択して設計配線
を得た後、THPlの周辺における直角経路部分をβ=
w−’ 1 ti’FWt/1KIXf y)P/l’
4r)11.F7fヒある)またはp =bar’−1
の線分に置換して例えばTHPla、bを配線で結ぶの
に線分AB&THP1a、bに接続するA a e B
 bにょシ得てプリント板製作時における実行配線のア
ートワークデータとして出力したものであゐ。またTH
Pおよび配線経路等の選択作業においては、第1図(a
)に示すように全ての配線2を各絶縁板3の上面に配置
して処理し、実際の製造に当っては第3図に示す従来に
おける多層プリント板の積層断面図の如く、例えば合成
樹脂含浸布または紙を積層した基板2a、2bの両側に
例えば配線2のX、 、 Y、およびX、、Y、を配し
、別途接着を兼ねる絶縁の合成樹脂層4を挿入し、サン
ドウィッチ状に積重ね加圧下で加熱接着して一体の多層
プリント板とする。従って、下面より上方に向って製作
される78層、Y層層のアートワークデータは上方より
下に向って出力した後裏返して使用するO 以下、本発明の説明についてはすべて製造時の透 向きに関係なく一方向からみた第1図のようく〆視状態
により行う。
As a general rule, the wiring that electrically connects between
Divided into axis-parallel lines, their intersections are used as relay points R or R', and the wiring is divided into P-R, R-Q or p-R', R'-Q, and the respective X and Y axes are aligned. Select the shortest distance connecting two given points in the layer. Therefore, the wiring routes in each of the X- and Y-axis wiring layers are mainly parallel to the X or Y-axis to increase the wiring density, and are supplemented by orthogonal coordinates in the finishing wiring direction perpendicular to the X- or Y-axis parallel lines. T seen in ff1ltl of THPl
The diagonal line segments in the HP connection part are shown in Figure 2 (a) and (b).
As shown in the wiring pattern diagram of
Unless directly connected on the PI grid, THPt and THP
After obtaining the designed wiring by selecting a wiring route in the lattice band that runs avoiding l, the orthogonal route part around THPl is β =
w-' 1 ti'FWt/1KIXf y)P/l'
4r) 11. F7f hi) or p = bar'-1
For example, to connect THPla, b with a line segment, connect line segment AB&THP1a, b with A a e B
This is what was obtained and outputted as artwork data for the actual wiring during printed board production. Also TH
When selecting P and wiring routes, etc., please refer to Figure 1 (a).
), all the wiring 2 is arranged and processed on the top surface of each insulating board 3, and in actual manufacturing, as shown in the laminated cross-sectional view of a conventional multilayer printed board shown in FIG. 3, for example, synthetic resin is used. For example, wires 2 (X, , Y, and X, , Y) are arranged on both sides of substrates 2a and 2b laminated with impregnated cloth or paper, and an insulating synthetic resin layer 4 that also serves as adhesive is separately inserted to form a sandwich. They are stacked and heat bonded under pressure to form an integrated multilayer printed board. Therefore, the artwork data for the 78 layers and the Y layer, which are manufactured upward from the bottom surface, are output from the top downward and then turned over for use. In the following, all explanations of the present invention will be made with the transparent orientation at the time of manufacture. Regardless of the angle of view, the test is performed in a closed position as shown in Figure 1 when viewed from one direction.

従来は、第1図(IL)の多層プリント板の分離構成斜
視図に示す如くより高密度の配線を得る手段として、前
述2.54−をlビ雫チとするTHP間に挿入する配線
本線を増加するか、同一方向の配線層数を増加する方法
しかなかった。また2点間の#7J#wJsrwn効率
上出来るだけ少い暦数に収めることが望ましいが、配線
が高密度化すると複数のTHPt−経由して3層以上に
及ぶ配線が増えて他の配線を排除するので相乗的に配線
面の利用効率が落ちる悪循環を生じていた。この結果、
例えばこれ等の配線相互が平面導体であるため、特に積
層方向で1層当90.2〜0.4鰭の近接した並行面と
なる頻度が増し、配線相互間の容量が増加する結果を生
じ、クロストーク等の好ましくない現象を生じる欠点を
有していた。この容量結合を防止するため配υに使用し
ない広い平面導体のアース層をこれ等の配線層間に余分
に挿入しなければならなかりた。
Conventionally, as a means of obtaining higher density wiring, as shown in the perspective view of the separated structure of a multilayer printed board in FIG. The only options were to increase the number of wiring layers in the same direction or increase the number of wiring layers in the same direction. Also, it is desirable to keep #7J#wJsrwn between two points as small as possible in terms of efficiency, but as the wiring density increases, the number of wirings that extend over three or more layers via multiple THPt- increases, and other wiring This created a vicious cycle in which the usage efficiency of the wiring surface decreased synergistically. As a result,
For example, since these wirings are planar conductors, the frequency of close parallel planes of 90.2 to 0.4 fins per layer increases, especially in the stacking direction, resulting in an increase in the capacitance between the wirings. , and had the disadvantage of causing undesirable phenomena such as crosstalk. In order to prevent this capacitive coupling, it was necessary to insert an extra wide flat conductor ground layer, which is not used for wiring, between these wiring layers.

本発明はこの欠点を除去しようとするものである。この
ため本発明は直交格子交点上に配列されたスルーホール
ランド間を複数の絶縁基板面に配したプリント板配線に
より接続する多層プリント板の配線方式において、複数
のX軸平行配線層。
The present invention seeks to eliminate this drawback. Therefore, the present invention provides a multilayer printed board wiring system in which through-hole lands arranged on orthogonal lattice intersections are connected by printed board wiring arranged on a plurality of insulating substrate surfaces, using a plurality of X-axis parallel wiring layers.

Y軸平行配線層およびそれ等と一定角度を有する複数の
斜行配線層を設けてなり、任意のスルーホールランド間
を接続するより短い経路となる1面または中継用スルー
ホールランド1個と2面の斜行または/およびX又はY
方向配線層の組合せを任意のスルーホールランドを結ぶ
線分の斜行角度に従りて週休し、且斜行配線層を含む全
ての配線層についてそれぞれ独立な直交座標による共通
の配線手順および処理により配線の選択を行うことを特
徴とするものである。
A Y-axis parallel wiring layer and a plurality of diagonal wiring layers having a certain angle with them are provided, and one plane or one relay through-hole land and two relay through-hole lands provide a shorter path for connecting arbitrary through-hole lands. Oblique plane or/and X or Y
The combination of directional wiring layers is arranged weekly according to the diagonal angle of the line segment connecting arbitrary through-hole lands, and common wiring procedures and processing are performed using independent orthogonal coordinates for all wiring layers, including diagonal wiring layers. This feature is characterized in that the wiring is selected by the following.

以下、図面を参照しつつ本発明の一実施例について説明
する。本発明では従来のX軸配線層(以下X層)および
Y軸配線層(以下Y層)に加え、例えば、第4図に示す
本発明の一実施例における多層プリント板の配線方向図
のようにそれぞれX軸およびY軸となす角度が!=tl
!114となる斜行配線層を4層設け、夫々T軸配線層
(以下1層)U軸配線層(以下U層)、v軸配線層(以
下7層)およびW軸配線層(以下W層)とし夫々x、y
An embodiment of the present invention will be described below with reference to the drawings. In the present invention, in addition to the conventional X-axis wiring layer (hereinafter referred to as "X layer") and Y-axis wiring layer (hereinafter referred to as "Y layer"), there are The angles they make with the X and Y axes, respectively! =tl
! 114 are provided, and are respectively called a T-axis wiring layer (hereinafter referred to as 1 layer), a U-axis wiring layer (hereinafter referred to as U layer), a v-axis wiring layer (hereinafter referred to as 7 layers), and a W-axis wiring layer (hereinafter referred to as W layer). ) and each x, y
.

T、U、VおよびW層における配線経路は主として各軸
に平行な線分によシ従としてそれと各々画直な線分によ
るものとする。第5図にX、Y、T。
The wiring routes in the T, U, V, and W layers are mainly formed by line segments parallel to each axis, followed by line segments perpendicular to each axis. Figure 5 shows X, Y, and T.

U、VおよびW層による多層プリント板の分離構成斜視
図を示す。上側よりW、U、X、Y、VおよびT層であ
る。第6図はその積層断面図を示し、第5図、第6図に
おいても従来同様1はTHP。
FIG. 2 shows a perspective view of an isolated construction of a multilayer printed board with U, V and W layers. The layers are W, U, X, Y, V, and T from the top. FIG. 6 shows a cross-sectional view of the laminated layers, and in FIGS. 5 and 6, 1 is THP as in the conventional case.

2は配線、3は絶縁層および4は合成樹脂層である。尚
、第5図に見られた配線形状において斜行配線層はその
経路がジグザグとなっているが、第7図の斜行配線層に
おける設計時の配線経路図に示すように直線で処理作業
を行い、後述する変換処理によってプリント板製作に使
用するアートワークデータ出力のために、第、8図の斜
行配線層における変換後の配線経路図のように変換する
ものでちる。ここでX、Y、T、U、VおよびW層を使
用して任意の21M)間を結んで設計配線および実用配
線を得る手段と手順は次のとおりである。
2 is a wiring, 3 is an insulating layer, and 4 is a synthetic resin layer. Note that in the wiring shape shown in Figure 5, the route of the diagonal wiring layer is zigzag, but as shown in the wiring route diagram at the time of design for the diagonal wiring layer in Figure 7, the processing work is done in a straight line. Then, in order to output artwork data for use in printed board production through a conversion process to be described later, a conversion is performed as shown in the wiring route diagram after conversion in the diagonal wiring layer in FIG. 8. Here, the means and procedure for connecting arbitrary 21M) using the X, Y, T, U, V and W layers to obtain designed wiring and practical wiring are as follows.

第9囚に本発明における一実施例のブロダク図、第10
図に作業手順図を示す。第9図において、10は制御部
、20は処理回路、21は配線層選択部、22は中継T
HP選択部、23は配線経路選択部、24は配線経路変
換部、30は記録回路、31は結線データ記憶領域、3
2はTHP記憶領域、33は配線経路記憶領域、34は
アートワーク経路記憶領域である。制御部10は処理回
路20の各部および記録回路30を制御し、外部よシ受
信する結線データを実際のプリント板製作に必要なアー
トワークデータとして出力する。処理回路20の谷部は
記録回路30の各領域と対応して制御部10の指示に従
い個々の結線データを順次処理して設計配線を得て、そ
の後予−め堰決めた手順に従って所要のアートワークデ
ータを得る。
The ninth figure is a diagram of an embodiment of the present invention, and the tenth figure is a diagram of an embodiment of the present invention.
The figure shows the work procedure diagram. In FIG. 9, 10 is a control section, 20 is a processing circuit, 21 is a wiring layer selection section, and 22 is a relay T.
23 is a wiring route selection unit; 24 is a wiring route conversion unit; 30 is a recording circuit; 31 is a wiring data storage area;
2 is a THP storage area, 33 is a wiring route storage area, and 34 is an artwork route storage area. The control section 10 controls each section of the processing circuit 20 and the recording circuit 30, and outputs connection data received from the outside as artwork data necessary for actual printed board production. The valleys of the processing circuit 20 correspond to each area of the recording circuit 30 and sequentially process individual connection data according to instructions from the control unit 10 to obtain designed wiring, and then create the required art according to a predetermined procedure. Obtain work data.

結線データ領域31は配線すべき全区間例えば半導体お
よびその他の部品端子相互間の結線データを一時記憶す
る。
The connection data area 31 temporarily stores connection data for all sections to be wired, such as between semiconductor and other component terminals.

THP記憶領域32はプリント板を構成する各層に共通
してすべてのTHP位置を記憶し、プリント板のS類に
よりて決る用途別、例えば部品ビン用および中継用の別
ならびに#幽する選択手順時点における利用状態を表示
して識別可能とする。
The THP storage area 32 stores all THP positions common to each layer constituting the printed board, and stores all THP positions according to the S type of the printed board, such as for parts bins and relays, and at the time of selection procedure. Display the usage status of the site so that it can be identified.

配線経路記憶領域33はプリント板の種類によって決る
配線に提供可能の各層別配線経路を記憶し、該当する選
択手順時点における利用状態を表示して識別可能とする
。記憶単位はTHPビダチとなる。
The wiring route storage area 33 stores wiring routes for each layer that can be provided for wiring determined by the type of printed board, and displays the usage status at the time of the corresponding selection procedure so that the wiring route can be identified. The storage unit is THP bidachi.

アートワーク経路記憶領域34はT)(P接続部あるい
は直線表示された設計配線を予め定めた規則に従って従
来の配線経路変換部24によシ変換された実行配線パタ
ーンを記憶して提供に応する。
The artwork route storage area 34 stores and provides an execution wiring pattern converted by the conventional wiring route conversion unit 24 according to predetermined rules for T)(P connection parts or straight line displayed design wiring). .

また完成した配線パターンを一時記憶する。It also temporarily stores the completed wiring pattern.

次に第10図の作業手順図に従い配線手順を説明する。Next, the wiring procedure will be explained according to the work procedure diagram shown in FIG.

配線層選択部21は制御部10の指示によって結線デー
タ記憶領域31よシ与えられる配線すべき区間の配線層
をX、Y、T、U、VおよびW層内から1層または組合
せによる2層を選択する。選択する配線層は与えられた
配線すべき区間を結ぶ線分がX軸となす斜行角度によっ
て決シ、第4図における線分AB、がX軸となす角度を
α′とすればαの変化に従い次表のように選択される。
The wiring layer selection unit 21 selects one wiring layer or a combination of two wiring layers from among the X, Y, T, U, V, and W layers, which is given by the wiring data storage area 31 in response to an instruction from the control unit 10. Select. The wiring layer to select is determined by the oblique angle that the line segment connecting the given sections to be wired makes with the X axis.If the angle that line segment AB in Fig. 4 makes with the X axis is α', then α is According to the changes, the selection is made as shown in the following table.

尚、この表によって2層の組合せが選択されても中継T
HPの選択によっては1層に省略されることがある他、
配線長が最小となるように第1順位の選択を行っても先
行する別の配線区間における作業手順によって、恢述す
る中継THPまたは配線経路が使用済みとなって利用で
きないことがあるため、次善の短かい配線長が得られる
よう、配線長が短い順にm組例えば5組を選択出来るよ
うにしておき、手順5回の使用によりて結果が得られな
けれに2層の組合せでは配線不能となる。この場合に別
途3層以上の組合せKよる処理となる。
Note that even if a combination of two layers is selected based on this table, the relay T
Depending on the HP selection, it may be omitted to 1 layer, and
Even if the first priority is selected to minimize the wiring length, the relay THP or wiring route described may be used and cannot be used due to the work procedure in another preceding wiring section. In order to obtain the shortest possible wiring length, it is possible to select m groups, for example, 5 groups, in descending order of wiring length, and if a result is not obtained after using the procedure 5 times, it is determined that wiring is impossible with a combination of two layers. Become. In this case, processing is performed using a combination K of three or more layers.

尚、任意のTHP間の配線長は夫々AおよびBの座標を
A(xa、ya)B(xb、yb)とすれば次式で与え
られる。但し、両座標の差X=X&〜x11e)’=7
m−7bとおけば 211 14−x+cf’s −2)7b点が<TAV
内にあるとき。
Note that the wiring length between arbitrary THPs is given by the following equation, assuming that the coordinates of A and B are A(xa, ya) B(xb, yb), respectively. However, the difference between both coordinates X=X&~x11e)'=7
If we set m-7b, 211 14-x+cf's -2) 7b point becomes <TAV
When it's inside.

21−2 L1砺/3(x+y) B点が<UAW内にあるとき。21-2 L1 Tokai/3(x+y) When point B is within <UAW.

21−3 Ls、=(y’g −2’)x+yB点が<
UAW内にあるとき。
21-3 Ls, = (y'g -2')x+yB point is <
When in the UAW.

次に中継THP選択部22によシ中継THPを選択する
。第11図の中継位置座標何回に示すように接続するT
HPBrが<WAXにあるときを示す。
Next, the relay THP selection unit 22 selects a relay THP. Connect T as shown in the relay position coordinates in Figure 11.
Indicates when HPBr is <WAX.

計算上の中継点はclおよびC8に同価値の2点が得ら
れる。第12図の他の中継位置座標何回に示すように接
続するTHPBmが<UAVKある例を示す。同様に2
ケ所の中継点D□およびD!が得られる。
Two points of equal value are obtained for the calculated relay points at cl and C8. As shown in the other relay position coordinates in FIG. 12, an example is shown in which THPBm to be connected is <UAVK. Similarly 2
relay points D□ and D! is obtained.

夫々の座標は次の通シである。The respective coordinates are as follows.

22−I  C,の座標 X@1−X ”* −2(’Ib1−3” ) * F
el ”−Yk22−20!の座標 X@1 =xa+2 (7kl −7b )* )’s
t =Vbr22−3 DIの座標 Xds = ”/1  (−xa+4xb、+2ya−
2yb、))’ds = V3  (−2X*+2Xb
2+4’la−’Ib宜 )22−4 Dmの座標 x ’ ! = ”/4 (−x h 雪+ 4 x 
a + y b ! −21m )ya、: 賭 (−
xb、+2x*+4yb、−ya)ここでTHPは直交
座標上にあるので01.c!、DIあるいはり、の座標
値がTHPのそれと一致しないときは最も近接するTH
Pを選択するか、近接する複数個のTHPで配線長が短
縮する方向で次善の選択を行う。このように計算上の両
座標に近接するn個例えば各4個のTHPについて中継
THP選択部22よりTHP記憶領域22にアクセスし
て、利用出来るTHPがない場合は、再度配線層選択(
部)に戻って次の配線層の組合せを選択しTHPを選択
する。
22-I C, coordinates X@1-X ''*-2('Ib1-3'') *F
el ”-Yk22-20! Coordinates X@1 = xa+2 (7kl -7b )* )'s
t = Vbr22-3 DI coordinates Xds = ”/1 (-xa+4xb, +2ya-
2yb,))'ds = V3 (-2X*+2Xb
2+4'la-'Ib y)22-4 Dm coordinate x'! = ”/4 (-x h snow + 4 x
a+yb! -21m)ya,: bet (-
xb, +2x*+4yb, -ya) Here, THP is on the orthogonal coordinates, so 01. c! , DI or RI, if the coordinate values do not match those of THP, the nearest TH
Either select P, or make the next best selection in the direction of shortening the wiring length using a plurality of adjacent THPs. In this way, the relay THP selection unit 22 accesses the THP storage area 22 for n THPs, for example, 4 each, close to both calculated coordinates, and if there is no usable THP, the wiring layer selection (
3), select the next wiring layer combination, and select THP.

更に配線経路選択部23によシ該当層、配線経路の始終
点THP(部品用ピン、中継用)を条件として配線経路
33にアクセスして配線経路を選択する。利用出来る配
線経路が選択出来ない時は、再び中継THP選択(部)
に戻って次の利用出来る中継THPを選択し、配線経路
の選択を繰返す。
Further, the wiring path selection unit 23 accesses the wiring path 33 and selects a wiring path, using the relevant layer and the starting and ending points THP (pins for components, relays) of the wiring path as conditions. If an available wiring route cannot be selected, select relay THP again (part)
Return to , select the next available relay THP, and repeat the wiring route selection.

配線経路が選択出来た場合線全区間が終了する迄、次の
結線データに戻り、次の配線区間における選択の作業手
順を繰返す。
If the wiring route has been selected, the process returns to the next wiring data and repeats the selection procedure for the next wiring section until the entire line section is completed.

斜行配線層内において配線経路を選択する場合4X、Y
軸層線層のみによる従来の原則と同様に同一層内におい
て・は与えられた2点を結ぶ最短距離による核層の主配
線方向の線分に選択することには変りない。
4X, Y when selecting a wiring route in a diagonal wiring layer
As with the conventional principle using only the axial line layer, the line segment in the main wiring direction of the core layer is still selected based on the shortest distance connecting two given points in the same layer.

このように第10図に示す作意手順に従い、配線経路の
選択を行えば従来のX、Y層による配線経路と同様の作
業手順で斜行配線層を含めた構成においても容易に個々
の結線データについて配線経路が得られる。
In this way, if the wiring route is selected according to the preparation procedure shown in Figure 10, individual wiring connections can be easily made even in a configuration including diagonal wiring layers using the same work procedure as the conventional wiring route using X and Y layers. A wiring route can be obtained for the data.

尚箋上記の作業手順ではT、U、VおよびW層の斜行配
線層は直線で説明したが、製造するプリント板において
は配線経路に一定の幅があり、THPとの接触または絶
縁間隔が狭くなるのを避けるため、第8図のように折れ
曲る必要がある。
Note: In the above work procedure, the diagonal wiring layers of the T, U, V, and W layers are explained as straight lines, but in the printed board to be manufactured, the wiring route has a certain width, and the contact with the THP or the insulation interval is To avoid narrowing, it is necessary to bend as shown in Figure 8.

配線経路変換部24は斜行配線層における配線経路を上
記の手順で得られた、第7図のような直線から予め定め
られた第8図のような実行配線パターンをアートワーク
経路記憶領域34にアクセスして最終パターンに変換し
、アートワーク経路記憶領域34の別部分に一時記憶す
る。尚、配線経路の始終点となるTHPに接続する斜行
線分も併せて変換する。
The wiring route conversion unit 24 converts the wiring route in the diagonal wiring layer into a predetermined execution wiring pattern as shown in FIG. 8 from the straight line as shown in FIG. 7 obtained by the above procedure to the artwork route storage area 34. is accessed, converted into a final pattern, and temporarily stored in another part of the artwork path storage area 34. Note that the diagonal line segments connected to the THPs, which are the starting and ending points of the wiring route, are also converted.

アートワーク経路記憶領域34の別部分に一時記憶され
た最終パターンは制御部lOのアクセスに従ってアート
ワークデータとして出力される。
The final pattern temporarily stored in another part of the artwork path storage area 34 is output as artwork data according to access by the control unit IO.

このように本発明の一実施例によれば、従来のX、Y層
だけによるプリント板に比較して2THP間を結ぶ配線
を斜行配線層の導入により、3層以上に分割して配線す
ることなく、大部分を1層または2層によって消化する
ことが出来るので配線面の利用効率が上る。また平行す
る導体によるクロストークをアース層等を挿入すること
なく減少させることが出来る他、複数の斜行配線層を含
む各層に共通して直交座標に従う処理作業手順だけで希
望する配線を得ることが出来るので有用である。
As described above, according to an embodiment of the present invention, compared to a conventional printed board with only X and Y layers, the wiring connecting two THPs is divided into three or more layers by introducing a diagonal wiring layer. Since most of the wiring can be consumed in one or two layers without any problems, the efficiency in using the wiring surface increases. In addition, crosstalk caused by parallel conductors can be reduced without inserting a ground layer, etc., and desired wiring can be obtained simply by processing procedures that follow orthogonal coordinates common to each layer, including multiple diagonal wiring layers. This is useful because it allows you to

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来のX、Y軸層線層による多層プリン
ト板の分離構成斜視図、第1図伽)は配線経路モデル図
、第2図(a)、Cb)社配線パターy図、第3図は従
来における多層プリントgo積層断面図、第4図は本発
明の一実施例における多層プリント板の配線方向図、第
5図は本発明の一実施例における多層プリント板の分離
構成斜視図、第6図は本発明の一実施例における多層プ
リント板の積層断面図、第7図は斜行配線層における設
計時の配線経路図、第8図は斜行配線層における変換後
の配線経路図、第9図は本発明の一実施例における配線
式のプロダク図、第10@d本発明の一実施例における
作業手順図、第11図は中継位置座標例図、および第1
2図は他の中継位置座標例図である。 1はスルーホールランド(THP)、2は配線、(#)
) 矛4図 Y 矛7図 7y 2 /ffJ ヤシ図
Fig. 1(a) is a perspective view of the separated configuration of a multilayer printed circuit board with conventional X and Y axis layers, Fig. 1(a) is a wiring route model diagram, Fig. 2(a), Cb) Company wiring pattern y Figure 3 is a cross-sectional view of conventional multilayer printing go lamination, Figure 4 is a wiring direction diagram of a multilayer printed board according to an embodiment of the present invention, and Figure 5 is a separation diagram of a multilayer printed board according to an embodiment of the present invention. A perspective view of the configuration, FIG. 6 is a cross-sectional view of a multilayer printed board according to an embodiment of the present invention, FIG. 7 is a wiring route diagram at the time of design in the diagonal wiring layer, and FIG. 8 is a diagram after conversion in the diagonal wiring layer. Fig. 9 is a wiring route diagram of an embodiment of the present invention, Fig. 10 is a work procedure diagram of an embodiment of the present invention, Fig. 11 is an example of relay position coordinates,
FIG. 2 shows another example of relay position coordinates. 1 is through hole land (THP), 2 is wiring, (#)
) Spear 4 figure Y Spear 7 figure 7y 2 /ffJ Palm figure

Claims (1)

【特許請求の範囲】[Claims] 直交格子交点上に配列され九スルーホールランド間を複
数の絶縁版面に配したプリント版配線により接続する多
層プリント板の配線方式において、複数のX゛軸平行配
線層、Y軸平行配線層およびそれらと一定角度を有する
複数の斜行配線層を設けてなカ、任意のスルーホールラ
ンド間を接続するより短い経路となる1面または中継用
スルーホールランド#1個と2面の斜行または/および
xtたはY軸平行配線層の組合せを、任意のスルーホー
ルランドを結ぶ線分の斜行角度に従って選択し、且、斜
行配線層を含むすべての配線層について直交座標による
共通の配線手順および処理により配線の選択を行うこと
を特徴とする多層プリント板の配線方式。
In a multilayer printed board wiring system in which nine through-hole lands arranged on orthogonal lattice intersections are connected by printed wiring arranged on a plurality of insulating plates, a plurality of X'-axis parallel wiring layers, Y-axis parallel wiring layers, and the like are used. A plurality of diagonal wiring layers having a certain angle are provided on one surface or #1 through-hole land for relay and diagonal or / Select the combination of xt or Y-axis parallel wiring layers according to the oblique angle of the line segment connecting arbitrary through-hole lands, and use a common wiring procedure using orthogonal coordinates for all wiring layers including the oblique wiring layer. A wiring method for a multilayer printed board, characterized in that wiring is selected by processing.
JP15497781A 1981-09-30 1981-09-30 Wiring system for multilayer printed board Granted JPS5856500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15497781A JPS5856500A (en) 1981-09-30 1981-09-30 Wiring system for multilayer printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15497781A JPS5856500A (en) 1981-09-30 1981-09-30 Wiring system for multilayer printed board

Publications (2)

Publication Number Publication Date
JPS5856500A true JPS5856500A (en) 1983-04-04
JPH033398B2 JPH033398B2 (en) 1991-01-18

Family

ID=15596008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15497781A Granted JPS5856500A (en) 1981-09-30 1981-09-30 Wiring system for multilayer printed board

Country Status (1)

Country Link
JP (1) JPS5856500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145894A (en) * 1984-12-20 1986-07-03 富士通株式会社 Multilayer printed circuit board having slant wiring
JPS62272586A (en) * 1986-05-20 1987-11-26 日本電気株式会社 Printed wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145894A (en) * 1984-12-20 1986-07-03 富士通株式会社 Multilayer printed circuit board having slant wiring
JPS62272586A (en) * 1986-05-20 1987-11-26 日本電気株式会社 Printed wiring board

Also Published As

Publication number Publication date
JPH033398B2 (en) 1991-01-18

Similar Documents

Publication Publication Date Title
US4782193A (en) Polygonal wiring for improved package performance
EP0249688B1 (en) Printed circuit board
US11063017B2 (en) Embedded organic interposer for high bandwidth
JP3380151B2 (en) Multilayer circuit board
US20010013422A1 (en) Electronic interconnection medium having offset electrical mesh plane
JP2513443B2 (en) Multilayer circuit board assembly
US5155577A (en) Integrated circuit carriers and a method for making engineering changes in said carriers
JPH01165134A (en) Order response circuit
JP2008124521A (en) Universal multichip interconnect system
KR100443906B1 (en) chip scale package, printed circuit board, and method of designing a printed circuit board
EP1069617A2 (en) Multilayer wiring board
JPH0750817B2 (en) Wiring interconnection structure
JPS6115395A (en) Module for semiconductor chip
US3405227A (en) Multilayer universal printed circuit board
JPS5856500A (en) Wiring system for multilayer printed board
JP3408590B2 (en) Wiring structure of multilayer printed circuit board
JP3776108B2 (en) Wiring design equipment
JP3814616B2 (en) Wiring design equipment
JPH06326214A (en) Multilayer interconnection structure and formation thereof
JPS5910767Y2 (en) Multilayer printed wiring structure
JP2002164474A (en) Chip scale package, circuit board, electronic module and method for designing circuit board
JPH0521927A (en) Connecting method for harness circuit using plane circuit board
JP2521770B2 (en) Printed circuit board pattern wiring method
JPS60127797A (en) Multilayer printed circuit board
JPH0143876Y2 (en)