JPS5843857B2 - In-line color picture tube device - Google Patents

In-line color picture tube device

Info

Publication number
JPS5843857B2
JPS5843857B2 JP8984077A JP8984077A JPS5843857B2 JP S5843857 B2 JPS5843857 B2 JP S5843857B2 JP 8984077 A JP8984077 A JP 8984077A JP 8984077 A JP8984077 A JP 8984077A JP S5843857 B2 JPS5843857 B2 JP S5843857B2
Authority
JP
Japan
Prior art keywords
axis
magnetic field
picture tube
color picture
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8984077A
Other languages
Japanese (ja)
Other versions
JPS5433623A (en
Inventor
久史 岡田
英俊 山崎
栄三郎 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8984077A priority Critical patent/JPS5843857B2/en
Publication of JPS5433623A publication Critical patent/JPS5433623A/en
Publication of JPS5843857B2 publication Critical patent/JPS5843857B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least

Description

【発明の詳細な説明】 本発明はインライン形カラー受像管と、電子ビームを水
平垂直方向に偏向し、走査ラスターを形成する偏向装置
とからなるインライン形カラー受像管装置に関するもの
で、詳細には3本の電子ビームが実質的に蛍光面上に自
動的に集中する所謂自動集中形カラー受像装置であり、
更にラスター歪を大輪に低減し実質的に歪補正を不要と
した新しいインライン形カラー受像管装置を提供するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an in-line color picture tube device comprising an in-line color picture tube and a deflection device that deflects an electron beam in horizontal and vertical directions to form a scanning raster. This is a so-called automatic concentration type color image receiving device in which three electron beams are automatically concentrated substantially on a phosphor screen,
Furthermore, it is an object of the present invention to provide a new in-line type color picture tube device in which raster distortion is reduced to a large degree and substantially no distortion correction is required.

インライン形カラー受像管装置は第1図に示す様に、直
角座標の各軸をZ軸、Y軸、Z軸とし、前記Z軸、Y軸
にそれぞれほぼ平行な長辺、短辺を有し前記Y軸にほぼ
平行な3色の蛍光体細条なとよりなる蛍光面がガラスパ
ネル1の内面に形成され、さらに後方には色選別電極と
して、多数の開孔部を有するシャドウマスク2が所定の
間隙を隔てて係止され、さらにその後方には前記Z軸方
向に前記Z軸に沿って一列配置したインライン電子銃3
が配置され、インライン形カラー受像管を形成し、この
受像管のファンネルコーン部4の外側には前記電子銃か
ら射出される電子ビーム群をZ軸、Y軸方向に電磁偏向
する偏向ヨーク5が配置されている。
As shown in Figure 1, the in-line color picture tube device has rectangular coordinate axes as the Z-axis, Y-axis, and Z-axis, and has long sides and short sides that are approximately parallel to the Z-axis and Y-axis, respectively. A phosphor screen consisting of phosphor strips of three colors approximately parallel to the Y axis is formed on the inner surface of the glass panel 1, and further behind a shadow mask 2 having a large number of openings as a color selection electrode. In-line electron guns 3 are locked at a predetermined gap and further behind the in-line electron guns 3 are arranged in a line along the Z-axis direction.
are arranged to form an in-line color picture tube, and on the outside of the funnel cone portion 4 of this picture tube there is a deflection yoke 5 for electromagnetically deflecting the electron beam group emitted from the electron gun in the Z-axis and Y-axis directions. It is located.

前記偏向ヨーク5は通例少くとも一対の水平コイル、一
対の垂直コイル及び偏向ヨークコアより構成されており
、前記電子ビーム群の集中特性は上記偏向ヨークの発生
する磁界によりほぼ決定されることは周知である。
The deflection yoke 5 is usually composed of at least a pair of horizontal coils, a pair of vertical coils, and a deflection yoke core, and it is well known that the concentration characteristics of the electron beam group are almost determined by the magnetic field generated by the deflection yoke. be.

以下本発明の理解を容易にする為、カラー受像管装置の
集中特性及び前記偏向ヨークの磁界特性に関して若干の
説明を加える。
In order to facilitate understanding of the present invention, some explanation will be given below regarding the concentration characteristics of the color picture tube device and the magnetic field characteristics of the deflection yoke.

第2図に示すように電子銃3より射出された電子ビーム
6B、6Rは共通の偏向磁界を通過し蛍光面7に達する
とき集中誤差を生じ、電子ビーム5B、5Hの集中点8
は電子銃側に屈曲した軌跡9の如くなる。
As shown in FIG. 2, when the electron beams 6B and 6R emitted from the electron gun 3 pass through a common deflection magnetic field and reach the phosphor screen 7, a concentration error occurs, and the concentration point 8 of the electron beams 5B and 5H occurs.
becomes a trajectory 9 curved toward the electron gun.

さらに詳述すると、両サイドビーム5 B 、 5 H
の集中点8と中央ビーム10とは必ずしも一致せず、所
謂二17収差が生じるのが通例である。
To explain in more detail, both side beams 5B, 5H
The focal point 8 and the central beam 10 do not necessarily coincide, and so-called 217 aberration usually occurs.

この現象を蛍光面−Lのパターンに焼き直すと第3図の
ようになる。
If this phenomenon is reproduced in the pattern of the phosphor screen L, it will become as shown in FIG.

一般にカラー受像管装置の集中特性や偏向ヨークの磁界
設計等を論じるときは、この様な蛍光面−Lのパターン
を用いる方が定性的ではあるが理解し易い。
In general, when discussing the concentration characteristics of a color picture tube device, the magnetic field design of a deflection yoke, etc., it is easier to understand, although it is qualitative, to use such a pattern of the phosphor screen -L.

図中、画面中央部R、G 、 Bは蛍光向側より異、た
電子銃配列、×印は青■3ビーム、0印は緑Gビーム、
△印は赤Rビームの各ノ々クーンを示す。
In the figure, R, G, and B in the center of the screen are different from the fluorescence direction side, and the electron gun arrangement is different.
The △ mark indicates each node of the red R beam.

カラー受像管装置に於いて、正確な画像再生を行うため
には、3本の電子ビームを実質的に蛍光面E全面に渡り
、集中させる必要があり、従来補正回路等により動点集
中補正を行う方式が主流であったが、最近インライン形
電子銃の利点を生かし、偏向ヨーク磁界を特殊なアステ
イグ磁界にすることにより、3本の電子ビームを実質的
に蛍光面上に集中させる自動集中形カラー受像管装置が
主流となっている。
In order to perform accurate image reproduction in a color picture tube device, it is necessary to concentrate the three electron beams over virtually the entire surface of the phosphor screen E. Conventionally, correction circuits and the like have been used to perform moving point concentration correction. However, recently, an automatic focusing method has been developed that takes advantage of in-line electron guns and uses a special Asteig magnetic field for the deflection yoke magnetic field to virtually concentrate three electron beams onto the phosphor screen. Color picture tube devices are the mainstream.

自動集中化に関しては、第4図a、bに示すように水平
偏向磁界11はビンクッション形、垂直偏向磁界12は
バレル形磁界にすれば良いことは周知であり第4図に示
すように、カラー受像管の管軸をZ軸、水平偏向方向を
Z軸、垂直偏向方向をY軸とすると、ピンクッション形
磁界11は管軸に垂直な面上での磁界分布が第5図a、
bのようにX軸上A、−A’では中心より離軸するに従
い増加し同時に中心よりY軸方向に任意の距離だけ離れ
た点よりX軸方向に沿って測った磁界B−B’も同様の
傾向を示し、さらにX軸方向に任意の距離だけ離れた点
よりY軸方向に沿って測ったC−C/磁界は前記とは逆
に離軸距離に従い減少する。
Regarding automatic concentration, it is well known that the horizontal deflection magnetic field 11 can be made into a bottle cushion shape, and the vertical deflection magnetic field 12 can be made into a barrel shape, as shown in FIGS. 4a and 4b. Assuming that the tube axis of the color picture tube is the Z axis, the horizontal deflection direction is the Z axis, and the vertical deflection direction is the Y axis, the pincushion magnetic field 11 has a magnetic field distribution on a plane perpendicular to the tube axis as shown in FIG.
As shown in b, on the X-axis A, -A' increases as the axis moves away from the center, and at the same time, the magnetic field B-B' measured along the X-axis direction from a point away from the center by an arbitrary distance in the Y-axis direction. A similar tendency is shown, and the C-C/magnetic field measured along the Y-axis direction from a point separated by an arbitrary distance in the X-axis direction decreases with the off-axis distance, contrary to the above.

同様にバレル形磁界は第5図c、dに示すように、ビン
クッション磁界と全く逆の特性を有している。
Similarly, the barrel-shaped magnetic field has completely opposite characteristics to the bottle cushion magnetic field, as shown in FIGS. 5c and 5d.

第5図に於てBx 、ByはそれぞれZ軸、Y軸方向の
磁界強度を示す。
In FIG. 5, Bx and By indicate magnetic field strengths in the Z-axis and Y-axis directions, respectively.

次に偏向ヨーク磁界と自動集中化に関して前記蛍光m上
の3本の電子ビームのパターンを用いて若干の説明を加
える。
Next, some explanation will be given regarding the deflection yoke magnetic field and automatic concentration using the pattern of three electron beams on the fluorescence m.

第6図は水平、垂直磁界が各々斉一のときのパターンで
3本の電子ビーム13B、13G、11は水平軸、垂直
軸、対角軸共々水平方向では過集中となっている。
FIG. 6 shows a pattern when the horizontal and vertical magnetic fields are uniform, and the three electron beams 13B, 13G, and 11 are overconcentrated in the horizontal direction on the horizontal, vertical, and diagonal axes.

これは前記第2図に示した集中点の軌跡に対応する。This corresponds to the trajectory of the concentration point shown in FIG. 2 above.

図を見てもわかるように同時に垂直端に沿った3本の電
子ビームの軌跡14 B y 14 G y 14 R
は互いに交叉し、所謂゛逆りロス”状態となる。
As can be seen from the figure, the trajectories of three electron beams simultaneously along the vertical edge 14 B y 14 G y 14 R
cross each other, resulting in a so-called "reverse loss" state.

次に水平偏向磁界を前記ビンクッション形にすると、第
7図に示すように3本の電子ビームに対して1)−′の
笠方性非点収差をり、7.えるよう作用し、電子ビーム
スボッl−15B、15Hの間隔は次第に挟まり、結果
として集中する方向に変化する。
Next, when the horizontal deflection magnetic field is made into the bottle cushion shape, as shown in FIG. As a result, the distance between the electron beam boxes 15B and 15H gradually narrows, resulting in a change in the direction of concentration.

ここで中央ビーム15Gと両サイドビーム15B。Here, there is a central beam 15G and both side beams 15B.

15Rとの関係は所謂コマ収差のため必ずし、も一定で
ないことは勿論である。
Of course, the relationship with 15R is not necessarily constant due to so-called coma aberration.

一方垂直磁界を前記バレル形にすると、垂直軸に沿った
3本の電子ビーム16B、16G、16Rに対して負の
等方性非点収差を与えるよう作用し、電子ビームスポッ
ト16B、16Rの間隔は次第に挟まり、さらには不足
集中状態となる。
On the other hand, when the vertical magnetic field is shaped into the barrel shape, it acts to give negative isotropic astigmatism to the three electron beams 16B, 16G, 16R along the vertical axis, and the distance between the electron beam spots 16B, 16R gradually increases. This will lead to a situation where there is a lack of concentration.

前記水平、垂直磁界を同時に重畳し、電子ビームを対角
軸方向に偏向したときの対角軸端部の集中特性はカラー
受像管装置の偏向角、画面サイズなどにより異なるため
一概に決めることが出来ず、任意に設計された偏向ヨー
クを用いて蛍光部上の集中特性を観察し、実、験的に修
正を加え磁界の最適化を計っている。
When the horizontal and vertical magnetic fields are simultaneously superimposed and the electron beam is deflected in the direction of the diagonal axis, the concentration characteristic at the end of the diagonal axis cannot be determined unconditionally because it varies depending on the deflection angle of the color picture tube device, the screen size, etc. Since this is not possible, we are using an arbitrarily designed deflection yoke to observe the concentration characteristics on the fluorescent part, and are attempting to optimize the magnetic field by making practical and experimental modifications.

上述の説明より、インライン形カラー受像管装置は、水
平偏向磁界をビンクッションに、垂直磁界をバレル形に
することにより、少なくとも両サイドビームを蛍光面上
に集中させることができるが、自動集中化に関してはさ
らに前記コマ収差をも補正する必要がある。
From the above explanation, the in-line color picture tube device can concentrate at least both side beams on the phosphor screen by making the horizontal deflection magnetic field into a bottle cushion and the vertical magnetic field into a barrel shape. In addition, it is necessary to correct the coma aberration.

このコマ収差は第8図に示したように偏向ヨークの電子
銃側17と蛍光面側18との磁界分布を逆極性(例えば
水平磁界では電子銃側をバレル、蛍光面側をビンクッシ
ョン形)にし全体としては水平磁界をビンクッション形
、垂直磁界をバレル形にすることで補正できるが実際の
カラー受像管装置では垂直コイルの蛍光面側を極端なビ
ンクッション形にする必要があるため結果として左右ラ
スター歪が非常に大きくなり例えば110°管では約1
5%程度となり、安価な受動素子よりなる補正回路では
、補正できない欠点を有している。
This coma aberration causes the magnetic field distribution on the electron gun side 17 and the phosphor screen side 18 of the deflection yoke to have opposite polarities (for example, in a horizontal magnetic field, the electron gun side is barrel-shaped and the phosphor screen side is in a bottle cushion shape), as shown in FIG. Overall, this can be corrected by making the horizontal magnetic field a bottle cushion shape and the vertical magnetic field a barrel shape, but in an actual color picture tube device, the phosphor screen side of the vertical coil needs to be shaped into an extreme bottle cushion shape. The left and right raster distortion becomes very large, for example, about 1 in a 110° tube.
This is about 5%, which is a drawback that cannot be corrected by a correction circuit made of inexpensive passive elements.

ラスター歪は、第9図に示すように、インライン形カラ
ー受像管装置の場合上下、左右ラスクー歪とも巻形(ビ
ンクッション形)になり、特に垂直磁界をバレル形にす
るため左右ラスター歪が上下ラスター歪より犬なること
が通例である。
As shown in Figure 9, in the case of an in-line color picture tube device, the raster distortion has a winding shape (bottle cushion shape) for both the top and bottom as well as the left and right raster distortions.In particular, since the vertical magnetic field is barrel-shaped, the left and right raster distortion is vertical and horizontal. It is customary for the raster distortion to be sharper than the raster distortion.

コマ収差を補正する他の手法としては、この他に所謂フ
ィールドコントローラーを用いる手法があり、これによ
り偏向ヨークの設Eil−IM由度が増加し結果として
第101謂のような磁界でも充分3本の電子ビームを自
動集中化できる利点を有し、さらに前記左右ラスター歪
も110°管で約8%程度90°管で約5%程度となり
充分受動素子よりなる回路で補正可能な範囲に抑えられ
る利点を有している。
Another method for correcting coma aberration is to use a so-called field controller, which increases the flexibility in setting the deflection yoke, and as a result, even with a magnetic field as described in Section 101, three beams are sufficient. It has the advantage of automatically concentrating the electron beam, and furthermore, the left and right raster distortion is approximately 8% for a 110° tube and approximately 5% for a 90° tube, which is sufficiently suppressed to a range that can be corrected by a circuit consisting of passive elements. It has advantages.

以上偏向磁界と自動集中化等に関して説明したが、いず
れにせよりラー受鐵管装置は集中特性を実用−り支障な
い程度にする必要があり3本の電子ビームよりなる仮想
電子ビーム径は通例約10〜16φと白黒管の2〜3φ
とは比較にならない程度に大きいため結果としてラスタ
ー歪を大幅に低減し実質的に補正回路不要とすることは
出来ない。
The deflection magnetic field, automatic concentration, etc. have been explained above, but in any case, it is necessary for the beam receiving tube device to have concentration characteristics that do not interfere with practical use, and the diameter of the virtual electron beam consisting of three electron beams is usually about approx. 10~16φ and black and white tube 2~3φ
As a result, it is impossible to significantly reduce raster distortion and substantially eliminate the need for a correction circuit.

即ち白黒管装置の場合は集中特性という概念が全くない
ため、例えば第11図に一例を示すように偏向ヨークの
蛍光面側端部19で、水平軸に対応した空間に永久磁石
20を配置し、ラスター歪補正を行っているが、カラー
受像管装置の場合は前記した如く集中特性を考慮した場
合、容易にラスター歪を低減することはできず今日まで
実用化に至った例はなく、自動集中方式インライン形カ
ラー受像管装置に於いてラスター歪を大幅に低減し実質
的に歪補正回路不要化ができれば非常に効果的である。
That is, in the case of a black-and-white tube device, there is no concept of concentration characteristics, so for example, as shown in FIG. However, in the case of color picture tube devices, raster distortion cannot be easily reduced when considering the concentration characteristics as mentioned above, and there have been no examples of practical use to date. It would be very effective if raster distortion could be significantly reduced in a concentrated type inline color picture tube device and the need for a distortion correction circuit could be substantially eliminated.

尚前記説明は主に左右ラスター歪に関してふれたが、自
動集中方式インライン形カラー受像管装置の場合水平偏
向磁界が原理−ヒ全体的にはビンクッション形になって
いるため必然的に小さく、110°管に於いても2〜3
%程度である。
Although the above explanation mainly concerned left and right raster distortion, in the case of an automatic concentration type inline type color picture tube device, the horizontal deflection magnetic field is essentially small because the horizontal deflection magnetic field is generally bottle cushion shaped, and 110 ° Even in tubes 2-3
It is about %.

図中21は水平サドル形偏向コイルを示す。In the figure, 21 indicates a horizontal saddle type deflection coil.

本発明は上記に鑑み発明されたものでラスター歪を大幅
に低減し実質的に零とし、回路補正を不要とした自動集
中方式インライン形カラー受像管装置を提供するもので
、偏向ヨークの磁界分布を特殊な分布としさらに補助偏
向素子として例えば永久磁石を用い、その非斉一な磁界
を重ね合わせることにより偏向ヨーク自体では不可能で
あったカラー受像管装置のラスター歪を大幅に低減する
ようにしたインライン形カラー受像管装置に関するもの
である。
The present invention was invented in view of the above, and provides an automatic concentration type in-line type color picture tube device that greatly reduces raster distortion to virtually zero and eliminates the need for circuit correction. By using a permanent magnet as an auxiliary deflection element and superimposing the non-uniform magnetic fields, it was possible to significantly reduce the raster distortion of color picture tube devices, which was impossible with the deflection yoke itself. This invention relates to an in-line color picture tube device.

以下図面に従かい本発明のインライン形カラー受像管装
置の一実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an in-line color picture tube device according to the present invention will be described below with reference to the drawings.

第12図は本発明のインライン形カラー受像管装置の一
実施例に適応する偏向装置であり、この偏向装置は偏向
ヨーク22と補助偏向素子23よりなり補助偏向素子は
偏向ヨーク22の蛍光面側端部近傍でカラー受理装置の
ほぼ水平軸、垂直軸に対応する領域に2対の永久磁石が
配しである。
FIG. 12 shows a deflection device adapted to an embodiment of the in-line color picture tube device of the present invention. This deflection device consists of a deflection yoke 22 and an auxiliary deflection element 23. Two pairs of permanent magnets are disposed near the ends in areas corresponding to approximately the horizontal and vertical axes of the collar receiving device.

偏向ヨークの磁界は、第13図に示す如く、3十の電子
ビームを水平軸に沿って偏向するときは負の等方性非点
収差を写え、垂直軸に沿って偏向するときは正の等方性
非点収差を与える様に作用させ、結果として前記電子ビ
ームは水平軸に沿っては実質的に過集中34とし、垂直
軸に沿っては実質点に不足集中35としさらに対角軸に
沿っては非集中状態36とし補助偏向素子23は前記偏
向ヨーク22が形成するラスターの水平軸近傍の偏向感
度を上げるように作用し、垂直軸に沿って偏向されたと
き偏向感度が上がるように作用し、更に前記電子ビーム
がインライン形カラー受像管装置の水平軸に沿って偏向
されたとき正の等方性非点収差を4覆るように作用し、
垂直軸方向に偏向された時負の等方性非点収差を与える
様に作用し、この時対角軸に沿って実質的に非点収差が
なくなるように作用する様に配し、結果として、偏向ヨ
ーク磁界による実質的非集中を補正するように配したも
のであり、この様にしてインライン形カラー受像管装置
のラスター歪を大幅に低減し、かつ3本の電子ビームを
蛍光面に集中させることを可能とした。
The magnetic field of the deflection yoke produces negative isotropic astigmatism when deflecting the 30 electron beam along the horizontal axis, and positive isotropic astigmatism when deflecting it along the vertical axis, as shown in Figure 13. directional astigmatism, with the result that the electron beam is substantially overconcentrated 34 along the horizontal axis, underconcentrated 35 to a substantial point along the vertical axis, and further along the diagonal axis. is in a non-concentrated state 36, and the auxiliary deflection element 23 acts to increase the deflection sensitivity near the horizontal axis of the raster formed by the deflection yoke 22, and acts to increase the deflection sensitivity when deflected along the vertical axis. , further acting to mask positive isotropic astigmatism when the electron beam is deflected along the horizontal axis of the in-line color picture tube device;
It is arranged so that it acts to give negative isotropic astigmatism when deflected in the vertical axis direction, and at this time acts so as to substantially eliminate astigmatism along the diagonal axis, and as a result, the deflection It is arranged so as to correct the substantial deconcentration caused by the yoke magnetic field, and in this way, the raster distortion of the in-line color picture tube device is greatly reduced, and the three electron beams are concentrated on the phosphor screen. made possible.

前述の如き組合せを行なった本発明のインライン形カラ
ー受像管装置に適応する偏向装置の磁界分布を第14図
に示す。
FIG. 14 shows the magnetic field distribution of a deflection device adapted to the in-line color picture tube device of the present invention, which is combined as described above.

第14図は第4図同様インライン形カラー受像管装置の
管軸Z軸に対して直角な断面内における磁界分布であり
図中G−σ、 H−H’ 、 I−I’・・・はA−A
’ 、 B −B’ 。
Similar to FIG. 4, FIG. 14 shows the magnetic field distribution in a cross section perpendicular to the tube axis Z-axis of an in-line color picture tube device. In the figure, G-σ, H-H', I-I'... A-A
', B-B'.

C−C’−にそれぞれ対応し、また第15図に於けるa
−dはそれぞれ第5図のa −dに対応している。
Corresponding to C-C'-, respectively, and a in FIG.
-d correspond to a to d in FIG. 5, respectively.

図より電子ビームを水平軸に沿って偏向する磁界は水平
軸近傍の磁界G−αではビンクッション磁界27であり
且つ周辺に行くに従かいビンクッション磁界が強くなる
28ようにし、水平軸をはなれた領域の磁界H−H’で
は中心軸近傍ではピンクッション磁界2γであり対角軸
に対応する領域ではバレル磁界29となるよう、換言す
れば磁宥強度分布が変曲点30をもつ様にし、垂直軸に
76つて偏向する磁界は垂直軸近傍J−J’に於ては、
管軸Z軸近傍でバレル磁界31垂直軸周辺でビンクッシ
ョン磁界32とし、垂直軸からはなれた領域の磁界に−
に’では全体にバレル磁界33となる様にしたものであ
る。
From the figure, the magnetic field that deflects the electron beam along the horizontal axis is a bottle cushion magnetic field 27 in the magnetic field G-α near the horizontal axis, and the bottle cushion magnetic field becomes stronger as it goes to the periphery 28. In the magnetic field H-H' in the region, the pincushion magnetic field is 2γ near the center axis, and the barrel magnetic field is 29 in the region corresponding to the diagonal axis, in other words, the magnetic tolerance strength distribution has an inflection point 30. , the magnetic field deflected along the vertical axis is, in the vicinity of the vertical axis J-J',
Barrel magnetic field 31 near the tube axis Z axis, bottle cushion magnetic field 32 around the vertical axis, and magnetic field in the area away from the vertical axis -
In '2', the entire barrel magnetic field 33 is formed.

前述したような偏向装置を装着した本発明のインライン
形カラー受像管装置に於ては走査ラスター歪を大幅に低
減し、実質的に零にし、かつ3本の電子ビームを蛍光面
上に集中させることが可能となる。
In the in-line color picture tube device of the present invention equipped with the deflection device as described above, scanning raster distortion is significantly reduced to virtually zero, and three electron beams are concentrated on the phosphor screen. becomes possible.

本発明は他に以下に述べる利点を有す。The invention has other advantages as described below.

第1は補助偏向素子として例えば永久磁石を用いるため
水平コイル等に通例用いられる不所望なサドル形コイル
のターンエンド効果を実質的に除去することができ、結
果として任意の所量の磁界分布が形成できる。
First, the use of, for example, a permanent magnet as the auxiliary deflection element substantially eliminates the undesired turn-end effect of saddle-shaped coils, which is commonly used in horizontal coils, etc., and as a result the magnetic field distribution of any given amount can be Can be formed.

第2は偏向ヨーク自体を充分小型化できる。Second, the deflection yoke itself can be sufficiently miniaturized.

第3は特に大型管に於いて前記カラー受像管装置の集中
特性は対角部に於いて、負の異方性非点収差が犬であり
、結果として集中誤差が大きくなる傾向があるが本発明
により、集中誤差を充分に低減し、結果として集中特性
を高品位に保つことができる。
Thirdly, especially in large tubes, the convergence characteristics of the color picture tube device have a negative anisotropic astigmatism in the diagonal portion, and as a result, the convergence error tends to increase. , concentration errors can be sufficiently reduced, and as a result, the concentration characteristics can be maintained at high quality.

等々の利点を有する。以上述べた如く本発明はインライ
ン形カラー受像管装置は偏向装置として偏向ヨークと複
数個の補正偏向素子を配し、偏向ヨークの発生する磁界
の一部を実質的に補正し、かつ偏向ヨークの磁界自体を
特殊なアステイグ磁界とすることにより実質的に走査ラ
スターを零としかつ自動集中形カラー受像管装置を得ん
とするもので、形態的には白黒管装置に応用している歪
補正磁石と非常に酷似しているが、カラー受像管の3本
の電子ビームが形成する仮想電子ビーム径が白黒管とは
全く異なっており、さらには前記したような他の利点が
付随的に生じる事を考えれば、その作用効果の相違は、
充分理解できると考える。
It has the following advantages. As described above, the present invention provides an in-line color picture tube device that is equipped with a deflection yoke and a plurality of correction deflection elements as a deflection device, and substantially corrects a part of the magnetic field generated by the deflection yoke. By making the magnetic field itself a special Asteig magnetic field, the aim is to substantially reduce the scanning raster to zero and to obtain an automatically concentrating color picture tube device, and in terms of form, it is a distortion correction magnet that is applied to black and white tube devices. However, the virtual electron beam diameter formed by the three electron beams of a color picture tube is completely different from that of a black-and-white picture tube, and the other advantages mentioned above arise incidentally. Considering that, the difference in action and effect is
I think it's understandable enough.

また前記実施例に於ては自己集中形カラー管に限って説
明したが、その他の3電子銃方式カラー管にも同様に適
用できることはもちろんである。
Further, although the above embodiment has been explained only for a self-concentrating color tube, it goes without saying that the present invention can be similarly applied to other three-electron gun type color tubes.

さらに補助偏向素子は前記の如く、カラー受像管のX軸
及びY軸に対応した位置に配置したが、受像管のサイズ
および偏向角によっては、補助偏向ン 素子の少くとも一方が不要な場合が生じ得、その場合に
はその不要な素子を省略してもさしつかえない。
Furthermore, as described above, the auxiliary deflection elements are arranged at positions corresponding to the X and Y axes of the color picture tube, but depending on the size and deflection angle of the picture tube, at least one of the auxiliary deflection elements may not be necessary. In that case, the unnecessary element may be omitted.

更に別の場合には対角軸に必要な場合もあり、この場合
には対角軸近傍に付設してもよい。
Furthermore, in other cases, it may be necessary for the diagonal axis, and in this case, it may be attached near the diagonal axis.

永久磁石の配置方法は、前記した如くカラー受像管の偏
向角正面サイズ等に依存する点もあり種々選択すべきで
ある。
The method of arranging the permanent magnets depends on the deflection angle, front size, etc. of the color picture tube, as described above, and should be selected from various methods.

上の実施例は補助偏向素子として永久磁石を用いている
が本発明の趣旨から永久磁石と同等の効果を有する他の
補助偏向素子であってもさしつかえないことは明らかで
ある。
Although the above embodiment uses a permanent magnet as the auxiliary deflection element, it is clear from the spirit of the present invention that other auxiliary deflection elements having the same effect as the permanent magnet may be used.

例えば永久磁石の代わりに電磁界発生装置より発生する
磁界を、前記偏向ヨークの蛍光面側端部近傍に高透磁率
部材を付設することにより、前述の永久磁石と同等な効
果を生じさせることも可能である。
For example, by attaching a high magnetic permeability member near the end of the deflection yoke on the phosphor screen side, the magnetic field generated by an electromagnetic field generator instead of a permanent magnet can produce the same effect as the above-mentioned permanent magnet. It is possible.

以上述べた如く、本発明は全く新しい自動集中形カラー
管を提供するものでその工業的価値は極めて犬なるもの
である。
As described above, the present invention provides a completely new automatic concentrating collar tube, and its industrial value is extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインライン形カラー受像管装置の代表例を示す
簡略断面図、第2図は第1図に示す受像管装置に於ける
電子ビームの集中誤差を説明するための簡略説明図、第
3図は第2図に示す集中誤差による蛍光面上のパターン
形状の説明図、第4図は従来のインライン形カラー受像
管装置に使用されていた偏向装置の磁界分布を示す説明
図、第5図は第4図の偏向装置の管軸に垂直な面上に於
ける磁界分布を示す曲線図、第6図は水平、垂直磁界が
各々斉一のときのパターン形状を示す説明図、第7図は
水平磁界のみビンクッション形にした時のパターン形状
を示す説明図、第8図は偏向ヨークの電子銃側と蛍光面
側との磁界分布を逆極性にした磁界分布を示す説明図、
第9図は第8図の偏向ヨークを使用した時のラスター形
状を示す説明図、第10図はフィールドコントローラー
を使用した時の偏向ヨークの磁界分布の一例を示す説明
図、第11図は白黒管装置に於ける偏向装置の一例を示
す平面図、第12図は本発明のインライン形カラー受像
管装置の一実施例に適応する偏向装置の平面図、第13
図は第12図の偏向装置の内の偏向ヨークにのみによる
蛍光面上のパターン形状を示す説明図、第14図は第1
2図の偏向装置の磁界分布を示す説明図、第15図は第
14図の偏向装置の管軸に垂直な面上に於ける磁界分布
を示す曲線図である。 21・・・・・・水平偏向コイル 20゜ 23・・・・・・補助 偏向素子。
FIG. 1 is a simplified sectional view showing a typical example of an in-line color picture tube device, FIG. 2 is a simplified explanatory diagram for explaining the electron beam concentration error in the picture tube device shown in FIG. 1, and FIG. The figures are an explanatory diagram of the pattern shape on the phosphor screen due to the concentration error shown in Fig. 2, Fig. 4 is an explanatory diagram showing the magnetic field distribution of the deflection device used in a conventional in-line color picture tube device, and Fig. 5 is a curve diagram showing the magnetic field distribution on a plane perpendicular to the tube axis of the deflection device in Figure 4, Figure 6 is an explanatory diagram showing the pattern shape when the horizontal and vertical magnetic fields are uniform, and Figure 7 is a diagram showing the pattern shape when the horizontal and vertical magnetic fields are uniform. An explanatory diagram showing the pattern shape when only the horizontal magnetic field is shaped like a bottle cushion; FIG. 8 is an explanatory diagram showing the magnetic field distribution when the magnetic field distributions on the electron gun side and the phosphor screen side of the deflection yoke are of opposite polarity;
Figure 9 is an explanatory diagram showing the raster shape when the deflection yoke of Figure 8 is used, Figure 10 is an explanatory diagram showing an example of the magnetic field distribution of the deflection yoke when a field controller is used, and Figure 11 is black and white. FIG. 12 is a plan view showing an example of a deflection device in a tube device; FIG. 12 is a plan view of a deflection device adapted to an embodiment of the in-line color picture tube device of the present invention; FIG.
The figure is an explanatory diagram showing the pattern shape on the phosphor screen only by the deflection yoke of the deflection device in Fig. 12, and Fig.
2 is an explanatory diagram showing the magnetic field distribution of the deflection device, and FIG. 15 is a curve diagram showing the magnetic field distribution on a plane perpendicular to the tube axis of the deflection device of FIG. 14. 21...Horizontal deflection coil 20°23...Auxiliary deflection element.

Claims (1)

【特許請求の範囲】[Claims] 1 直角座標の各軸をZ軸、Y軸、Z軸とし、前記Z軸
、Y軸にそれぞれほぼ平行な長辺、短辺を有する矩形状
蛍光面と、前記蛍光面に射突しカラー画像を再現するよ
うに前記Z軸方向に前記Z軸に沿って一列配設したイン
ライン電子銃とを内装するインライン形カラー受像管と
、前記インライン形カラー受像管に装着され前記インラ
イン電子銃より射出された電子ビームを前記Z軸に沿っ
て偏向するとき負の等方性非点収差を与え、前記電子ビ
ームを前記Y軸に沿って偏向するとき正の等方性非点収
差を与え、実質的には前記Z軸に沿っては過集束状態と
なり、前記Y軸に沿っては不足集中状態とする偏向ヨー
クと、前記偏向ヨークの前記蛍光面側端部近傍に装着さ
れ前記電子ビームを前記X軸方向に於ては正の等方性非
点収差を与え、前記X軸方向に於ては負の等方性非点収
差を与える様に作用する補助偏向素子とからなることを
特徴とするインラインカラー形カラー受像管装置。
1. A rectangular phosphor screen whose rectangular coordinate axes are the Z-axis, Y-axis, and Z-axis, and whose long sides and short sides are substantially parallel to the Z-axis and Y-axis, respectively, and a color image that strikes the phosphor screen. an in-line color picture tube incorporating in-line electron guns arranged in a row along the Z-axis to reproduce the above-mentioned in-line electron guns; When the electron beam is deflected along the Z axis, negative isotropic astigmatism is imparted, and when the electron beam is deflected along the Y axis, positive isotropic astigmatism is imparted, and substantially the Z a deflection yoke that brings the electron beam into an over-focusing state along the axis and an under-concentration state along the Y-axis; An in-line color type color picture tube device comprising an auxiliary deflection element that acts to give positive isotropic astigmatism in the X-axis direction and negative isotropic astigmatism in the X-axis direction.
JP8984077A 1977-07-28 1977-07-28 In-line color picture tube device Expired JPS5843857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8984077A JPS5843857B2 (en) 1977-07-28 1977-07-28 In-line color picture tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8984077A JPS5843857B2 (en) 1977-07-28 1977-07-28 In-line color picture tube device

Publications (2)

Publication Number Publication Date
JPS5433623A JPS5433623A (en) 1979-03-12
JPS5843857B2 true JPS5843857B2 (en) 1983-09-29

Family

ID=13981950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8984077A Expired JPS5843857B2 (en) 1977-07-28 1977-07-28 In-line color picture tube device

Country Status (1)

Country Link
JP (1) JPS5843857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141848A (en) * 1981-02-25 1982-09-02 Toshiba Corp Color picture tube
JPH0739163Y2 (en) * 1985-08-30 1995-09-06 ソニー株式会社 Deflection yoke

Also Published As

Publication number Publication date
JPS5433623A (en) 1979-03-12

Similar Documents

Publication Publication Date Title
FI60086C (en) SJAELVKONVERGERANDE FAERGTELEVISIONSAOTERGIVNINGSSYSTEM
CA1124304A (en) Deflection yoke with a magnet for reducing sensitivity of convergence to yoke position
JPS60195847A (en) Color picture tube
JPS5843856B2 (en) In-line color picture tube device
JPS6081736A (en) Electron gun structure
GB2083689A (en) Self-convergent deflection yokes
JPS5843857B2 (en) In-line color picture tube device
JPS61253749A (en) Cathode ray tube
US4754189A (en) Color television display tube with coma correction
KR100291787B1 (en) Convergence yoke with improved focus characteristics
US4723094A (en) Color picture device having magnetic pole pieces
EP0415125B1 (en) Cathode ray tube
KR830000206B1 (en) In-line color water tube device
JP2859900B2 (en) Color picture tube
KR810000017B1 (en) Self-converging color television display system
KR840001000B1 (en) Self conversing color image display system
JP2656591B2 (en) Deflection device and deflection yoke constituting the same
JP2862575B2 (en) Color picture tube
KR940004072Y1 (en) Vertical center raster compensation device in deflecting yoke
JPH0354420B2 (en)
FI70097C (en) SJAELVKONVERGERANDE FAERGTELEVISIONSAOTERGIVNINGSANORDNING
JPS5925080Y2 (en) Semi-toroidal electromagnetic deflection yoke
JPS61188841A (en) Color picture tube device
JPS5951443A (en) Color cathode-ray tube device
JPH02267840A (en) Deflection yoke structure