JPS5843302A - Method of controlling mixed pressure type waste heat recovery boiler - Google Patents

Method of controlling mixed pressure type waste heat recovery boiler

Info

Publication number
JPS5843302A
JPS5843302A JP56140372A JP14037281A JPS5843302A JP S5843302 A JPS5843302 A JP S5843302A JP 56140372 A JP56140372 A JP 56140372A JP 14037281 A JP14037281 A JP 14037281A JP S5843302 A JPS5843302 A JP S5843302A
Authority
JP
Japan
Prior art keywords
pressure
drum
water
low
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56140372A
Other languages
Japanese (ja)
Other versions
JPH0330761B2 (en
Inventor
敏彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP56140372A priority Critical patent/JPS5843302A/en
Publication of JPS5843302A publication Critical patent/JPS5843302A/en
Publication of JPH0330761B2 publication Critical patent/JPH0330761B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は混圧型廃熱回収ボイラの制御方法に係り、特
に低圧、高圧の各節炭器のスチーミングを防止し、かつ
低圧、高圧の各ボイラドラムのレベル制御を容易に行な
える制御方法に閂する。
[Detailed Description of the Invention] The present invention relates to a method for controlling a mixed pressure type waste heat recovery boiler, and in particular, to prevent steaming of each low pressure and high pressure economizer, and to control the level of each low pressure and high pressure boiler drum. Focus on easy-to-implement control methods.

ガ壺タービン発電により生じた排ガスを〃1jめとして
各種排ガスの熱を回収する方法として排ガス流中に廃熱
ボイラを配置して熱1す(収を行なうが、この場合、熱
回収効率を高めるため高圧ボイラと低圧ボイラを併設し
た混圧型ボイラを設門することがある。第1図は赫来の
混圧ボイラの一例を示す。図において、脱気器22内の
ボイラ用水は低圧給水ポンプ21により主給水管路45
を経、て低圧節炭器17において昇温した後低用ドラム
12に供給される。
As a method of recovering the heat of various types of exhaust gas generated by gas turbine power generation, a waste heat boiler is placed in the exhaust gas stream to recover heat, but in this case, the heat recovery efficiency is increased. Therefore, a mixed pressure boiler with a high pressure boiler and a low pressure boiler is sometimes installed. Figure 1 shows an example of a mixed pressure boiler at Kakurai. In the figure, the boiler water in the deaerator 22 is supplied by a low pressure water supply pump. 21 to the main water supply pipe 45
After that, the temperature is raised in the low-pressure economizer 17 and then supplied to the low-pressure drum 12.

低圧ドラム12内の缶水は降水管14および蒸発器13
を循環し、発生した蒸気はドラム12から低圧蒸気へと
して低圧タービン等所定の機器に送られる。一方陣水管
14を下降した缶水の一部は高圧給水管路46.高圧給
水ポンプ11.高圧節炭器7を経て高圧ドラム2に至る
。高圧ドラムz内の缶水も低圧ドラム12内の缶水と同
様降水管4、蒸発器3を循環し、発生した蒸気は高圧ド
ラム2.過熱器1を経て高圧蒸気Sとして高圧タービン
等の機器に供給される。
The canned water in the low pressure drum 12 is transferred to the downcomer pipe 14 and the evaporator 13.
The generated steam is sent from the drum 12 to predetermined equipment such as a low-pressure turbine as low-pressure steam. On the other hand, a portion of the canned water that has descended through the water pipe 14 is transferred to the high pressure water supply pipe 46. High pressure water pump 11. It reaches the high-pressure drum 2 via the high-pressure economizer 7. The canned water in the high-pressure drum z also circulates through the downcomer pipe 4 and the evaporator 3 in the same way as the canned water in the low-pressure drum 12, and the generated steam is transferred to the high-pressure drum 2. It passes through a superheater 1 and is supplied as high-pressure steam S to equipment such as a high-pressure turbine.

この型式のボイラにおいては、低圧節炭器17および高
圧節炭器7に供給する給水の流量は主給水管路45を通
過する給水量によって調節されることになるためJ、4
saを軟ってボイラ負荷低下に対応して給水流量を減少
させると低圧。
In this type of boiler, the flow rate of the water supplied to the low-pressure economizer 17 and the high-pressure economizer 7 is adjusted by the amount of water that passes through the main water supply pipe 45.
If the sa is softened and the water supply flow rate is reduced in response to a drop in boiler load, the pressure will be low.

j+:I圧の各節炭器17および7においてスチーミン
グが生じる。つまり谷ボイラを通過する加熱媒体たる排
ガス量は常時はぼ一定であるため、給水通過量が減少す
ると給水の単位体積当りの吸熱量が増大してスチーミン
グを生ずる。に」炭器内でスチーミングが生じる上気液
混合物の通過により伝熱管は激しい衝撃を受け、いわゆ
るウォータハンマが生じ、節炭器が損傷する虞れがある
。またボイラドラムの相互干渉を防+1−するたメ、低
圧ドラム12をバイパスして管lI′1147を設ける
こともあるが、この場合には低圧節炭器内でスチーミン
グが生じると気液混合物が高圧給水ポンプ11に直接流
入するため、同ポンプ11のキャビテーションによる振
動損傷という問題も発生する。
Steaming occurs in each economizer 17 and 7 of j+:I pressure. In other words, since the amount of exhaust gas, which is the heating medium, passing through the valley boiler is always approximately constant, when the amount of feed water passing through decreases, the amount of heat absorbed per unit volume of the feed water increases, causing steaming. The passage of the upper gas-liquid mixture, which causes steaming in the coal burner, causes the heat exchanger tubes to receive a severe impact, resulting in so-called water hammer, which may damage the economizer. In addition, in order to prevent mutual interference between the boiler drums, the low pressure drum 12 is sometimes bypassed and a pipe 1147 is provided, but in this case, if steaming occurs in the low pressure economizer, the gas-liquid mixture Since the water directly flows into the high-pressure water supply pump 11, the problem of vibration damage due to cavitation of the pump 11 also occurs.

また高圧ドラム2と低圧ドラム12は降水管14高圧給
水ライ″:46.高圧11ノ炭器7を介して連通:1 状態となっているため高圧ドラム2のレベル変二 勤が生じると低圧ドラム12の缶水取り出し量が変化し
低圧ドラム12のレベル変動となって現れ      
′る。すなわち両ドラムに相互干渉が発生して両ドラム
のレベルを一定に保持することが非常に困麺となる。
In addition, the high pressure drum 2 and the low pressure drum 12 are in communication via the downcomer pipe 14 and the high pressure water supply line: 46. The amount of water taken out from the can 12 changes and this appears as a level fluctuation in the low pressure drum 12.
'ru. In other words, mutual interference occurs between the two drums, making it extremely difficult to maintain the level of both drums at a constant level.

この発明の目的は上述した問題点を除去し、高圧、低圧
の各節炭器にスチーミングを生ぜずかつ高圧、低圧の各
ボイラドラムの相互干渉を防止する混圧型廃熱回収ボイ
ラの制御方法を提供することにある。
The purpose of this invention is to eliminate the above-mentioned problems and to control a mixed pressure type waste heat recovery boiler that does not cause steaming in each of the high-pressure and low-pressure economizers and prevents mutual interference between the high-pressure and low-pressure boiler drums. Our goal is to provide the following.

要するにこの発明は各節炭器を経て各ボイラドラムに供
給した缶水の一部を脱気器に還流させてボイラ負荷に係
りなく各節炭器を通過する給水流量を調節して節炭器内
のスチーミングを防止し、かつボイラドラムのレベル制
御を行なうよう構成した制御方法に関する。
In short, this invention is a carbon economizer by making a part of the canned water supplied to each boiler drum via each economizer return to the deaerator, and adjusting the flow rate of water that passes through each economizer regardless of the boiler load. The present invention relates to a control method configured to prevent boiler drum steaming and to control the level of a boiler drum.

以下この発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図において、脱気器22内の給水は主給水管45.
低圧給水ポンプ21.流量計23を経て低圧節炭器17
に至る。低圧節炭器17を出た給水は後述する制御方法
により開度設定された流量調節弁15を経て低圧ドラム
12に流入し、降水管14と蒸発器13を循環し、発生
した蒸気は低圧蒸気S工として低圧タービンに供給され
る。19は低圧節炭器17の出口における給水温度を検
知する温度検知器であり、出口部給水温度が設定値より
も低い場合には再循環ポンプ18により節炭器入口側給
水に高温の缶水を混入して温度調節を行なう。
In FIG. 2, the water supply inside the deaerator 22 is supplied to the main water supply pipe 45.
Low pressure water pump 21. Low pressure economizer 17 via flow meter 23
leading to. The feed water leaving the low-pressure economizer 17 flows into the low-pressure drum 12 through the flow control valve 15 whose opening degree is set by a control method described later, and circulates through the downcomer pipe 14 and the evaporator 13, and the generated steam becomes low-pressure steam. It is supplied to the low-pressure turbine as S work. 19 is a temperature detector that detects the temperature of the water supply at the outlet of the low-pressure economizer 17, and when the temperature of the water supply at the outlet is lower than the set value, the recirculation pump 18 supplies high-temperature canned water to the water supply at the inlet side of the economizer. Mix it in to adjust the temperature.

次に低圧節炭器内でスチーミングが生ずる虞れのある場
合には次の制御を行なう。節炭器内でのスチーミングを
防止するには節炭器を通過する給水蓋を増加させて節炭
器出口温度を飽和温度以下にすれば良いわけであるから
、流量調節弁20を開として低圧ドラム12内の缶水の
一部を脱気器22に還流させて低圧節炭器17の給水通
過量を増大させる。この場合開弁20の開度は水位計1
6の信号と、温度検知器19の信号により調顧し1必要
縁以上の缶水が脱気器22に還流しないようdmする。
Next, if there is a risk that steaming will occur within the low-pressure economizer, the following control is performed. In order to prevent steaming inside the economizer, it is sufficient to increase the number of water supply lids that pass through the economizer so that the temperature at the outlet of the economizer is below the saturation temperature. A portion of the canned water in the low-pressure drum 12 is returned to the deaerator 22 to increase the amount of water that passes through the low-pressure economizer 17. In this case, the opening degree of the opening valve 20 is the water level gauge 1
6 and the signal from the temperature sensor 19, DM is performed so that more than the required amount of can water does not flow back into the deaerator 22.

この弁20の調節により低圧節炭器内のスチーミングを
防止する外、水位計16の信号も受けることにより低圧
ドラム12内のレベル制御も行なう。24は還流量を検
知する流量検知器である。
Adjustment of this valve 20 not only prevents steaming within the low pressure economizer, but also controls the level within the low pressure drum 12 by receiving a signal from the water level gauge 16. 24 is a flow rate detector that detects the reflux amount.

一方低圧節炭器17を出た給水の一部は管路48゜高圧
給水ポンプ11.流量計25を経て高圧節炭器7に至る
。以後低圧ボイラと同様に、流量調節弁5により流量制
御されて高圧ドラム2に流入し、降水管4および蒸発器
3を循環し、発生した蒸気はドラム2.過熱器1を経て
高圧蒸気S2として高圧タービンに供給される。節炭器
に対する缶水の混入はポンプ8により、またスチーミン
グの防止およびドラム水位調節は水位計6と温度検知器
9の信号により流量調節弁lOの開度を調節することに
より行なう。26は高圧ボイラ側の給水還流量を検知す
る流量検知器である。
On the other hand, a part of the water supply from the low-pressure economizer 17 is transferred to the pipe 48° high-pressure water supply pump 11. It reaches the high pressure economizer 7 via the flow meter 25. Thereafter, similarly to the low-pressure boiler, the flow rate is controlled by the flow control valve 5, and the steam flows into the high-pressure drum 2, circulates through the downcomer pipe 4 and the evaporator 3, and the generated steam flows into the drum 2. It passes through the superheater 1 and is supplied to the high pressure turbine as high pressure steam S2. Mixing of canned water into the economizer is carried out by the pump 8, and prevention of steaming and adjustment of the drum water level are carried out by adjusting the opening degree of the flow rate control valve IO based on signals from the water level gauge 6 and the temperature sensor 9. 26 is a flow rate detector that detects the feed water return amount on the high pressure boiler side.

帰3図は低E匍炭器におけるスチーミング防止のための
制御方法をよら具体的に示したものである。図中51は
ガスタービン負荷信号発信器。
Figure 3 shows in more detail the control method for preventing steaming in a low-E coal machine. In the figure, 51 is a gas turbine load signal transmitter.

52はドラム圧力発信器す:11::□l、ff13は
節炭器出口給水温度発信器、54は缶水還流量発信器(
第2図の符、号24と対応)、55はドラム水位発信器
である・。
52 is a drum pressure transmitter.
55 is a drum water level transmitter.

ガスタービン負荷信号発信器51からの信号に 。To the signal from the gas turbine load signal transmitter 51.

より、関数発生器56はあらかじめ入力しておいた節炭
器給水通過量を加算器60に入力し、これをa、i+御
の先行要素とする。ドラム圧力発信器52による圧力ド
ラム圧力信号は関数発生器57に入力され、あらかじめ
入力しておいた飽和圧力に対する給水温度の関係式から
、検知圧力に鋳する飽和温度を算出し、これより数度低
い温度を指定して設定器58に入力する。設定器58は
発信器53による節炭器出口給水温度信号と前記指声温
度とを比較演算して偏差値を出し、比例及び積分器39
を経て前記加算器60に入力し、加算器60は流祉信号
を設実器63に発する。この場合、62を経て補正値と
して設定器63.に入力される。
Therefore, the function generator 56 inputs the amount of water passing through the economizer that has been input in advance to the adder 60, and uses this as the preceding element of the a and i+ controls. The pressure drum pressure signal from the drum pressure transmitter 52 is input to the function generator 57, which calculates the saturation temperature at which the detected pressure is applied from the relational expression between the saturation pressure and the feed water temperature that has been input in advance. Specify a low temperature and input it into the setting device 58. The setting device 58 compares and calculates the temperature signal of the economizer outlet water supply from the transmitter 53 and the finger temperature to obtain a deviation value, and outputs a deviation value from the proportional and integrator 39.
The signal is inputted to the adder 60 via the adder 60, and the adder 60 issues a welfare signal to the constructor 63. In this case, the correction value is passed through the setting device 63.62. is input.

べ定器63の信吾は比例および積分器649手動または
自動制御器64←より流量調節弁20の開度調節を行な
う。  し ■にドラム水位調節のため、信号記憶器67にドラム水
位目標値を設定し、ドラム水位が弁の調節不良等に′よ
り上昇した場合にも弁20を操作するようにしたもので
ある。すなわち信号発生器66と信号記憶器67により
加算器68において加’Si’ L/てドラム水位設定
値とし、発信器55により光1dされたドラム水位の実
測値とこの設定値を設定器69において比較演算し、こ
の偏差値を上下限設定器70において制御箱、囲を限定
するよう偏差値を数値限定して加算器60に補正値とし
て人力する。これにより弁20の開度設定をスチーミン
グ防止とドラム水位調節の両方の観点から行なうことが
できる。
The controller 63 controls the opening of the flow rate control valve 20 using the proportional and integrator 649, either manually or automatically by the controller 64. (2) In order to adjust the drum water level, a drum water level target value is set in the signal memory 67, and the valve 20 is operated even if the drum water level rises from '' due to maladjustment of the valve or the like. That is, the signal generator 66 and the signal memory 67 add 'Si' L/ to the drum water level set value in the adder 68, and the set value and the actual drum water level measured by the transmitter 55 are added in the setter 69. Comparative calculations are performed, and the deviation value is numerically limited in the upper and lower limit setter 70 so as to limit the control box and enclosure, and manually inputted to the adder 60 as a correction value. Thereby, the opening degree of the valve 20 can be set from the viewpoints of both prevention of steaming and adjustment of the drum water level.

高圧ボイラ側もこれと同様の制御を行なうことによりス
チーミング防止と、ドラム水位調節をイ丁なう。
Similar control is performed on the high-pressure boiler side to prevent steaming and adjust the drum water level.

この発明を実施することにより高圧、低圧の各新炭器の
スチーミングを有効に防止でき、かつ高圧、低圧の各ド
ラムの相互干渉を防止できる0
By implementing this invention, it is possible to effectively prevent steaming in each of the high pressure and low pressure new coal machines, and also to prevent mutual interference between the high pressure and low pressure drums.

【図面の簡単な説明】[Brief explanation of the drawing]

第、図は従来の混圧型廃熱回収ボイラの系層■、第2図
はこの発明に係る制御方法を示す混圧型廃熱回収ボイラ
の系統図、第3図は低圧ボイラの制御を具体的に示す系
統図である。 2・・・・・・高圧ドラム 7・・・・・・高圧節炭器 10、20・・・・・・流量調節弁 12・・・・・・低圧ドラム 17・・・・・・低圧晶炭器 22・・・・・・脱気器 51・・・・・・ガスタービン負荷信号発信器52・・
・・・・ドラム圧力発信器 53・・・・・・如炭器出ロ給水温度発−信器54・・
・・・・缶水還流量発信器 55・・・・・・ドラム水位発信器 代理人弁理士  岡 田梧部
Fig. 2 shows the system layer of a conventional mixed pressure waste heat recovery boiler, Fig. 2 is a system diagram of a mixed pressure waste heat recovery boiler showing the control method according to the present invention, and Fig. 3 shows a concrete example of the control of a low pressure boiler. FIG. 2... High pressure drum 7... High pressure economizer 10, 20... Flow control valve 12... Low pressure drum 17... Low pressure crystal Coal generator 22... Deaerator 51... Gas turbine load signal transmitter 52...
... Drum pressure transmitter 53 ... Coal generator outlet water supply temperature transmitter 54 ...
...Canned water return flow rate transmitter 55...Drum water level transmitter Patent attorney Oka Tagobe

Claims (1)

【特許請求の範囲】 1、 低圧節炭器出口給水を低圧ド′ラムに、高圧Nj
炭炭田出口給水高圧ドラみに各々供給する方法において
、低圧、高圧各ドラム内の缶水σ〕一部を低圧、高圧各
節炭器出口の給水温度に対応して脱気器に環流させるこ
とにより各節奏器内給水温度を常時飽和、温度以下に保
持しエスチーミングを防止し、かつ各ドラムの水位を調
節することを特徴とする混圧型廃熱回収ボイラの制御方
法。 2、前記各ドラム内の缶水の還流量を各ドラムの水位信
号および各節炭器出口の給水温度信号に基づいて定める
ことを特徴とする特許請求の範囲第1項記載の混圧型廃
熱回収ボイラ、の制御方法。 3、各ドラム内の缶水の還流量の決定因子として、ガス
タービン負荷信号、ドラム内圧力信号を加えたことを特
徴とする特許31“、求の範囲第2項i己載の混圧型廃
熱回収ボイラの制i、lit Jj法。 4、各ドラム内の缶水の還流量決定の補+IE因子とし
て、還流量実測信号、ドラム水位設定値を加えたことを
特徴とする特許nVI求の範囲第1項記載の混圧型廃熱
回収ボイラの制御方法。
[Claims] 1. Supply water from the outlet of the low-pressure economizer to the low-pressure drum, and connect it to the high-pressure Nj
In the method of supplying coal field outlet water to the high-pressure drums, a portion of the canned water σ in the low-pressure and high-pressure drums is recycled to the deaerator in accordance with the temperature of the water supply at the outlet of the low-pressure and high-pressure economizers. A method for controlling a mixed-pressure waste heat recovery boiler, characterized in that the water supply temperature in each metering device is always kept below the saturation temperature to prevent steaming, and the water level in each drum is adjusted. 2. The mixed pressure type waste heat according to claim 1, characterized in that the return amount of canned water in each drum is determined based on the water level signal of each drum and the feed water temperature signal of each economizer outlet. Recovery boiler control method. 3. Patent No. 31, which is characterized in that a gas turbine load signal and a drum internal pressure signal are added as determining factors for the return amount of canned water in each drum. Heat recovery boiler control i, lit Jj method. 4. Patent nVI characterized in that the actual return amount measurement signal and drum water level set value are added as supplements + IE factors for determining the return amount of canned water in each drum. A method for controlling a mixed pressure waste heat recovery boiler according to scope 1.
JP56140372A 1981-09-08 1981-09-08 Method of controlling mixed pressure type waste heat recovery boiler Granted JPS5843302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140372A JPS5843302A (en) 1981-09-08 1981-09-08 Method of controlling mixed pressure type waste heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140372A JPS5843302A (en) 1981-09-08 1981-09-08 Method of controlling mixed pressure type waste heat recovery boiler

Publications (2)

Publication Number Publication Date
JPS5843302A true JPS5843302A (en) 1983-03-14
JPH0330761B2 JPH0330761B2 (en) 1991-05-01

Family

ID=15267287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140372A Granted JPS5843302A (en) 1981-09-08 1981-09-08 Method of controlling mixed pressure type waste heat recovery boiler

Country Status (1)

Country Link
JP (1) JPS5843302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029501A (en) * 1983-07-28 1985-02-14 株式会社日立製作所 Steam generator for recovering waste heat
JPS6299505U (en) * 1985-12-13 1987-06-25
US5471204A (en) * 1988-04-09 1995-11-28 Nec Corporation Radio communication apparatus capable of notifying reception of a call signal in a perceptual mode determined by counting a number of times of the reception
JPH1061905A (en) * 1996-08-15 1998-03-06 Mitsubishi Heavy Ind Ltd Waste heat recovery boiler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112902A (en) * 1979-02-26 1980-09-01 Tokyo Shibaura Electric Co Device for preventing steaming of exhaust gas boiler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112902A (en) * 1979-02-26 1980-09-01 Tokyo Shibaura Electric Co Device for preventing steaming of exhaust gas boiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029501A (en) * 1983-07-28 1985-02-14 株式会社日立製作所 Steam generator for recovering waste heat
JPS6299505U (en) * 1985-12-13 1987-06-25
JPH0344648Y2 (en) * 1985-12-13 1991-09-19
US5471204A (en) * 1988-04-09 1995-11-28 Nec Corporation Radio communication apparatus capable of notifying reception of a call signal in a perceptual mode determined by counting a number of times of the reception
JPH1061905A (en) * 1996-08-15 1998-03-06 Mitsubishi Heavy Ind Ltd Waste heat recovery boiler

Also Published As

Publication number Publication date
JPH0330761B2 (en) 1991-05-01

Similar Documents

Publication Publication Date Title
JPS5843302A (en) Method of controlling mixed pressure type waste heat recovery boiler
US4080789A (en) Steam generator
JPH07217802A (en) Waste heat recovery boiler
JPS5843304A (en) Mixed pressure type waste heat recovery boiler preventing economizer steaming
JPH06159603A (en) Control device for waste heat steam generator
JPH07109905A (en) Method and apparatus for controlling steam temperature in composite power generation plant
JPH06137113A (en) Supply water treatment device for combined cycle plant
JP2839195B2 (en) Waste heat recovery boiler water supply control device
JPH0330762B2 (en)
JP2642389B2 (en) Steam turbine bypass device
JPS6211283Y2 (en)
JPS61118508A (en) Control device for recirculating flow of feed pump
JPH02223701A (en) Exhaust heat recovery boiler
JPS6326801B2 (en)
JPH08178205A (en) Controller of boiler
JPH01102202A (en) Drain controller for feedwater heater
JPS5843305A (en) Mixed pressure type waste heat recovery boiler device
JPS58205005A (en) Controller for drum level of waste heat boiler
JP2625422B2 (en) Boiler control device
JPS58145803A (en) Controller for drum level of waste-heat boiler
JPS59110810A (en) Water level control device for steam turbine degasifier
JP2965607B2 (en) Steam turbine controller
JPH05240402A (en) Method of operating waste heat recovery boiler
JPH0315081B2 (en)
JPS5843309A (en) Controller for temperature of feedwater