JPS584257A - Scanning-type electron-beam annealing device - Google Patents

Scanning-type electron-beam annealing device

Info

Publication number
JPS584257A
JPS584257A JP10159981A JP10159981A JPS584257A JP S584257 A JPS584257 A JP S584257A JP 10159981 A JP10159981 A JP 10159981A JP 10159981 A JP10159981 A JP 10159981A JP S584257 A JPS584257 A JP S584257A
Authority
JP
Japan
Prior art keywords
temperature
electron beam
sample
scanning
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10159981A
Other languages
Japanese (ja)
Inventor
Tadahiro Takigawa
忠宏 滝川
Shintaro Yoshii
吉井 新太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10159981A priority Critical patent/JPS584257A/en
Publication of JPS584257A publication Critical patent/JPS584257A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation

Abstract

PURPOSE:To enable an electron beam to be constantly irradiated on a sample under an optimal condition, and enable a homogeneous annealing treatment of the electron beam to be performed by detecting the surface temperature of the sample, comparing the detected temperature with a preset temperature, and varying and controlling the irradiation intensity of the beam according to thus given difference. CONSTITUTION:Both the detection signal of an infrared-ray detecting element 13 and the output signal of a synchronizing-signal producing circuit 14 are supplied to a phase detecting circuit 15. Both the detection output of the circuit 15, and standard temperature information sent from a standard-temperature detecting element 17 via an amplifier 16 are supplied to a complex circuit 13. After the temperature of a point of a sample 8 on which a beam is irradiated is detected with the complex circuit 13, the detected temperature information is supplied to a computer 20 via an interface 19. On the other hand, the computer 20, in which an anneal temperature is set beforehand, gives the difference between the above set temperature and the above detected temperature which is used as the input to the computer 20, and varies and controls the scanning speed of an electron beam or the bias of an electron gun 1 according to the avove difference.

Description

【発明の詳細な説明】 本発明は、走査製電子ビームアニール装置の改頁に関す
る。  − 近時、レーデC−ム中電子ビーム等を用いて基板表面を
加熱する熱井平衡製のアニール技術が注目されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to pagination in a scanning electron beam annealing apparatus. - Recently, the annealing technology manufactured by Atsui Kinkiri Co., Ltd., which heats the substrate surface using an electron beam or the like in a radar beam, has been attracting attention.

そのなかで走査型の電子V−ムーアニールは、基板表面
を均一に加熱できる、非晶質上の堆積シリ;ンの結晶粒
増大化および単結晶化が容易でめる勢の実用性大なる各
員を有している。
Among these, the scanning type electron V-Moore annealing has great practicality because it can uniformly heat the substrate surface and easily increase the crystal grain size and single crystallize silicon deposited on an amorphous material. We have each member.

第1図は従来O走査重電子ビームアニール装蝋を示す概
略構成図である。図中1はカソード2.ウェネルト電極
Jおよびアノード4IIIIからなる電子銃であシ、6
はfランキング用偏向卦。
FIG. 1 is a schematic diagram showing a conventional O-scanning heavy electron beam annealing system. In the figure, 1 is the cathode 2. An electron gun consisting of a Wehnelt electrode J and an anode 4III, 6
is the deflection hexagram for f ranking.

6はレンズ、1はビーム走査用偏向器、aは試料、9は
X−Yステージである。そして、電子銃1の作るクロス
オーバPがレンズ−によ多試料8上にIli!fgII
されている。このような装置では、そのビーム走査領域
がl0XIO(一つと狭いため、直径41インチもある
シリコンウェハ等を加熱する場合、X−Yステージ9を
移動させ小面積ずつアニールするようにしている。
6 is a lens, 1 is a beam scanning deflector, a is a sample, and 9 is an XY stage. Then, the crossover P created by the electron gun 1 is placed on the lens-type sample 8 by Ili! fgII
has been done. In such an apparatus, the beam scanning area is as small as 10×IO (10×IO), so when heating a silicon wafer or the like having a diameter of 41 inches, the X-Y stage 9 is moved to anneal small areas at a time.

ところで、本発明者等が上記装置を用い、堆積シリコン
に砒素イオンを注入し九サンプルをアニール処理したと
ころ、第2図に示す結果が〜得られた。1i42図にお
いて横軸は時間を秒、縦軸線アニール後の鉄面抵抗ρ虐
[Ω〕を示している。また、加速電圧は10(kV)と
した。1つの小山積を7二−ルする時間は1秒で、4イ
ンチウェハ全体をアニールするに紘300秒兼した。第
2図から明らかなように時間tog過と共に表m抵抗^
が低下し、前半に処理され九部分と後手に処理された部
分との各表面抵抗へが大幅に異りている。これ杜、サン
プルの平均温度がビームの照射時間と共に上昇し、最初
にアニールした領域と時間tlに7エールした領域とで
のアニール効果が変わり九ためと解釈された。このよう
にサングルの平均温度がアニール時間と共に変わること
は、電子ビームアニール技術の実用化を妨げる大きな問
題となることを本発明者勢祉見出し九。
By the way, when the present inventors used the above-described apparatus to implant arsenic ions into deposited silicon and annealed nine samples, the results shown in FIG. 2 were obtained. In Figure 1i42, the horizontal axis represents time in seconds, and the vertical axis represents the iron surface resistance ρ [Ω] after annealing. Further, the acceleration voltage was set to 10 (kV). It took 1 second to anneal one small pile for 7 anneals, and it took about 300 seconds to anneal the entire 4-inch wafer. As is clear from Figure 2, as time tog passes, the resistance m
The surface resistance of the nine parts processed in the first half and the part processed later are significantly different. This was interpreted to be because the average temperature of the sample increased with the beam irradiation time, and the annealing effect was different between the region annealed first and the region annealed at time tl. The present inventors have found that this change in the average temperature of the sample with the annealing time is a major problem that hinders the practical application of electron beam annealing technology.

一方、アニールの効果は電子ビーム電流の強度およびビ
ームの走査速度に強く依存し、その最適値を見出すこと
は極めて困難である。また、一度量適値を見出しても、
ビーム形状中サンプルおよび試料間の接触面積勢が不安
定な丸め、次の実験では最適条件が異なってしまう等の
不都合な問題が生じ九。
On the other hand, the effect of annealing strongly depends on the intensity of the electron beam current and the scanning speed of the beam, and it is extremely difficult to find the optimum value thereof. Also, even once you find the appropriate amount,
Inconvenient problems arise, such as unstable rounding of the contact area between the sample and the sample in the beam shape, and the optimum conditions being different in the next experiment.9.

本発明は上記事情を考慮してなされたもので、   ”
その目的とするとζろは、電子ビームを常に最適条件で
試料に照射することができ、均一なアニール処理を行い
得る走査製電子?−ムアエール装置を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and
For that purpose, ζro is a scanning electron beam that can always irradiate the sample with the electron beam under optimal conditions and perform uniform annealing. - To provide a Moorea device.

すなわち、本発明は試料の表面温度を検出し、この検出
温度と予め定められた設定諷−廉とを比較し、これらの
差分に応じてビーム照射量を可変制御することによって
、前記目的を達成せんとしたものである。
That is, the present invention achieves the above object by detecting the surface temperature of the sample, comparing this detected temperature with a predetermined setting value, and variably controlling the beam irradiation amount according to the difference between them. It's a serious thing.

以下、本発明の詳細を図示の実施例によって説明する。Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第3図は本発明の一実施例を示す概略構成図である。な
お、第1Eと同一部分には同一符号を付して、その詳し
い説明は省略する。前記試料80表面に電子ビームが照
射されると、このビーム照射点の温度が上昇し同照射点
からその温度に応じた赤外線Rが発生される。この赤外
線鼠は集光レンズ11によシ集光され、チ、ツノ譬11
を介して赤外線検出素子ISに導光される。赤外線検出
素子13の検出信号は、同期信号発生回路14の出力信
号と共に位相検波回路15に供給される1位相検波回路
15の検波出力は、増幅@71を介した基準11度検出
素子11からの基準温度情報と共に脅威回路18に供給
される。そして、脅威回路1aによシ前記試料8上のビ
ーム照射点の温度が検出され、この検出温度情報がイン
タフェース19を介して計算機20に供給されるものと
なりている。ここで、上記赤外線検出素子18.位相検
波回路1j、基準温度検出素子16および合成回路18
勢からなる非接触温II@定器の作用状周知であるので
、その詳しい説明は省略する。
FIG. 3 is a schematic diagram showing an embodiment of the present invention. Note that the same parts as those in 1E are given the same reference numerals, and detailed explanation thereof will be omitted. When the surface of the sample 80 is irradiated with an electron beam, the temperature of the beam irradiation point increases, and infrared rays R corresponding to the temperature are generated from the irradiation point. This infrared mouse is condensed by the condensing lens 11.
The light is guided to the infrared detection element IS via the infrared detection element IS. The detection signal of the infrared detection element 13 is supplied to the phase detection circuit 15 together with the output signal of the synchronization signal generation circuit 14. It is supplied to the threat circuit 18 together with the reference temperature information. The temperature of the beam irradiation point on the sample 8 is detected by the threat circuit 1a, and this detected temperature information is supplied to the computer 20 via the interface 19. Here, the infrared detection element 18. Phase detection circuit 1j, reference temperature detection element 16 and synthesis circuit 18
Since the operation of the non-contact temperature II@meter is well known, a detailed explanation thereof will be omitted.

一方、前記計算機20には予めアニール温度が設定され
ておシ、計算機zoli上記設定温度と前記入力された
検出温度との差分を求め、この差分に応じて電子ビーム
Oj1査速寂或い線電子銃1の/4イアスを可変制御す
るものとなっている。なお、図中21杜計算機20から
の指令によpバイアス抵抗22を切夛換えるバイアス抵
抗切換回路、2Jは高圧電源、24紘カソード加熱用電
源、21はデジタル・アナログ・コンバータ、26は増
@器であシ、これらは通常のものと何ら変わるところが
なく周知のものである。
On the other hand, the annealing temperature is set in advance in the computer 20, and the computer 20 calculates the difference between the set temperature and the input detection temperature, and adjusts the scanning speed of the electron beam according to this difference. The /4 ear of gun 1 is variably controlled. In the figure, 21 is a bias resistor switching circuit that switches the p-bias resistor 22 according to a command from the computer 20, 2J is a high-voltage power supply, 24 is a cathode heating power supply, 21 is a digital-to-analog converter, and 26 is an increase @ These vessels are well known and are no different from ordinary ones.

このような構成であれば、まずビーム照射点の温度が前
記非接触温度測定器で検出され、この検出温度Tmが計
算機20に送出される。そして、針゛算機20に予めセ
ットされた設定温度丁易と上記検出温gILTI11と
が比較され、各温度チー、’haが異なる場合、その差
分 ΔT = Ts −Tm が求められる。そして、この差分Δテに応じて前記バイ
アス抵抗22が切シ換えられビーム電流が可変制御され
るか、或いはビーム走査速度が可変制御される0例えば
、差分1丁がΔ〒<00場合、ビーム電流が小さくなる
ように、或いはビーム速度が速くなるように制御される
。これにより、検出温度−1つtnr−ム照射点の温度
が設定温度τsK勢しく制御されることになる。
With such a configuration, the temperature at the beam irradiation point is first detected by the non-contact temperature measuring device, and this detected temperature Tm is sent to the computer 20. Then, the set temperature preset in the needle calculator 20 and the detected temperature gILTI11 are compared, and if the respective temperatures are different, the difference ΔT = Ts - Tm is determined. Then, the bias resistor 22 is switched in accordance with this difference ΔT, and the beam current is variably controlled, or the beam scanning speed is variably controlled. The current is controlled to be small or the beam speed is fast. As a result, the temperature of the irradiation point of the detection temperature minus one tnr-me is vigorously controlled by the set temperature τsK.

したがって本装置によれば、試料80表面のビーム照射
点を常に一定の設定温度TSに保持することかでき、試
料8の表両全体に均一な7エール処理を施すことができ
る。このため、従来装置で問題となっていえ試料8の平
均温度上昇に起因してアニール効果が変わる等の不都合
を、未然に防止することができる。さらに、ビームの照
射量が自動的に最適値に制御されるので、その実用性が
大幅に向上する勢の効果を奏する。
Therefore, according to the present apparatus, the beam irradiation point on the surface of the sample 80 can always be maintained at a constant set temperature TS, and the entire surface of the sample 8 can be subjected to a uniform 7-Ale process. Therefore, it is possible to prevent problems such as a change in the annealing effect due to an increase in the average temperature of the sample 8, which is a problem with conventional apparatuses. Furthermore, since the beam irradiation amount is automatically controlled to the optimum value, the practicality of the system is greatly improved.

なお、本発明は上述し九実施例に限定されるものではな
い0例えば、前記赤外線検出素子としては、集電蓋や光
量子型等の素子を用いればよい、さらに、アニール時O
材料の蒸発で集光光学系がよごれ墨いので、交換拝具で
赤外線に対し透明な保護膜を、集光光学系O全面に設け
るようにしてもよい。また、温度検出点はビーム照射点
に@るものではなく、を秒後にビーム照射される予定点
としてもよい。この場合、サンプルの平均温度の上昇を
検出することになる。
Note that the present invention is not limited to the nine embodiments described above. For example, as the infrared detecting element, a current collecting lid or a photon type element may be used.
Since the condensing optical system becomes dirty due to the evaporation of the material, a protective film transparent to infrared rays may be provided over the entire surface of the condensing optical system O by means of a replacement tool. Further, the temperature detection point may not be located at the beam irradiation point, but may be a point scheduled to be irradiated with the beam in seconds. In this case, an increase in the average temperature of the sample will be detected.

ビーム照射点の温度を測定するのが最も好ましいが、平
均温度の一定でも十分な効果を期待できる。その他、本
発明の要旨を逸脱しない範囲で、種々変形して実施すゐ
ことができる。
Although it is most preferable to measure the temperature at the beam irradiation point, a sufficient effect can be expected even if the average temperature is constant. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図嬬従来装置を示す概略構成図、1lt2WAは上
記装置の作用を説明するための特性図、第3図は零発r
iso−実施例を示す概略構成図である。 1・−電子銃、5−ツツyキンダ用偏向器、−−・レン
ズ、r−・ビーム走査用偏向器、a−・試料、9・・・
X−Yステージ、1s−赤外線検出素子、15・・・位
相検波回路、11・・・基準温度検出素子、18・・・
合成回路、20・・・計算機、21・−・バイアス抵抗
切換回−路、22−バイアス抵抗、23・・・高圧電源
、zl・・・デジタル・アナログ・コンバータ。 出願人代理人  弁理士 鈴 江 武 彦才 1図 才2図 時閉t [5ecJ  − 才3図
Fig. 1 is a schematic configuration diagram showing a conventional device, 1lt2WA is a characteristic diagram for explaining the operation of the above device, and Fig. 3 is a zero firing r
FIG. 2 is a schematic configuration diagram showing an iso-embodiment. 1.- Electron gun, 5. Deflector for Tsutsuy Kinder, --. Lens, r-. Deflector for beam scanning, a-. Sample, 9...
X-Y stage, 1s-infrared detection element, 15... phase detection circuit, 11... reference temperature detection element, 18...
Synthesis circuit, 20... Computer, 21... Bias resistance switching circuit, 22 - Bias resistance, 23... High voltage power supply, zl... Digital-to-analog converter. Applicant's representative Patent attorney Hikosai Suzue

Claims (5)

【特許請求の範囲】[Claims] (1)  試料上で電子ビームを走査して試料IImを
7ニールする走査型電子ビームアニール義置において、
上記試料O表面温度を鉄表面と非接触で検出する温度検
出手段と、上記検出された検出温度と予め定められ九設
定温度とを比較し、これらの温度O差分に応じて前記試
料Kjl射されるビーム照射量を可変制御する制御手段
とを具備してなることを特徴とする走査製電子ビームア
ニール装置。
(1) In a scanning electron beam annealing procedure in which the electron beam is scanned over the sample and the sample IIm is annealed seven times,
Temperature detection means detects the surface temperature of the sample O without contacting the iron surface, and compares the detected detected temperature with a predetermined set temperature, and irradiates the sample Kjl according to the difference between these temperatures. 1. A scanning electron beam annealing apparatus, comprising: control means for variably controlling the beam irradiation amount.
(2)前記温度検出手段線、前記電子ビームの照射点の
温度を検出するものである仁とを特徴とする特許請求O
範囲第1項記載の走査蓋竜子ビームアニール装置。
(2) Patent claim O characterized in that the temperature detecting means line is a line that detects the temperature of the irradiation point of the electron beam.
A scanning lid Ryuko beam annealing apparatus according to scope 1.
(3)前記温度検出手段は、所定時間後にビーム照射さ
れる点の温度を検出するものであることを特徴とする特
許請求の範S第1項記載の走査製電子ビームアニール数
置。
(3) The scanning electron beam annealing device according to claim S, wherein the temperature detection means detects the temperature of the point irradiated with the beam after a predetermined time.
(4)  前記制御子RIIi、電子ビームの走査速度
を可変制御するものである仁とを特徴とする特許請求0
IIH館1項記載O滝査臘電子C−ムアエール装置。
(4) Patent claim 0, characterized in that the controller RIIi is a device that variably controls the scanning speed of the electron beam.
IIH Building Section 1 O Waterfall Inspection Electronic C-Moor Air Device.
(5)  前記制御手段は、電子銃のパイ゛アス抵抗を
可変制御するものであることを特徴とする特許請求・の
範囲第1項記載O滝壷型電子ビームアニール装置。
(5) The waterfall-type electron beam annealing apparatus according to claim 1, wherein the control means variably controls the bias resistance of the electron gun.
JP10159981A 1981-06-30 1981-06-30 Scanning-type electron-beam annealing device Pending JPS584257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10159981A JPS584257A (en) 1981-06-30 1981-06-30 Scanning-type electron-beam annealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10159981A JPS584257A (en) 1981-06-30 1981-06-30 Scanning-type electron-beam annealing device

Publications (1)

Publication Number Publication Date
JPS584257A true JPS584257A (en) 1983-01-11

Family

ID=14304847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10159981A Pending JPS584257A (en) 1981-06-30 1981-06-30 Scanning-type electron-beam annealing device

Country Status (1)

Country Link
JP (1) JPS584257A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227130A (en) * 1983-06-08 1984-12-20 Agency Of Ind Science & Technol Annealing device by electron beam
JPS60154224A (en) * 1984-01-23 1985-08-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal wave microscope
EP0172635A2 (en) * 1984-07-16 1986-02-26 United Kingdom Atomic Energy Authority Temperature control in vacuum
JPS63265421A (en) * 1987-04-23 1988-11-01 Agency Of Ind Science & Technol Manufacture of semiconductor single crystal layer
JPS6419669A (en) * 1987-07-14 1989-01-23 Nippon Steel Corp Work heater for ion implanter
JP2009264919A (en) * 2008-04-25 2009-11-12 Hioki Ee Corp Short-circuit position detector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227130A (en) * 1983-06-08 1984-12-20 Agency Of Ind Science & Technol Annealing device by electron beam
JPH0456454B2 (en) * 1983-06-08 1992-09-08 Kogyo Gijutsuin
JPS60154224A (en) * 1984-01-23 1985-08-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal wave microscope
EP0172635A2 (en) * 1984-07-16 1986-02-26 United Kingdom Atomic Energy Authority Temperature control in vacuum
JPS63265421A (en) * 1987-04-23 1988-11-01 Agency Of Ind Science & Technol Manufacture of semiconductor single crystal layer
JPS6419669A (en) * 1987-07-14 1989-01-23 Nippon Steel Corp Work heater for ion implanter
JP2009264919A (en) * 2008-04-25 2009-11-12 Hioki Ee Corp Short-circuit position detector

Similar Documents

Publication Publication Date Title
US5998768A (en) Active thermal control of surfaces by steering heating beam in response to sensed thermal radiation
US4465529A (en) Method of producing semiconductor device
EP0247714B1 (en) Method and apparatus for forming a film on a substrate
US3146335A (en) Focusing device for electron beams
JPS584257A (en) Scanning-type electron-beam annealing device
Gat Heat-pulse annealing of arsenic-implanted silicon with a CW arc lamp
GB2049739A (en) Vacuum evaporation using a modulated electron beam and x-ray opaque screen
JPS63141587A (en) Processing of live specimen with laser
JPS5834897B2 (en) scanning electron microscope
EP0162468A1 (en) Ion microbeam implanter
Lulli et al. Electron beam annealing of semiconductors by means of a specifically designed electron gun
JPH01211848A (en) Method and apparatus for ion implantation
JP3497310B2 (en) Electron beam equipment
JPS62213051A (en) Linear electron beam generator
JPH03134945A (en) Standard specimen preparing method for scan type electron microscope
JPS62194614A (en) Linear electron beam annealing device
JP2948242B2 (en) Focused electron beam diffractometer
JPH06192858A (en) Focusing ion beam generator
JPH0790581A (en) Surface layer reforming method by ion implantation and device therefor
JPS60176221A (en) Method and device for beam annealing
JPH01120556A (en) Device for correcting patterned film
JP2529057B2 (en) Micro ion beam processing method
JPH05304080A (en) Drawing method by charged particle beam
JPS61196514A (en) Heat treatment device using scanning electron beam
DE3904034C2 (en)