JPS5838449A - High pressure sodium lamp - Google Patents

High pressure sodium lamp

Info

Publication number
JPS5838449A
JPS5838449A JP13681781A JP13681781A JPS5838449A JP S5838449 A JPS5838449 A JP S5838449A JP 13681781 A JP13681781 A JP 13681781A JP 13681781 A JP13681781 A JP 13681781A JP S5838449 A JPS5838449 A JP S5838449A
Authority
JP
Japan
Prior art keywords
lamp
krypton
gas
starting
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13681781A
Other languages
Japanese (ja)
Other versions
JPH0465491B2 (en
Inventor
Yoshiro Ogata
尾形 芳郎
Takashi Ikeda
隆 池田
Haruo Yamazaki
治夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP13681781A priority Critical patent/JPS5838449A/en
Publication of JPS5838449A publication Critical patent/JPS5838449A/en
Publication of JPH0465491B2 publication Critical patent/JPH0465491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/22Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent vapour of an alkali metal

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

PURPOSE:To aim at checking a scatter of electrode matter at the time of lamp starting and improving life characteristics, by sealing up a mixture of neon- krypton gases as a starting noble gas inside a luminous tube, while setting a partial pressure ratio of the krypton gas the sealed pressure to the specified value. CONSTITUTION:Niobic tubes 4 and 5 are sealed in both ends of a luminous tube 1 via end rings 2 and 3 made of alumina, etc., and electrodes 6 and 7 are held at each of their nose parts; the shortest distance d between these electrodes is set to be less than 25mm., and sodium amalgam 8 whose sodium molar ratio is 78% and the neon-krypton mixed gas serving as a starting noble gas are sealed up inside the luminous tube 1. The sealed pressure of this mixed gas is 30-250 torr while the partial pressure ratio of krypton gas contained in this mixed gas is set down to a range of 3-50%. A high pressure sodium lamp provided with a suchlike luminous tube is so designed that it can start with a starting lamp, a glow starter, and so on.

Description

【発明の詳細な説明】 本発明は高圧ナトリウムランプを点灯管または固体点灯
素子によって始動する高圧ナトリウムランプ装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-pressure sodium lamp apparatus in which the lamp is started by a starter tube or a solid-state starter.

既に、透光性のアルミナ発光管を用いた高演色性高圧ナ
トリウムランプ(160〜40oW)が製品化されてい
る。このランプは、従来の高圧ナトリウムランプの発光
管に比べて、内径が大きくかつランプ動作時の発光管内
ナトリウム蒸気圧が格段に高くなるものであって、白熱
電球に似た暖かみのある光色と優れた演色性を有するも
のである。さらに、このランプは電球の3〜4倍の明る
さく40〜6olTn/W)を有し、かつ発光管内には
低電圧始動を可能にすべ(、o、s%程度のアルゴンガ
スを含むネオン−アルゴン混合ガスが約20〜30 T
orr封入されているものであって、今時の省エネルギ
ーを志向するという社会的要望に十二分に適合できると
ころの省エネルギー高輝度ランプであるということがで
きる。
High color rendering high pressure sodium lamps (160 to 40 oW) using translucent alumina arc tubes have already been commercialized. This lamp has a larger inner diameter than the arc tube of conventional high-pressure sodium lamps, and has a much higher sodium vapor pressure inside the arc tube during lamp operation, producing a warm light color similar to that of an incandescent light bulb. It has excellent color rendering properties. Furthermore, this lamp has a brightness of 40 to 6 olTn/W, which is 3 to 4 times as bright as a light bulb, and a neon lamp containing about 0, s% argon gas inside the arc tube to enable low voltage starting. Argon mixed gas is about 20-30 T
It can be said that it is an energy-saving, high-intensity lamp that more than satisfies today's social demands for energy conservation.

ところで、最近になって、このような照明分野における
省エネルギーをより一層進めなければならないという気
運が強くなって来ている。具体的には低ワツトで低効率
の白熱電球を、電球の特長を生かしたままで、小形でコ
ンパクトな放電ランプに置きかえたい、しかもできるこ
となら、100〜120Vの商用電源で簡易な点灯装置
で使用したいという要望である。このような厳しい要望
に応えられる可能性を持っている放電ランプを他に見い
だすことは非常に困難であって、上記の高演色性高圧ナ
トリウムランプがこのような意味あいにおいて、唯一の
放電ランプであるということができる。このような状況
のもと、出願人は、先に20〜1 oowの定格ランプ
電力のもと、ランプ効率が407m / W を上回る
高効率の小形高演色性高圧ナトリウムランプを提案して
いる。このランプは実効ランプ電圧が60V近傍に設計
されているため、いったんランプが始動すれば、交流1
00〜120vの商用電源で、インダクタンス安定器に
より点灯できる放電ランプである。
Incidentally, recently, there has been a growing trend to further promote energy conservation in the field of lighting. Specifically, I would like to replace low-wattage, low-efficiency incandescent light bulbs with small, compact discharge lamps while retaining the characteristics of light bulbs, and if possible, I would like to use a simple lighting device with a 100-120V commercial power source. This is the request. It is extremely difficult to find other discharge lamps that have the potential to meet such strict demands, and the high color rendering high pressure sodium lamp mentioned above is the only discharge lamp in this sense. It can be said that there is. Under these circumstances, the applicant has previously proposed a compact, high-color-rendering, high-pressure sodium lamp with a lamp efficiency of more than 407 m/W at a rated lamp power of 20 to 1 oow. This lamp is designed with an effective lamp voltage of around 60V, so once the lamp starts,
This is a discharge lamp that can be lit using an inductance ballast using a commercial power supply of 00 to 120V.

このように、この小形の高演色性高圧ナトリウムランプ
は上述のような白熱電球代替用の小形放電ランプに対す
る厳しい要望のなかの主要な点を既に満たしているもの
であるが、このランプを実際に製品化し、市場で広く使
用されるようにするためには次の二つの問題が解決され
なければならもう一つは、ランプの寿命特性上の問題で
ある。
In this way, this compact, high-color-rendering, high-pressure sodium lamp already satisfies the major requirements for a compact discharge lamp to replace incandescent bulbs, as mentioned above. The following two problems must be solved in order for the product to be commercialized and widely used in the market.The other problem is the problem of lamp life characteristics.

本発明はこのような問題にかんがみてなされたものであ
り、1o○〜120vの商用電源で確実に始動でき、か
つ寿命特性のすぐれた小形の高圧ナトリウムランプ装置
を提供するものである。
The present invention has been made in view of these problems, and it is an object of the present invention to provide a compact high-pressure sodium lamp device that can be reliably started with a commercial power supply of 100 to 120 V and has excellent life characteristics.

前者の問題は、上記の小形高演色性高圧ナトリウムラン
プの発光管に封入される始動用希ガスに由来するもので
ある。すなわち、この小形ランプの場合、既に製品化さ
れている160〜400Wの高演色性高圧ナトリウムラ
ンプの設計に準じて、低電圧始動を目ざして、0.5%
程度のアルゴンガスを含むネオン−アルゴン混合ガスを
25 Torr程度発光管に封入したとしても、1o○
〜120Vの商用電源で確実にランプを始動することは
、もはや不可能であった。このような事態は、従来広く
用いられているように、発光管になんらかの始動補助手
段を講じたとしても改善されなかった。
The former problem originates from the starting rare gas sealed in the arc tube of the above-mentioned small high color rendering high pressure sodium lamp. In other words, in the case of this small lamp, in accordance with the design of high-pressure sodium lamps with high color rendering properties of 160 to 400 W, which have already been commercialized, with the aim of starting at low voltage, 0.5%
Even if a neon-argon mixed gas containing about 25 Torr of argon gas is sealed in an arc tube, the
It was no longer possible to reliably start the lamp with ~120V utility power. This situation could not be improved even if some kind of starting aid means was provided for the arc tube, as has been widely used in the past.

しかし、この問題自体の解決はあまり困難ではない。た
とえば、螢光灯に使用されているような点灯管まだは固
体(半導体)点灯素子を用いることである。との点灯管
をランプには並列に、安定器には直列に配置すれば、点
灯管の遮断時に安定器のインダクタンスに誘起される1
〜2kVの高いパルス電圧がランプに印加されるので、
確実に始動が行なえる。この点灯管を用いる方法は、他
のイグナイタを安定器に組込む方法や、バイメタルスイ
ッチをランプ外管に装填する方法に比較して小形ランプ
の特徴を損なわないという点で非常に優れている。この
ように、ランプの始動に関しては解決できるわけである
が、後者のランプ寿命特性上の問題が未解決のまま残さ
れている。すなわち、先願のように20〜100Wとい
う低い定格ランプ電力の小形高演色性高圧ナトリウムラ
ンプの場合、発光管の内径は、既に製品化されているよ
うな150〜400Wランプのそれよりも格段に小さく
なり、それに併って発光管内壁と電極間の距離も小さく
なり、そのために、現在150〜400Wランプで使用
されている同じ種類、組成比、封入圧力の始動用希ガス
が封入された場合に6  ・− は、ランプ始動時における電極物質の飛散が激しくなる
ことである。この結果、寿命中の光束低下が顕著となる
However, solving this problem itself is not very difficult. For example, lighting tubes such as those used in fluorescent lamps may use solid state (semiconductor) lighting elements. If the lighting tube is placed in parallel with the lamp and in series with the ballast, the 1
Since a high pulsed voltage of ~2kV is applied to the lamp,
Starts reliably. This method of using a lighting tube is very superior to other methods of incorporating an igniter into a ballast or installing a bimetallic switch in the lamp outer tube in that it does not impair the characteristics of a small lamp. In this way, although the starting of the lamp can be solved, the latter problem regarding lamp life characteristics remains unsolved. In other words, in the case of a compact high-color-rendering high-pressure sodium lamp with a low rated lamp power of 20 to 100 W, as in the previous application, the inner diameter of the arc tube is much larger than that of a 150 to 400 W lamp that has already been commercialized. As the bulb becomes smaller, the distance between the inner wall of the arc tube and the electrode also becomes smaller, and for this reason, if the starting rare gas of the same type, composition ratio, and sealing pressure as currently used in 150-400W lamps is filled. 6.- means that the electrode material scatters violently when starting the lamp. As a result, the luminous flux decreases significantly during its life.

そこで、発明者らは、上記始動用希ガスの混合比率と封
入圧力に着目し、これらとランプ寿命特性の関係につい
て実験、検討を行なった。
Therefore, the inventors focused on the mixing ratio and the sealing pressure of the above-mentioned starting rare gas, and conducted experiments and studies on the relationship between these and the lamp life characteristics.

以下、本発明について図面とともに詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は実験に供しだ50Wの高演色性高圧ナトリウム
ランプのアルミナ発光管の縦断面を示したものである。
FIG. 1 shows a longitudinal section of an alumina arc tube of a 50 W high color rendering high pressure sodium lamp used in the experiment.

同図において、1は内径φが4.78のアルミナからな
る発光管であって、その両端部にはアルミナからなるエ
ンドリング2.3を介してニオブ管4.6が封着されて
いる。ニオブ管4,6の先端部には電極6,7が保持さ
れていて、これら電極間の最短距離dは10.omとな
っている。発光管1の内部にはナトリウムモル比が78
チのナトリウムアマルガム8と始動用希ガスとしてネオ
ン−クリプトン混合ガスが封入されている。9,10は
タンタルからなる熱保護膜で、発光管1の両端部外周に
付設されていて、ランプ動作時には発光管1の内部、特
に電極6,7から放射される熱や光を電極後方に形成さ
れる発光管最冷点部に閉じ込めてこの最冷点の温度を高
める働きをなす0本実施例における実験に際しては、あ
らかじめランプ電圧45v、ランプ電力5oW一定のも
と、色温度2500に、平均演色評価数Raが幻以上と
なるよう、熱保護膜9.10の発光管1の長手方向の長
さをあらかじめ調節しである。
In the figure, reference numeral 1 denotes an arc tube made of alumina and having an inner diameter φ of 4.78 mm, and a niobium tube 4.6 is sealed at both ends of the tube with end rings 2.3 made of alumina interposed therebetween. Electrodes 6 and 7 are held at the tips of the niobium tubes 4 and 6, and the shortest distance d between these electrodes is 10. om. Inside the arc tube 1, the sodium molar ratio is 78.
The sodium amalgam 8 and a neon-krypton mixed gas as a starting rare gas are sealed. Reference numerals 9 and 10 denote thermal protection films made of tantalum, which are attached to the outer periphery of both ends of the arc tube 1 to prevent heat and light radiated from the interior of the arc tube 1, particularly from the electrodes 6 and 7, to the rear of the electrodes during lamp operation. In the experiment in this example, the color temperature was set to 2500 with the lamp voltage 45V and lamp power 5oW constant. The length of the thermal protection film 9.10 in the longitudinal direction of the arc tube 1 is adjusted in advance so that the average color rendering index Ra is higher than the illusion.

以上に説明した第1図の発光管1に始動用希ガスとして
各種混合比率のネオン−クリプトン混合ガスを20To
rrから500 Torrの範囲で何段階かに選んで封
入したランプを製作し、まず、点灯管を用いてランプの
始動試験を行なった。
20 To
Lamps were manufactured in which the temperature was selected at several levels in the range from rr to 500 Torr, and a starting test of the lamp was first conducted using a lighting tube.

第2図は高圧す) IJウムランブの始動実験を行なっ
た電気回路図を示し、外管21内に発光管1が組み込ま
れた高圧ナトリウムランプと並列に点灯管22を接続し
、これに流れる電流を制限するために、点灯管22と直
列に限流抵抗23を接続し、そしてシングルチョーク安
定器24を介して交流10OVの電源25をランプを印
加するようにしたものである。
Figure 2 shows the electrical circuit diagram used in the IJ Umlamb startup experiment, in which a lighting tube 22 is connected in parallel with a high-pressure sodium lamp with an arc tube 1 built into the outer tube 21, and the In order to limit the current, a current limiting resistor 23 is connected in series with the lighting tube 22, and a power source 25 of AC 10 OV is applied to the lamp via a single choke ballast 24.

この実験の結果、ランプを確実に始動することができる
のは、上記ネオン−クリプトン混合ガスの封入圧力が2
0 Torr以上2 ts OTorr以下で、かつ同
混合ガスのクリプトンの分圧比率が60%以下のランプ
であった。次いで、このように始動が確実に行なえるラ
ンプの定格点灯試験を行ない、ランプ寿命である900
0時間の点灯後、ランプの光束維持率を測定したところ
、下表に示すとおりの結果が得られた 〔単位、チ〕 上表から明らかなように、ランプ寿命末期においても、
実用レベル(60チ以上)の光束を維持できるランプは
、発光管1に封入される始動用希ガスのネオン−クリプ
トン混合ガスの全圧力が30Torr以上、250To
rr以下であり、かつ同混合ガスに占めるクリプトンガ
スの分圧比率が3チ以上、rso%以下の範囲のもので
あることがわかる。
As a result of this experiment, the lamp can be started reliably if the pressure of the neon-krypton mixed gas is 2.
It was a lamp in which the temperature was 0 Torr or more and 2 ts OTorr or less, and the partial pressure ratio of krypton in the mixed gas was 60% or less. Next, we conducted a rated lighting test on a lamp that can be started reliably in this way, and the lamp life was 900.
When the luminous flux maintenance rate of the lamp was measured after lighting for 0 hours, the results shown in the table below were obtained [unit, chi]. As is clear from the table above, even at the end of the lamp life,
A lamp that can maintain a luminous flux at a practical level (60 inches or more) has a total pressure of 30 Torr or more, 250 Torr or more of the neon-krypton mixed gas, which is a rare starting gas, sealed in the arc tube
rr or less, and the partial pressure ratio of krypton gas in the mixed gas is in the range of 3% or more and rso% or less.

なかでも、ランプ寿命末期における光束維持率が70%
を上回り、実用上、全く問題にならないのは、同混合ガ
スの封入圧力が40 Torr以上、25゜Torr 
以下の範囲にあり、かつ、この混合ガスに占めるクリプ
トンガスの分圧比率が5%以上、50チ以下のものであ
ることがわかる。
Among them, the luminous flux maintenance rate at the end of the lamp life is 70%.
The pressure of the mixed gas exceeds 40 Torr and does not pose any problem in practice when the pressure is 40 Torr or higher and 25° Torr.
It can be seen that the partial pressure ratio of krypton gas in this mixed gas is in the following range and is 5% or more and 50% or less.

以上の結果は電極間の最短距離dが10.01rIL、
内径φが4.7uの発光管1を有する小形の高演色性高
圧ナトリウムランプに対する実験により得られたもので
あるが、前記dが258以下で、前記φが7語以下の発
光管であれば、上記の高演色性高圧ナトリウムランプに
限らず一般の高圧ナトリウムランプにおいても等しく得
られることが確認1o  ・ された。
The above results show that the shortest distance d between the electrodes is 10.01rIL,
This was obtained through experiments on a small high-color-rendering high-pressure sodium lamp having an arc tube 1 with an inner diameter φ of 4.7 u. It has been confirmed that the same results can be obtained not only with the above-mentioned high color rendering high pressure sodium lamp but also with general high pressure sodium lamps.

なお、点灯管の代りに固体点灯素子を用いてもよいこと
はいうまでもない。
It goes without saying that a solid-state lighting element may be used instead of the lighting tube.

以上説明したように、本発明は両端部に電極が設けられ
、かつ前記電極間の最短距離が25襲以下であり、始動
用希ガスとしてネオン−クリプトン混合ガスが封入され
た内径7敲以下の発光管、およびこの発光管に始動を印
加するだめの点灯管または固体点灯素子を備え、前記ネ
オン−クリプトン混合ガスの封入圧力が30 Torr
以上、26゜Torr以下であり、かつ前記ネオン−ア
ルゴン混合ガスに占めるアルゴンガスの分圧比率が3チ
以上、60チ以下の範囲にあるものであり、したがって
100〜120Vの商用電源でもって、ランプ始動が確
実に行なわれることは言うに及ばず、ランプ始動時にお
ける電極物質の飛散が大幅に抑制されるために、優れた
寿命特性が得られるものである。また、始動用希ガスと
してネオン−クリプトン混合ガスを用いる場合は、ネオ
ン−アルゴン混合ガスを用いる場合に比して熱伝導損失
が軽減されるのでランプ効率の点で有利である。
As explained above, the present invention is provided with electrodes at both ends, the shortest distance between the electrodes is 25 mm or less, and a neon-krypton mixed gas is sealed as a starting rare gas. It comprises an arc tube and a lighting tube or solid state lighting element for applying a starting power to the arc tube, and the pressure of the neon-krypton mixed gas is 30 Torr.
As mentioned above, the pressure is 26° Torr or less, and the partial pressure ratio of argon gas in the neon-argon mixed gas is in the range of 3 cm or more and 60 cm or less, and therefore, with a commercial power supply of 100 to 120 V, Needless to say, the lamp starts reliably, and since scattering of the electrode material at the time of lamp starting is greatly suppressed, excellent life characteristics can be obtained. Furthermore, when a neon-krypton mixed gas is used as the starting rare gas, heat conduction loss is reduced compared to when a neon-argon mixed gas is used, which is advantageous in terms of lamp efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる高圧ナトリウムランプ装置の発
光管の縦断面図、第2図は本発明の一実施例である高圧
ナトIJウムランプ装置の点灯回路図である。 1・・・・・・発光管、2.3・・・・・・エンドリン
グ、4゜5・・・・・ニオブ管、6,7・・・・・・電
極、8・・・・・ナトリウムアマルガム、9,10・・
・・・・熱保護膜、21・・・・・・外管、22・・・
・・・点灯管、25 ・・・電源。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a longitudinal cross-sectional view of an arc tube of a high-pressure sodium lamp device according to the present invention, and FIG. 2 is a lighting circuit diagram of a high-pressure sodium IJ lamp device according to an embodiment of the present invention. 1... Arc tube, 2.3... End ring, 4゜5... Niobium tube, 6,7... Electrode, 8... Sodium amalgam, 9,10...
...Thermal protection film, 21...Outer tube, 22...
...lighting tube, 25 ...power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 両端部に電極が設けられ、かつ前記電極間の最短距離が
258以下であり、始動用希ガスとしてネオン−クリプ
トン混合ガスが封入された内径7賜以下の発光管を備え
だ高圧ナトリウムランプであって、前記ネオン−クリプ
トン混合ガスの封入圧力が30 Torr以上、250
 Torr以下であり、かつ前記ネオン−クリプトン混
合ガスに占めるクリプトンガスの分圧比率が3チ以上、
50チ以下の範囲にある高圧す) IJウムランプを、
点灯管または固体点灯素子によって始動することを特徴
とする高圧ナトリウムランプ装置。
A high-pressure sodium lamp that is provided with electrodes at both ends, the shortest distance between the electrodes is 258 mm or less, and is equipped with an arc tube with an inner diameter of 7 mm or less and filled with a neon-krypton mixed gas as a starting rare gas. The sealed pressure of the neon-krypton mixed gas is 30 Torr or more, 250 Torr or more.
Torr or less, and the partial pressure ratio of krypton gas in the neon-krypton mixed gas is 3 or more,
High pressure (in the range of 50 inches or less) IJum lamp,
A high-pressure sodium lamp device characterized in that it is started by a lighting tube or solid-state lighting element.
JP13681781A 1981-08-31 1981-08-31 High pressure sodium lamp Granted JPS5838449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13681781A JPS5838449A (en) 1981-08-31 1981-08-31 High pressure sodium lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13681781A JPS5838449A (en) 1981-08-31 1981-08-31 High pressure sodium lamp

Publications (2)

Publication Number Publication Date
JPS5838449A true JPS5838449A (en) 1983-03-05
JPH0465491B2 JPH0465491B2 (en) 1992-10-20

Family

ID=15184193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13681781A Granted JPS5838449A (en) 1981-08-31 1981-08-31 High pressure sodium lamp

Country Status (1)

Country Link
JP (1) JPS5838449A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071722B2 (en) 2002-06-24 2011-12-06 Trustees Of Tufts College Silk biomaterials and methods of use thereof
US8501172B2 (en) 2008-09-26 2013-08-06 Trustees Of Tufts College pH-induced silk gels and uses thereof
US8614293B2 (en) 2003-04-10 2013-12-24 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US8715740B2 (en) 2009-09-29 2014-05-06 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US8722067B2 (en) 2007-05-29 2014-05-13 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US9102916B2 (en) 2007-02-27 2015-08-11 Trustees Of Tufts College Tissue-engineered silk organs
US9504575B2 (en) 2008-02-07 2016-11-29 Trustees Of Tufts College 3-dimensional silk hydroxyapatite compositions
US9539362B2 (en) 2003-06-06 2017-01-10 Trustees Of Tufts College Method for forming inorganic coatings
US9566365B2 (en) 2010-09-01 2017-02-14 Trustees Of Tufts College Silk fibroin and polyethylene glycol-based biomaterials
US9603971B2 (en) 2010-03-05 2017-03-28 Trustees Of Tufts College Silk-based ionomeric compositions
US10933173B2 (en) 2010-10-19 2021-03-02 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same
US11266339B2 (en) 2011-04-20 2022-03-08 Trustees Of Tufts College Dynamic silk coatings for implantable devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426079A (en) * 1977-07-28 1979-02-27 Toshiba Corp Metallic vapor discharge lamp
JPS54146481A (en) * 1978-05-09 1979-11-15 Matsushita Electronics Corp High-pressure sodium lamp
JPS56136818A (en) * 1980-03-10 1981-10-26 Celanese Corp Anisotropic melt formable polyester of phenyl-4-hydroxybenzoic acid and 4-hydroxybenzoic acid and/or 6-hydroxy-2-naphthoic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426079A (en) * 1977-07-28 1979-02-27 Toshiba Corp Metallic vapor discharge lamp
JPS54146481A (en) * 1978-05-09 1979-11-15 Matsushita Electronics Corp High-pressure sodium lamp
JPS56136818A (en) * 1980-03-10 1981-10-26 Celanese Corp Anisotropic melt formable polyester of phenyl-4-hydroxybenzoic acid and 4-hydroxybenzoic acid and/or 6-hydroxy-2-naphthoic acid

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071722B2 (en) 2002-06-24 2011-12-06 Trustees Of Tufts College Silk biomaterials and methods of use thereof
US11129921B2 (en) 2003-04-10 2021-09-28 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US8614293B2 (en) 2003-04-10 2013-12-24 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US9623147B2 (en) 2003-04-10 2017-04-18 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US8742069B2 (en) 2003-04-10 2014-06-03 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US9084840B2 (en) 2003-04-10 2015-07-21 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US9539362B2 (en) 2003-06-06 2017-01-10 Trustees Of Tufts College Method for forming inorganic coatings
US9655993B2 (en) 2007-02-27 2017-05-23 Trustees Of Tufts College Tissue-engineered silk organs
US9102916B2 (en) 2007-02-27 2015-08-11 Trustees Of Tufts College Tissue-engineered silk organs
US10478524B2 (en) 2007-02-27 2019-11-19 Trustees Of Tufts College Tissue-engineered silk organs
US9254333B2 (en) 2007-05-29 2016-02-09 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US8722067B2 (en) 2007-05-29 2014-05-13 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US9504575B2 (en) 2008-02-07 2016-11-29 Trustees Of Tufts College 3-dimensional silk hydroxyapatite compositions
US8501172B2 (en) 2008-09-26 2013-08-06 Trustees Of Tufts College pH-induced silk gels and uses thereof
US9381164B2 (en) 2009-09-29 2016-07-05 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US8715740B2 (en) 2009-09-29 2014-05-06 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US9603971B2 (en) 2010-03-05 2017-03-28 Trustees Of Tufts College Silk-based ionomeric compositions
US9566365B2 (en) 2010-09-01 2017-02-14 Trustees Of Tufts College Silk fibroin and polyethylene glycol-based biomaterials
US10933173B2 (en) 2010-10-19 2021-03-02 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same
US11266339B2 (en) 2011-04-20 2022-03-08 Trustees Of Tufts College Dynamic silk coatings for implantable devices

Also Published As

Publication number Publication date
JPH0465491B2 (en) 1992-10-20

Similar Documents

Publication Publication Date Title
JP2003162975A (en) Low-wattage fluorescent lamp
JPS5838449A (en) High pressure sodium lamp
JPS631702B2 (en)
JPH1186796A (en) High-pressure mercury discharge lamp
US2687486A (en) Gaseous discharge lamp
EP2938168A1 (en) Discharge lamp lighting device
JPS5838448A (en) High pressure sodium lamp
JPH0465492B2 (en)
JPS6254233B2 (en)
JP3110627B2 (en) Metal halide lamp
EP0204382B1 (en) High-pressure sodium discharge lamp
JPS6254231B2 (en)
JPS6020451A (en) High pressure sodium lamp
JPS6020452A (en) High pressure sodium lamp
JP2690903B2 (en) Fluorescent lamp device
JPS5826448A (en) High pressure discharge lamp device
JPS6020453A (en) High pressure sodium lamp
JPS641736Y2 (en)
JPS6020450A (en) High pressure sodium lamp
JPS6014744A (en) High pressure sodium discharge device
JPS5929344A (en) High pressure sodium lamp
JPS5826447A (en) High pressure discharge lamp
JPS63218145A (en) High pressure sodium lamp
JP2008016231A (en) Fluorescent lamp
JPS5979994A (en) Method of firing high pressure sodium lamp