JPS5835422A - Device for recognizing moving direction of moving sound source - Google Patents

Device for recognizing moving direction of moving sound source

Info

Publication number
JPS5835422A
JPS5835422A JP13508381A JP13508381A JPS5835422A JP S5835422 A JPS5835422 A JP S5835422A JP 13508381 A JP13508381 A JP 13508381A JP 13508381 A JP13508381 A JP 13508381A JP S5835422 A JPS5835422 A JP S5835422A
Authority
JP
Japan
Prior art keywords
moving
sound source
moving direction
circuit
correlation function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13508381A
Other languages
Japanese (ja)
Other versions
JPS644633B2 (en
Inventor
Noriaki Hayashi
林 範章
Itsuo Ono
尾野 溢夫
Mitsuo Okuda
奥田 三雄
Yoshiichi Furukawa
古川 宣一
Fumiyoshi Sasaki
佐々木 文善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Rion Co Ltd
Shingijutsu Kaihatsu Jigyodan
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Research Development Corp of Japan
Rion Co Ltd
Shingijutsu Kaihatsu Jigyodan
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Research Development Corp of Japan, Rion Co Ltd, Shingijutsu Kaihatsu Jigyodan, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP13508381A priority Critical patent/JPS5835422A/en
Publication of JPS5835422A publication Critical patent/JPS5835422A/en
Publication of JPS644633B2 publication Critical patent/JPS644633B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/001Acoustic presence detection

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To ensure the recognition of the moving direction, by providing a pair of microphones in parallel with the moving direction of the moving sound source, moving the maximal position of the mutual correlation function curve of the detected outputs to the direction corresponding to the moving direction of the moving sound source. CONSTITUTION:The noise detected signals LA and LB from the microphones 3A and 3B are imparted to filters 11A and 11B so as to pass only the frequency band which largely includes the noise part of an aircraft 1 to be measured and to remove the high frequency component which gives adverse effects when A/D converter circuits 12A and 12B are variably operated. The A/D converter circuits 12A and 12B send out digital waveforms signals S1A and S1B so that the positive part of the noise waveform of the aircraft 1 is a logic ''1'' and the negative part thereof is a logic ''0''. The output S1A is stored in a mutual correlation function computing circuit 13 for the time period required for the computation. The output S2A is imparted to the computing circuit 13 through a delay circuit 14, and the mutual correlation function is computed.

Description

【発明の詳細な説明】 本発明は移動音源の移動方向識別装置に関し、例えば航
空機、自動車1列車などが発生する騒音をマイクロホン
で検出してその移動方向を識別しようとするものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for identifying the direction of movement of a moving sound source, and is intended to identify the direction of movement of a moving sound source by detecting noise generated by, for example, an aircraft, a train of automobiles, etc. using a microphone.

例えば空港周辺の環境対策の一衰とし″cIIC空機騒
音を長期間にわたりて監視する鳩舎、空港を発着する各
航空機が発生する騒音について発生sm。
For example, due to the decline in environmental measures around airports, pigeon lofts that monitor aircraft noise over a long period of time, and noise generated by aircraft arriving and departing from airports are being investigated.

騒音レベル、継続時間、飛行方向などの音源情報を記録
することが空港の運用状況を把−するために6!P1!
であると考えられている。しかし一般に空港周辺の音源
としては発着する航空機のみではなく、空港に付帯され
ている各種設備が発生する騒音や、自動車、各種作業車
などの参勤車両の騒音がランダムに到来し℃これが測定
対象である航空機の騒音に重畳してマイクロホンで検出
される。
Recording sound source information such as noise level, duration, flight direction, etc. is a good way to understand the operational status of an airport! P1!
It is believed that However, in general, the sources of sound around airports are not only aircraft arriving and departing, but also the noise generated by various facilities attached to the airport, as well as the noise from vehicles attending the airport, such as cars and various work vehicles, arriving at random.This is the object of measurement. It is detected by a microphone superimposed on the noise of a certain aircraft.

このように@定対象以外の音源からの到来前に重畳して
いる測定対象となる移動音源を識別するため従来移動音
源識別装置が開発されているが、音源情報の中でも特に
移動方向を正確に識別できるものは提案されていなかり
た。
In this way, conventional moving sound source identification devices have been developed to identify moving sound sources to be measured that are superimposed before arriving from sound sources other than the fixed target. Nothing discernible was proposed.

本発明は以上の点を考慮して航空機勢の移動音源の移動
方向を識別する移動方向縁JIllIIL量を得ようと
するもので、横方向に列設された1つのマイクロホンか
らの出力kI&づき所定の検出−閤間隔で相互相関関数
曲線の極大位置を演算するととにより極大位置が時間的
に移動しズ行く状態を表わすデータを得、このデータに
基づいて移動音源の移動方向な決定するよ5&Cしたも
のである。
In consideration of the above points, the present invention attempts to obtain a moving direction edge JIllIIL amount for identifying the moving direction of a moving sound source of an aircraft. Detection - By calculating the maximum position of the cross-correlation function curve at the interval, data representing the state in which the maximum position moves over time is obtained, and based on this data, the moving direction of the moving sound source is determined. This is what I did.

以下図mtcついて本発明を航空機の移動方向を識別す
る場合に適用した実施例として詳述する。
The present invention will be described below in detail with reference to Figure mtc as an embodiment applied to identifying the moving direction of an aircraft.

先ず第1図ないし第参図について鳳履を述べる位置アs
kS動する。地面1には航空機lの移動方向K ?E)
−zて一対のマイクロホンJAl及びJBが横方向に予
定の間隔dを隔てて容動音検出器ダとして設置され、航
9機lの騒音を検出する。実際上マイクロホン3ム及び
、7Bは空港の滑走路の弧長線上における所定の監視地
点に轟該延長−と攬ば平行に配設される。
First of all, let's talk about the position in Figure 1 to Figure 1.
kS moves. On the ground 1 is the moving direction K of the aircraft l? E)
-z A pair of microphones JAl and JB are installed laterally at a predetermined distance d as a dynamic sound detector to detect the noise of Aircraft 9. In practice, the microphones 3 and 7B are placed at predetermined monitoring points on the arc length of the airport runway, parallel to the extension.

マイクロホンコム及びJBの中央位置の点Mを移動音検
出aSの設置点として、例えば位置?。
For example, if the point M at the center of the microphone comb and JB is the installation point of the moving sound detection aS, the position? .

にある航空機lからこの設置点Mに到来する騒音の入射
角を−とすれば、航空機ノの騒音が遠い側のマイクロホ
ンsysWclJimする時点は、近い備のマイク謬ホ
ンJAK到達する時点より たけ遅れるととkなる。ここで6は音速である。
If the angle of incidence of noise arriving at this installation point M from an aircraft L located at It becomes k. Here, 6 is the speed of sound.

そこでマイクロホンJム及びJBKようて得られる騒音
検出信号り、及びり、#)111111111数を時間
tの経過と共に演算すると、上述のQ)式の遅れ時間t
、VCsmする時点T m t、で極大値をとると共に
その前後において単純減少する第Jll(2)に示す如
き相互相関関数曲線φ1(τ)を鍮くことkなる。因み
に航空機に近い俳の第1のマイタ■ホyJAIC時点τ
−Oで到来した騒音音波を基準に考えるとこの音波は遅
れ時間taだけ遅れた未来の時点τ−t、で遠い―の第
一のマイク曹ホンJIn到達するのでこの時点で最も相
関性を示すからである。
Therefore, by calculating the noise detection signals obtained from the microphones J and JBK, and #)111111111 as time t elapses, we obtain the delay time t of the above equation Q).
, a cross-correlation function curve φ1(τ) as shown in Jll(2), which takes a maximum value at the time T m t of VCsm and simply decreases before and after that, is produced. By the way, the first miter of the aircraft, which is similar to an aircraft, was at the time of JAIC.
Considering the noise sound wave that arrived at -O as a reference, this sound wave will arrive at the distant first microphone phon JIn at a future time τ-t, delayed by the delay time ta, so it will show the highest correlation at this point. It is from.

これに対して航空機ノが移動音検出6参め真上(0−デ
0°)k来ると、第1の!イク四ホンJムに基準となる
騒音音波が時点τ−0で到来したとき、これと同侍に第
一のマイクロホンJBKも到達するので、!イク璽ホン
Jム及び3B1)@音検出信号IIA及びり、は現在の
時点τ−0で最も相関性を示す第3図φ)k示す如き相
互相関関数曲線φ、。
On the other hand, when the aircraft comes directly above the moving sound detection point 6 (0-de 0°), the first! When the reference noise sound wave arrives at the fourth microphone JB at time τ-0, the first microphone JBK also reaches the same samurai, so! The cross-correlation function curve φ, as shown in FIG.

(τ)を描くととkなる。When (τ) is drawn, it becomes k.

さらに航空機lが移動音検出6参を通りすぎて第1のマ
イクロホン31@に来ると、航空機lから遠い側の第1
のマイクロホン3ムに基準となる騒音音波が時点丁−0
で到来したとき、近い儒の第1のマイクロホン、?BK
は上述の(1)式に和尚する時1sh t aだけ過去
の時点τ−−1,ですでにこの騒音音波が通り過ぎてい
たので、第3図(o)K示す如く現在の時点τ−0より
過去の時点τ−−1゜で第1及び第一のマイクロホン3
ム及びJBの検出信号−1及びもつが最も相関性を示す
ことになる。
Furthermore, when the aircraft l passes the moving sound detection unit 6 and comes to the first microphone 31@, the first microphone on the side far from the aircraft l
The reference noise sound wave at microphone 3 is at time 0-0.
The first microphone of near Confucianism, when it arrived in? BK
When formulating according to the above equation (1), this noise sound wave had already passed at the past time τ-1, so the current time τ-0 as shown in Fig. 3(o)K. The first and first microphones 3 at a point in the past τ−−1°
The detection signals -1 and Motsu of System and JB show the highest correlation.

従ってマイクロホンコム及びJBK到来する騒音の中で
も航空機l#)@音に存在する音響的特徴を表わす周波
数成分のみをピックアップして一対のマイクロホン3ム
及び、7Bの騒音検出信号り。
Therefore, among the noise coming from the microphone com and JBK, only the frequency components representing the acoustic characteristics present in the aircraft sound are picked up and the noise detection signals of the pair of microphones 3 and 7B are generated.

及びLlの相亙相1III数曲線φ鱈(τ)をWI#闇
の経過に従つて描いてみれば、第参図に示す如く、航空
機lが第1図の位置PHe P曽*ア易を順次移動すれ
ばこれKl!りて相互相1lIIn数曲線がア、。
If we draw the phase 1 III number curve φ cod (τ) of and Ll according to the progression of WI # darkness, as shown in Figure 1, we can see that the aircraft l is at the position PHe P in Figure 1. If you move sequentially, this is Kl! Therefore, the mutual phase 1lIIn number curve is a.

?、、?、の順に右から左へ移動し、これに伴なつ【各
曲線の極大値φ1!I&X aφ1誌X *φ1m5L
寡が右から左へ移動する。逆に航空機lが第1図の位置
アsel’t*I’xを順次移動すればこれに従って相
互相関関数曲線が第参図の’1’Haア3.P。
? ,,? , from right to left in the order of [maximum value φ1 of each curve]. I&X aφ1 magazine X *φ1m5L
The small group moves from right to left. Conversely, if the aircraft l moves sequentially through the positions Asel't*I'x in Figure 1, the cross-correlation function curve will change to '1'HaA3 in Figure 1 accordingly. P.

の順に左から右へ移動する。Move from left to right in this order.

そこで本発明においては、相互相関関数l!l1IIの
極大値の位置がどの方向に移動するかを識別するととK
より、航空機岬の移動音源の移動方向を識別するもので
ある。
Therefore, in the present invention, the cross-correlation function l! To identify in which direction the position of the maximum value of l1II moves, and K
This is to identify the moving direction of the moving sound source of the aircraft cape.

以上の原理に基づいて本発−による容動音−源の移動方
向朦別装雪は第3図のようX@成されズいる。
Based on the above principle, the moving direction of the moving sound source is determined by the present invention as shown in FIG. 3.

1gt及び館コのマイクロホンコム及びJ!IF)lI
音検出信号り、及びIIBはフィルタllム及び//B
に与えられ測定対象すなわち航空機If)@音成分を強
く含んでいる周波数帯域のみを通過させると共に、後段
の〜勺変換回路lλム及びl−1が変換動作する際に悪
影蕃を与える比較的高い周波数成分を除去する。しかる
KA/D変換回路lコム及びl−Bは航空機Iの騒音波
形(交流波形でなる)のうち正の部分な部層r/Jとし
、負の部分を論jj r7Jとするディジタル波形信号
81N及びBlBを送出する。なおこの実施例の場合ν
φ変換回路/Jム及びl−Bのサンプル時間はjtr4
#mk選定されている。
1gt and Tateko's microphone com and J! IF)lI
The sound detection signal and IIB are filters and //B.
In addition to passing only the frequency band that strongly contains the sound component given to the measurement target, i.e., the aircraft If), the relatively Remove high frequency components. The KA/D conversion circuits 1 com and 1-B are digital waveform signals 81N in which the positive part of the noise waveform (consisting of an alternating current waveform) of the aircraft I is r/J, and the negative part is r/J. and BIB. In this example, ν
The sampling time of φ conversion circuit/Jmu and l-B is jtr4
#mk has been selected.

ここで第1toVD変換回路lコムの出力B雪、が直接
相互相a@数演算回路/JK与えられ演算に必要な時間
分だけ蓄積されると共に、第1のル[有]変換回路/コ
Bの出力が遅延回路/ダを介して相互相関関数演算回路
/Jk与えられ、かくして相互相関関数が演算される。
Here, the output B snow of the first toVD conversion circuit lcom is directly given to the mutual phase a@numerical calculation circuit/JK and accumulated for the time required for calculation, and the output B of the first toVD conversion circuit/com is The output of is applied to the cross-correlation function calculation circuit /Jk via the delay circuit /da, and thus the cross-correlation function is calculated.

相互相WR11数演算回路/3は1M個(例えばW−S
a)のサンプル点についてに勺変換回路12ムの出力の
記憶データと現在〜勺変換回路/コ1から送出されてい
る出力との相互相関関数を演算し、かくして第39図に
ついて上述した如(、K勺賓換回路/コ1の出力81が
〜勺変換回路lコムの基準値に対して最も相関性の強い
時点で極大値をもつ相互相関関数曲線φ、(τ)を得る
ことができる。
There are 1M mutual phase WR11 number calculation circuits/3 (for example, W-S
For the sample point a), calculate the cross-correlation function between the stored data of the output of the conversion circuit 12 and the output currently being sent from the conversion circuit 12, and thus perform the calculation as described above with respect to FIG. , it is possible to obtain a cross-correlation function curve φ, (τ) that has a maximum value at the point in time when the output 81 of the conversion circuit 1 has the strongest correlation with the reference value of the conversion circuit 1. .

しかるに第1の〜勺変換回路/JOBの出力端に葺設の
遅延回路揮が介挿されているととkより、相互相関関数
曲線φ酋(τ)の描かれる位置が第1図の位置P、に航
空機lがあるとき#tFK中央位置に極大値が来るよ5
IICなると共に、第1@の位置11ではその右@に描
かれ又は第1図の位置I1.ではその左@に描かれるよ
うになる。
However, if a built-in delay circuit is inserted at the output end of the first conversion circuit/JOB, the position where the cross-correlation function curve φ(τ) is drawn will be the position shown in FIG. When there is an aircraft l at P, the maximum value will be at the center position of #tFK5
IIC and is drawn to the right of position 11 in the first @ or position I1 in FIG. Then it will be drawn to the left of that.

相互相関関数演算回路13の演算動作は予定の比較的大
きい周期(例えば2秒周期)でくり返され。
The calculation operation of the cross-correlation function calculation circuit 13 is repeated at a predetermined relatively large period (for example, a 2 second period).

各演算動作ととKJli個のサンプル点についての相互
相関関数演算が実行され、かくして予定の周期ごとに相
互相関関数曲線が作られる。
A cross-correlation function calculation is performed for each calculation operation and KJli sample points, thus creating a cross-correlation function curve for each scheduled period.

なおこの相互相関関数演算回路としては、轡−昭13−
/亭00クデ号公IIK記載のもの、又は論文「極性相
関演算器の最適化の一方法」(鈴木文書、佐々木文轡、
西宮元著、日本音響学◆wII論文集(昭和33年10
月))Kl!歌のものを原理として構成できる。
Note that this cross-correlation function calculation circuit is
/Tei 00 Kude No. IIK, or the paper "One method of optimization of polarity correlation calculator" (Suzuki document, Sasaki Fumiyoshi,
Written by Hajime Nishimiya, Japan Acoustics ◆WII Collected Papers (October 1952)
Moon)) Kl! It can be composed based on the principles of a song.

1wAの相互相関関数曲線が作られるとこれがデータ切
換回路l!を介して相互相関関数記憶回路l&に一旦記
憶される。この記憶回路14の記憶データはデータ切換
回路13を介して移動平均回路/りに与えられ移動平均
化し【曲線を滑らかkならした後データ切換回路lSを
介し℃相互相関関数記憶回路/l:再記憶される。ここ
で移動平均とは、fiIU定値!、、!、・・・が次々
と得られるとき、6髄から始めて1lK一定個数をとり
【作りた算術平均の全体をいう6例えば3個の測定値の
平均をとる場合、(X重+X鵞+Xs )/J、(x、
+x畠+14 )/a、<x鄭+X4+1g)/J・・
・が移動平均となる。
When a cross-correlation function curve of 1 wA is created, this is the data switching circuit l! The cross-correlation function is temporarily stored in the cross-correlation function storage circuit l&. The data stored in this storage circuit 14 is given to the moving average circuit/l via the data switching circuit 13, and after smoothing the curve, it is transferred to the cross-correlation function storage circuit/l: be remembered. Here, the moving average means fiIU constant value! ,,! ,... are obtained one after another, take a fixed number of 1lK pieces starting from 6 piths [6, which refers to the entire arithmetic mean made] For example, when taking the average of 3 measured values, (X weight + X weight + Xs) / J, (x,
+x Hatake+14)/a, <x Zheng+X4+1g)/J...
・is the moving average.

かくして記憶回路16には第6図に示す如くサンプル時
点’11 * tg・・・のデータ(正、負方向に1個
づつある)が順次記憶され1時間位置を大きくする方向
で記憶データを全体として見たと會細かい凹凸なく滑ら
かく変化する相互相gtuI!数曲鎗φ鱈(τ)を読出
し鞘るようになされている。なおこのようkならずのは
、比較的短かい時間の相1IIII数を求め【いるので
局所的な凹凸が生じるおそれがあり、この凹凸を除去す
尋ためである。
In this way, as shown in FIG. 6, the data of sample time '11 * tg... (one each in the positive and negative directions) is sequentially stored in the memory circuit 16, and the entire stored data is stored in the direction of enlarging the 1-hour position. When viewed as a mutual phase gtuI that changes smoothly without any fine irregularities! It is designed to read and sheath several curved spears φ cod (τ). The reason why this is not done is because the phase 1III number is calculated for a relatively short period of time, which may cause local unevenness, and this unevenness must be removed.

この滑らかな相互相関関数曲線〜(τ)の相隣る1つの
データが各サンプル時点ととに順次読出され、極大位置
検出回路/1で差分演算され、その差分の符号の正、負
が判断される。しかるに差分が正であれば相互相関a歇
−曽φ、(T)が上昇★−プを推いズいることを意味し
、これに対して差5)が負であれば相互相関関数aS輪
(τ)が下降カーブを描いていることを意味する。従う
て差分の符号が正から負に変9たとき、このサンプル時
点で相互相関関数**φ、(T)が極大値φwr亀x 
Kなりたとを判断して蟲該サンプル時点の内容及び差分
の内容をしきい値回路/l#lc与える。
Adjacent data of this smooth cross-correlation function curve ~(τ) is read out sequentially at each sample time, and the difference is calculated in the local maximum position detection circuit/1, and the sign of the difference is determined as positive or negative. be done. However, if the difference is positive, it means that the cross-correlation a - so φ, (T) is increasing, and on the other hand, if the difference 5) is negative, the cross-correlation function aS This means that (τ) is drawing a downward curve. Therefore, when the sign of the difference changes from positive to negative9, the cross-correlation function **φ, (T) reaches the maximum value φwr k x at this sample point.
When it is determined that K has been reached, the contents at the sample time and the contents of the difference are provided to the threshold circuit/l#lc.

このしきい値は路l!は差分の内容が予定のしきい値よ
り大きいとき極大値WC@癲する豐ングル時点の内容を
極大位置データとしてSS方向確wIl路にに与え、こ
れに対して差分の内容が予室のしきい値より小さいとき
kは$動方肉確111111xへは与えな〜・よ5にし
、かくして風や周囲の騒音によつて相互相関関数曲線φ
、(すに小さい変化が生じたときはこれを無視するよう
になされている・容動方向確I!回路Xは1回前の相互
相関関数曲線φn(τ)の極大位置データを極大位置記
憶回路11k記憶させると共に、これを今回の相関関数
!1141φ3歳(τ)の極大位置データと比較し、今
回の極大位置データの内容の方が前回の極大位置データ
の内容より小さければ相互相関関−一φml(りが時間
の経過Kmりて第参図の左方へ移動したと判断して左方
移動線替出力8t1を移動回数計数回路nへ与える。こ
れに対して今回の極大位置データの内容の方が前回の極
大位置データの内容の方が大きければ相互相関関数*#
4m(τ)が時間の経過に従−)′C第参図の右方へ移
動したと判断して右方移動確認出力f1mzt’$動回
数計数回路JJIC与える。なおこのとき極大位置記憶
回路νの内容は新しい極大位置に更新される。
This threshold is the path! When the content of the difference is larger than the predetermined threshold value, the content at the time of the maximum value WC@return is given to the SS direction as the maximum position data, and the content of the difference is When it is smaller than the threshold, k should not be given to
, (When a very small change occurs, it is ignored. - Direction of movement is certain I! Circuit X stores the maximum position data of the previous cross-correlation function curve φn(τ). The circuit 11k is stored, and this is compared with the maximum position data of the current correlation function!1141φ3 years old (τ), and if the content of the current maximum position data is smaller than the content of the previous maximum position data, the cross-correlation relationship - It is determined that the line has moved to the left in the figure 1 after the passage of time Km, and a leftward movement line change output 8t1 is given to the movement count circuit n.In contrast, the maximum position data of this time is If the content is larger than that of the previous maximum position data, the cross-correlation function *#
It is determined that 4m(τ) has moved to the right in the figure -)'C as time passes, and a rightward movement confirmation output f1mzt'$ is provided to the movement count circuit JJIC. At this time, the contents of the maximum position storage circuit ν are updated to the new maximum position.

移動回数計数回路−は全員−歇簡路を會んでなり、移動
方向線ii+回路Xの移動確認出力8嘗、。
The movement count circuit - is made up of all the intermittent circuits, and the movement confirmation output of movement direction line II + circuit X is 8 times.

8電員の方向出力が命まで計数して来た方向と一致すれ
ばカウンタを+ノ計数動作させるが、方向出力が今まで
計数して来た方向と一致しなければカウンタの内容をク
リアして新たに針数をするようになされている。
If the direction output of the 8-electronic member matches the direction that has been counted up to the life, the counter will be operated to count +, but if the direction output does not match the direction that has been counted so far, the contents of the counter will be cleared. The new number of stitches is then added.

移動回数計数回路−の計数内容出力S、は移動方向回数
確認回路コの方向確IIalI力8番と共に移動方向回
数確認回路JJk与えられる。確l!回路Nは計数回路
−の計数内容が所定数(例えば「J」)以上になりたと
ぎ移動方向識別出力ssを方向確認出力と共に出力回路
評に与える。出カー路邸は例えばプリンタ、力令ットデ
ータレゴーダなどで構成され、識別出力S、を記憶する
The count content output S of the movement number counting circuit is given to the movement direction number confirmation circuit JJk together with the direction confirmation IIalI force No. 8 of the movement direction number confirmation circuit. Definitely! The circuit N provides a moving direction identification output ss to the output circuit together with a direction confirmation output when the count of the counting circuit exceeds a predetermined number (for example, "J"). The output card is composed of, for example, a printer, a power output data register, etc., and stores the identification output S.

以上の回路要素は制御回路コとの間で制御信号の授受を
行い、制御Ia路計の指令に!!づいて馴次機能を奥行
して行く。
The above circuit elements exchange control signals with the control circuit, and send and receive control signals to the control Ia road meter! ! Next, we will deepen the familiarity function.

以上の構成において、今航空機lが第1IIの右側の位
置PSから中央の位置!、の方向に飛行しているとする
。先ず航空機lが位置11にあると、航空機lの音波は
第7のマイク曹ホンJAK馬遺した後遅れ時間t6だけ
経過した時点で第1のマイク讃ホンJBi’C到達する
。このとき相互相関関数演算回路/Jは第Jllに)k
示す如く時点τ−Oより未来の時点T−1,に極大値を
もつ相互相関関数曲線φIt(τ)を発生し、移動平均
回路Iりで移動平均化した後相互相関関数記憶回路74
に記憶させる。
In the above configuration, the aircraft l is now in the center position from the right position PS of the 1st II! Suppose you are flying in the direction of . First, when the aircraft I is at position 11, the sound wave of the aircraft I reaches the first microphone JBi'C after a delay time t6 has elapsed after leaving the seventh microphone JAK. At this time, the cross-correlation function calculation circuit/J is at the Jll)k
As shown, a cross-correlation function curve φIt(τ) having a maximum value at a future time T-1 from time τ-O is generated, and after being moved averaged by a moving average circuit I, the cross-correlation function storage circuit 74
to be memorized.

かくして1回分の相互相関関数曲鎗φ、冨(りが得られ
、その極大値のサンプリング時点が極大位置検出回路/
1で検出され、しきい値回路/?を介して移動方向確認
回路Xで極大位置記憶回路−/の記憶内容と比較される
。しかるにこのとき航空機lは右側から左方に航行して
いるので、極大位置記憶回路コ/には第JvA(4)の
時点τ−t、より右側の時点(その内容はさらに大きい
値になる)K和尚する極大位置が記憶されているので、
移動方向確認回路Xは左方に移動していることを確認し
、移動回数計数回路−をカウント動作させる。
In this way, one round of cross-correlation function curves φ and ri are obtained, and the sampling point of the maximum value is determined by the maximum position detection circuit/
1 is detected and the threshold circuit /? It is compared with the stored contents of the maximum position storage circuit -/ by the moving direction confirmation circuit X via the moving direction confirmation circuit X. However, at this time, the aircraft l is traveling from the right side to the left side, so the maximum position memory circuit ko/ contains the time point τ-t of the JvA (4), a point on the right side (its content becomes an even larger value). Since the maximum position of the K priest is memorized,
The movement direction confirmation circuit X confirms that the movement is to the left, and causes the movement number counting circuit to perform a counting operation.

その結果移動回数計数回路−が数rJJをカウントする
と、これを参勤方向回数確iin路〃が移動方向確認回
路Xの左方確認信号8今と共に判断し【「航空機は左方
向に移動している」と識別して識別出力BIを出力回路
Jk与える。
As a result, when the movement count circuit counts the number rJJ, the flight direction count confirmation circuit judges this together with the left confirmation signal 8 of the movement direction confirmation circuit ” and gives an identification output BI to the output circuit Jk.

ここで、極大位置検出回路/lにおいて演算された差分
が小さいときはこれをしきい値回路/lKより【外乱と
判断して無視し、また移動方向確認回路J5において確
認された移動方向が逆転した場合は移動回路計数回路n
のカウント内容をクリアすることkより、航空機lの航
行を誤って出力簡略:Wに記録しないようkなされてい
る。
Here, when the difference calculated in the local maximum position detection circuit /l is small, it is judged as a disturbance and ignored by the threshold circuit /lK, and the movement direction confirmed by the movement direction confirmation circuit J5 is reversed. If so, move circuit counting circuit n
By clearing the count contents of , this is done to prevent the navigation of aircraft 1 from being erroneously recorded in output simplification:W.

なお上述においては本発明を航空積電移動音源とした場
合に適用したが、その外画動車1列車など種々の移動音
源についても上述の場合と同様に適用できる。
In the above description, the present invention is applied to a mobile airborne sound source, but it can also be applied to various types of mobile sound sources such as a single train.

また上述の実施例において線、航空機の$動方向に平行
になるように一対のマイク1ホンを列設したが、要する
に直交しない範囲で斜めを含む横方向に列設しても同様
に航空機の移動方向を識別できる。因みに航空機の移動
方向に対しズ斜めでありても、マイクロホンコム及びJ
Bの配設方向と平行なベクトル成分がiる課り、sx相
論調歇曲線を作ることができるからである。
In addition, in the above embodiment, a pair of microphones were arranged parallel to the direction of movement of the aircraft, but in other words, even if the microphones are arranged in a horizontal direction including diagonally within a range that is not perpendicular to the direction of movement of the aircraft, the same effect can be achieved. The direction of movement can be identified. Incidentally, even if the microphone com and J
This is because a vector component parallel to the direction of arrangement of B can create an sx phase tone curve.

また第tgの実施例においては、各構成要素な別儒の回
路として1テg!けた場合について述べたが、各構成要
素の機能をマイクロコンビ、−タによるデータの演算処
l1女用いて実現するようにしても良い、この場合は例
えば第り図に示す手順で演算処理がなされる。
In addition, in the tg-th embodiment, 1 teg! is used as a separate circuit for each component! As described above, the functions of each component may be realized by using data arithmetic processing using a microcomputer. Ru.

すなわちステップ8テ、で相互相am数の演算及びその
データの転送を行い1次のステップ8−で移動平均化を
行い1次のステップ8テ畠で差分演算(すなわち−次微
分)をするととkよりて極大位置を検出し、次のステッ
プ8テ、で極大値がどの時間位置に移動したかが確認さ
れ1次のステップ8テ曽で前回のサイクルを基準にして
移動の有無が判断される。
That is, in step 8, the mutual phase am number is calculated and the data is transferred, and in the first step 8-, moving averaging is performed, and in the first step 8, the difference calculation (i.e., -th order differentiation) is performed. The local maximum position is detected by k, and in the next step 8, it is confirmed to which time position the maximum value has moved, and in the first step 8, it is determined whether or not it has moved based on the previous cycle. Ru.

その結果移動がなければ航空機lは飛来していないので
、ステ118丁、に戻うて次のサイクルに入る。
As a result, if there is no movement, the aircraft is not flying, so it returns to station 118 and enters the next cycle.

と九に対して移動があれば、次のステップBT。If there is a move against 9, the next step is BT.

で極大値の時点がスF了され、次のステップ8T。The time point of the maximum value is reached, and the next step is 8T.

でカウント数がraJKなりたか否かが判断され、この
数に達しなければステップ8テ、 <14うて次のサイ
クルに入る。これに対してカウント数がrJJを越えれ
ば次のステップst@Iceうて移動方向識別出力S!
、を送出した後ステラζ8−に戻って次のサイクルに入
る。
It is determined whether the counted number has reached raJK or not, and if this number has not been reached, step 8 is followed by <14 to enter the next cycle. On the other hand, if the count exceeds rJJ, the next step st@Ice is performed and the moving direction identification output S!
, returns to Stella ζ8- and enters the next cycle.

このようkしても、第3図について上述したと全く同様
の機能が実現できる。
Even in this case, the same function as described above with reference to FIG. 3 can be realized.

なお上述においては相互相関関数演算回路/JWCより
て得た相互相関lIl数曲線曲線1 (’) ICつい
て移動平均回路lりにおいて移動平均をとるようにして
―線φn (’)の凹凸を除去するよ5Ktたがこれk
lljらず、その他のディジタル又はアナ曹ダフィルタ
リング回路等の平滑化回路を用いても、上述の実施例の
場合と同様の効果を得ることかで館る。
In the above, the cross-correlation lIl number curve curve 1 (') obtained from the cross-correlation function calculation circuit/JWC is used, and the unevenness of the line φn (') is removed by taking the moving average in the moving average circuit l for the IC. I'll do it 5kt but this is k
However, even if other smoothing circuits such as digital or analog filtering circuits are used, the same effect as in the above embodiment can be obtained.

以上のように本発f!に依れば、移動音源の移動方向に
平行に一対のマイクロホンを列設し、その検出出力の相
互相関IIII数曲−の極大位置が移動音源の移動方向
KN蟲する方向に移動することを利用して確実に移動音
源の移動方向を識別するととができる。
As mentioned above, the main f! According to the method, a pair of microphones are arranged parallel to the direction of movement of a moving sound source, and the maximum position of the cross-correlation of the detected outputs moves in the direction of movement of the moving sound source. The moving direction of the moving sound source can be reliably identified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第参図は本発明の原理の説IPITIIc
供する略麹図及びIII線図、第S図は本発明に依る移
動音源の移動方向識別装置の一例を示すブ曹ツク図、第
6図はその動作の説明に供する曲曽図、第γ図は第5図
の機能をマイクロコンピュータを用いて実現した場合の
処理手順を示すフローチャートである。 ハ・・航空機、コ・・・地面、コム、3B・・・マイク
ロホン、ダ・・・移動音検出器、//A、//B・・・
フィルタ、lコム、/!B・・・〜勺変換回路、13・
・・相互相関関数演算回路、/参・・・遅砥回路、15
・・・データ切換回路、/4・・・相互相ttin数記
憶回路、17・・・移動平均回路、/1・・・極大位置
検出回路、19・・化きい値回路、I・・・移動方向確
認回路、U・・・極大位置記憶回路、n・・・移動回数
計数回路、R・・・移動方向回数確I!回路、叱・・・
出力回路。 出願人代理人  猪  股     清第3図 τ=−t2  τ=0 第1頁の続き ■出 願 人 新技術開発事業団 東京都千代田区永田町二丁目5 番2号
Figures 1 through 3 are illustrations of the principles of the present invention.
Fig. S is a block diagram showing an example of the movement direction identification device for a moving sound source according to the present invention, Fig. 6 is a curved diagram and Fig. γ for explaining its operation. 5 is a flowchart showing a processing procedure when the function of FIG. 5 is realized using a microcomputer. C... Aircraft, C... Ground, Com, 3B... Microphone, D... Moving sound detector, //A, //B...
Filter, l com, /! B...~Xi conversion circuit, 13.
・・Cross-correlation function calculation circuit, / reference ・・Slow grinding circuit, 15
...Data switching circuit, /4...Mutual phase ttin number storage circuit, 17...Moving average circuit, /1...Local maximum position detection circuit, 19...Threshold value circuit, I...Movement Direction confirmation circuit, U...Maximum position storage circuit, n...Movement number counting circuit, R...Movement direction number confirmation I! Circuit, scolding...
Output circuit. Applicant's agent Kiyoshi Inomata Figure 3 τ=-t2 τ=0 Continued from page 1 ■Applicant New Technology Development Corporation 2-5-2 Nagatacho, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】 1、横力向に予定の間隔をもうて列設した一対のマイク
ロホンから得られる検出出力に基づいて予定の時間とと
Kl[次相互5IIII数−一を得。 各相互相関関数**を得るととにその極大位置の移動方
向を確認し、轟該確m結果に基づいて移動前11kつい
ての$動方向識別出力を得ることを4IgILとする移
動音源の移動方向識別装置。 1、横方向に予定の間隔をも一0″C列設した一対のマ
イクロホンから得られる検出出力に畠づいて予定の時間
ととに順次相互相関関数曲線を得。 癲該相互相11m数−一を平滑化するととkよって曲線
上の顔かい凹凸を除去し、この平滑化した各相互相1l
lIII数曲−を得るととにその極大位置の移動方向を
確認し、!i&皺確■曽果に−づいて移動音源について
の移動方向識別装置を得ることを4111とする移動音
源の移動方向識別装置。 3、横方向に予定の間隔をもりて列設した一対のマイク
ロホンから得られる検出出力に基づいて予定の時間とと
に順次相互相関関数曲線を得、各相互相関−数曲fsを
得るととにその極大位置の移動方向を確認し、当該確認
移動方向が前回の確認移動方向と同じとき移動回数を計
数して予定数以上になったと針移動音源についての上記
移動方向識別出力V褥ることを4I徽とする移動音源の
$動方向識別装置。 参、蟲諌移動方向が前回の確認移動方向と異なるとき上
記移動回数の計数内容をクリアするよ5にしてなる特許
請求の範囲第3項に記載の移動音源の移動方向識別装置
[Claims] 1. Based on the detection outputs obtained from a pair of microphones arranged at a predetermined interval in the direction of lateral force, a predetermined time and Kl [order mutual 5III number - 1 are obtained. When each cross-correlation function ** is obtained, the movement direction of the maximum position is confirmed, and based on the result, the movement direction identification output for 11k before movement is obtained as 4IgIL. Movement of the moving sound source. Direction identification device. 1. Based on the detection outputs obtained from a pair of microphones arranged horizontally at a predetermined interval of 10"C, a cross-correlation function curve was obtained sequentially at a predetermined time. 1 is smoothed, the unevenness of the face on the curve is removed, and each of the smoothed mutual phases 1l
Once you have obtained several songs, check the direction of movement of the maximum position, and! 4111. A moving direction identification device for a moving sound source, which obtains a moving direction identification device for a moving sound source based on i&wrinkle confirmation. 3. Based on the detection outputs obtained from a pair of microphones arranged horizontally at a predetermined interval, a cross-correlation function curve is sequentially obtained at a predetermined time, and each cross-correlation - several songs fs is obtained. The moving direction of the maximum position is confirmed, and when the confirmed moving direction is the same as the previously confirmed moving direction, the number of movements is counted, and when the number of movements exceeds the planned number, the above-mentioned moving direction identification output V for the needle moving sound source is returned. A moving direction identification device for a moving sound source with 4I. 5. The moving direction identification device for a moving sound source according to claim 3, wherein the counted content of the number of movements is cleared when the moving direction of the moving sound source is different from the previously confirmed moving direction.
JP13508381A 1981-08-28 1981-08-28 Device for recognizing moving direction of moving sound source Granted JPS5835422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13508381A JPS5835422A (en) 1981-08-28 1981-08-28 Device for recognizing moving direction of moving sound source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13508381A JPS5835422A (en) 1981-08-28 1981-08-28 Device for recognizing moving direction of moving sound source

Publications (2)

Publication Number Publication Date
JPS5835422A true JPS5835422A (en) 1983-03-02
JPS644633B2 JPS644633B2 (en) 1989-01-26

Family

ID=15143431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13508381A Granted JPS5835422A (en) 1981-08-28 1981-08-28 Device for recognizing moving direction of moving sound source

Country Status (1)

Country Link
JP (1) JPS5835422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098844A1 (en) * 2011-01-18 2012-07-26 パナソニック株式会社 Vehicle-direction identification device, vehicle-direction identification method, and program therefor
JP2012173211A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Approaching vehicle detection device and approaching vehicle detection method
JP2015040814A (en) * 2013-08-23 2015-03-02 紀明 岡崎 Radioactive material moving path estimation method and decontamination method
JP2015040815A (en) * 2013-08-23 2015-03-02 紀明 岡崎 Radioactive material moving path estimation method and decontamination method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098844A1 (en) * 2011-01-18 2012-07-26 パナソニック株式会社 Vehicle-direction identification device, vehicle-direction identification method, and program therefor
JP5079934B2 (en) * 2011-01-18 2012-11-21 パナソニック株式会社 Vehicle direction identification device, vehicle direction identification method, and program thereof
US9147347B2 (en) 2011-01-18 2015-09-29 Panasonic Intellectual Property Management Co., Ltd. Vehicle direction identification device, vehicle direction identification method and program therefor
JP2012173211A (en) * 2011-02-23 2012-09-10 Toyota Motor Corp Approaching vehicle detection device and approaching vehicle detection method
JP2015040814A (en) * 2013-08-23 2015-03-02 紀明 岡崎 Radioactive material moving path estimation method and decontamination method
JP2015040815A (en) * 2013-08-23 2015-03-02 紀明 岡崎 Radioactive material moving path estimation method and decontamination method

Also Published As

Publication number Publication date
JPS644633B2 (en) 1989-01-26

Similar Documents

Publication Publication Date Title
Lin et al. Experimental study of real-time bus arrival time prediction with GPS data
CA2273401C (en) Method and apparatus for using machine vision to detect relative locomotive position on parallel tracks
US3886515A (en) Automatic vehicle-monitoring system
NO147200B (en) INSTALLATION FOR TRAFFIC MONITORING OF VEHICLES FOR PUBLIC TRANSPORT.
CN109637137A (en) Traffic control system based on bus or train route collaboration
CN104616502A (en) License plate identification and positioning system based on combined type vehicle-road video network
CN109584612A (en) Parking lot crusing robot and device
JP3775394B2 (en) Travel link determination system and link travel time measurement system
CN110851490A (en) Vehicle travel common stay point mining method and device based on vehicle passing data
CN104200648A (en) Road section average travelling time calculation method based on electronic license plate
JPS5835422A (en) Device for recognizing moving direction of moving sound source
US3072901A (en) Doppler frequency speed measuring apparatus
CN101976508A (en) Traffic signal artery phase difference optimization method based on license plate recognition data
Roth History of automatic vehicle monitoring (AVM)
Kawakatsu et al. Fully-neural approach to heavy vehicle detection on bridges using a single strain sensor
CN105547304A (en) Road recognition method and device
Hansen Improving railway punctuality by automatic piloting
US3109157A (en) Directional traffic control system
JPH0896181A (en) Road charging system
Mesch et al. Train-based location by detecting rail switches
US2713679A (en) Sonic speed recorder
Sato et al. Initial evaluation of acoustic train detection system
JPS61214100A (en) Traffic flow measuring system
Maipradit et al. PAVEMENT: Passing Vehicle Detection System with Autonomous Incremental Learning using Camera and Vibration Data
JPH0973595A (en) Method and device for predicting travel time