JPS5834624A - D/a converter - Google Patents

D/a converter

Info

Publication number
JPS5834624A
JPS5834624A JP13293781A JP13293781A JPS5834624A JP S5834624 A JPS5834624 A JP S5834624A JP 13293781 A JP13293781 A JP 13293781A JP 13293781 A JP13293781 A JP 13293781A JP S5834624 A JPS5834624 A JP S5834624A
Authority
JP
Japan
Prior art keywords
capacitor
charge
conversion
switches
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13293781A
Other languages
Japanese (ja)
Inventor
Juichi Yoneyama
米山 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP13293781A priority Critical patent/JPS5834624A/en
Publication of JPS5834624A publication Critical patent/JPS5834624A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Abstract

PURPOSE:To reduce errors due to deviation of capacity of a capacitor by transferring charge accumulated in the first capacitor to the second capacitor to make it 1/2 charge successively and making the sum of output of two times of conversion obtained by interchanging the first and second capacitors its output. CONSTITUTION:Switches S6, S7 are made as shown by 1, 1'. A switch S1 is closed and a capacitor C1 is charged. When S2 only is closed, charge is distributed to C1 and C2 and becomes nearly 1/2. Switches S3 and S4 are controlled according to digital signal and converted analog value is accumulated in a capacitor C3. When conversion is completed, switches S6, S7 become 2, 2' side and similar conversion is performed. The sum of two times of conversion is outputted from a sample hold circuit, and regarded as conversion output.

Description

【発明の詳細な説明】 本発明は半導体集積回路に好適なり/ム変機器KJII
する。近年、家電製品にも次第に高精度(14ビy)〜
16ビツト)なり/ム変換器が用いられるようになり、
低価格のそノリシック、化されたD/A変換器が要求さ
れている0通常、高分解能を有するD/ム変換1!sK
あっては、ラダー抵抗を用いたD/A変換器が用いられ
、ラダー抵抗はレーザトリ2ング法によって高い精度の
抵抗回路網が形1!されており、製造価格が上昇する火
点を有している・また、レープトリ2ング法によるラダ
ー抵抗は経時変化や温度変化による精度の劣化があり好
ましくない。
[Detailed description of the invention] The present invention is suitable for semiconductor integrated circuits/Mugen equipment KJII
do. In recent years, home appliances have gradually become more accurate (14 biy).
16-bit) N/M converters came into use,
There is a need for a low-cost, highly integrated D/A converter, which typically has high resolution. sK
In some cases, a D/A converter using a ladder resistor is used, and the ladder resistor is formed into a highly accurate resistor network using a laser trimming method. This has the potential to increase manufacturing costs.Additionally, ladder resistors based on the Lepto ring method are undesirable because their accuracy deteriorates due to changes over time and temperature.

本発明は上述kllみなされ、D/A変換器をM08、
L81の製造工程であるMO8ブーセスを用いて製造で
自る毫ノリシック化した安価で小型のD/A変換器を提
供することを目的とす・る・また、他の目的は、MO8
*ヤバシタ等の加工精度に起因する変換誤差を補償する
D/A変換器を提供することを目的とする。
The present invention is considered to be the above-mentioned kll, and the D/A converter is M08,
The purpose is to provide an inexpensive and compact D/A converter that is self-manufactured using the MO8 process, which is the manufacturing process of L81.
*The purpose of this invention is to provide a D/A converter that compensates for conversion errors caused by processing precision such as slivers.

以下、本発明を図面に基づ亀説明する。The present invention will be explained below based on the drawings.

第1図はMO8プ田竜スを用いて篭ノリジッタ化を図っ
たD/A変換器の従来例である。斯る従来例にあっては
、キャパシタの加工精度によっては変換精度を悪化させ
る欠点を有している。また、第2図は本発明の一11施
例である。以下、従来例を参照し、本発明に就いて説明
する。
FIG. 1 shows a conventional example of a D/A converter that uses an MO8 PUTATARYUS to achieve low jitter. Such a conventional example has the disadvantage that conversion accuracy deteriorates depending on the processing accuracy of the capacitor. Moreover, FIG. 2 shows one eleventh embodiment of the present invention. The present invention will be described below with reference to conventional examples.

第1図に於て、81〜S−はMOB)ランジスタからな
るスイッチ、01〜C1はMO8キャパシタであるり1
は演算増幅器であ抄、その反転入力端子と出力端子間に
キャパシタC1が接続され積分器Aを形成し、積分器ム
の出力端子にサンプルホールド回路2が接続され、す/
プルホールド回路2から変換出力を得る。演算増幅器1
の反転入力端子には、スイッチS4が接続されその他端
にスイッチS、、S、及びコンデンサC8が接続され、
スイッチS、の他端にスイv f 8 t とコンデン
サC8が接続され、スイッチSlの他端と接地間に基準
電圧源v皇が接続されている。スイッチS、及び:!/
デンナC,,Q、の他端は接地され、演算増幅器1の正
転入力端子も同様に接地されている。
In Fig. 1, 81 to S- are switches consisting of MOB transistors, and 01 to C1 are MO8 capacitors.
is an operational amplifier, a capacitor C1 is connected between its inverting input terminal and its output terminal to form an integrator A, and a sample and hold circuit 2 is connected to the output terminal of the integrator.
A conversion output is obtained from the pull-hold circuit 2. Operational amplifier 1
Switch S4 is connected to the inverting input terminal of , and switches S, , S and capacitor C8 are connected to the other end,
A switch V f 8 t and a capacitor C8 are connected to the other end of the switch S, and a reference voltage source V is connected between the other end of the switch Sl and ground. Switch S, and:! /
The other ends of the power output terminals C, , Q are grounded, and the non-inverting input terminal of the operational amplifier 1 is also grounded.

第1図のD/A変換器の動作について説明する。The operation of the D/A converter shown in FIG. 1 will be explained.

先ず、スイッチS、、S、、S、をオンとして。First, turn on the switches S,,S,,S,.

スイッチS、、S4をオフとし、キャパシタCIに基準
電圧v3を充電し、キャパシタC,,C1の充電々荷を
放電する。次にスイッチ8雪をオンにすると、中ヤパシ
タCIの充電々荷がキャパシタO,に流れ、午ヤパシタ
CI 、C,の容重が等しければ充電電圧+マ3となる
。デジタル入力信号のMSll(最上位ビ!P))が1
であれば、スイッチ8a tオンとし、スイッチS、、
S、をオフとすると、キャパシタC8の電荷はキャパシ
タC1に転送される。このときの積分器Aの出力電FE
v・は次式のように示される。
The switches S, , S4 are turned off, the capacitor CI is charged with the reference voltage v3, and the charges in the capacitors C, , C1 are discharged. Next, when the switch 8 is turned on, the charged load of the middle capacitor CI flows into the capacitor O, and if the capacities of the middle capacitors CI and C are equal, the charging voltage becomes +3. MSll (most significant bit!P) of the digital input signal is 1
If so, turn on switch 8a, switch S,...
When S is turned off, the charge on capacitor C8 is transferred to capacitor C1. At this time, the output voltage FE of integrator A
v. is expressed as follows.

V、譚−+ V m また、MSllがOであればスイッチ8.をオンにして
、キャパシタC3の電荷は、転送されずに放電される。
V, Tan-+V m Also, if MSll is O, switch 8. is turned on, the charge in capacitor C3 is discharged without being transferred.

次に、スイッチ8.をオンにするとキャパシタC3の電
荷をキャパシタC3に分配され、キャパシタC,,C,
の電圧は+V、となる。
Next, switch 8. When the capacitor C3 is turned on, the charge of the capacitor C3 is distributed to the capacitor C3, and the capacitors C,,C,
The voltage of is +V.

MOBよ抄2ビット目が1であれば、スイッチS4をオ
ンにしてコンダンfC9に分配された電荷をヤヤパシタ
C8に転送し、また、MOBより2ビツト目が0であれ
ば、スイッチS8をオンとしてキャパシタCIの電荷が
放電される。この動作をデジタル入力信号に応じて繰り
返えせば、積分器Aの出力端からデジタル人力信号に応
じたアナログ変換出力を得ることができる。
If the second bit of MOB is 1, switch S4 is turned on and the charge distributed to capacitor fC9 is transferred to output capacitor C8, and if the second bit of MOB is 0, switch S8 is turned on. The charge on capacitor CI is discharged. If this operation is repeated according to the digital input signal, an analog conversion output corresponding to the digital human input signal can be obtained from the output terminal of the integrator A.

この操作によって得られるアナログ変換出力はキャパシ
タc、、c、、C1が全く等しい場合であって、現実に
は製造工稿上加工精F[K誤差があり、変換項差を生じ
る。
The analog conversion output obtained by this operation is obtained when the capacitors c, , c, , C1 are completely equal, and in reality, there is a processing precision F[K error in the manufacturing process, resulting in a conversion term difference.

以下、キャパシタc、、c、、c、のw4差によってど
の様な変化を与えられるかを示す。
Below, we will show what changes can be made by the difference in w4 between capacitors c, , c, , c.

キャパシタ0.に充電された電荷Q、がキャパシタC,
に分配されるときは、次式で示される。
Capacitor 0. The charge Q charged in the capacitor C,
When it is distributed to , it is shown by the following formula.

Qs ”Vcs−Ct −(Ct +O* ) VXま
た、中ヤパシタC8に充電畜れた電荷q、が中ヤノ(シ
タCsIC転送されるときは9次式のように示される。
Qs ''Vcs-Ct-(Ct+O*)VX Also, when the charge q accumulated in the middle capacitor C8 is transferred to the middle capacitor CsIC, it is expressed as the 9th equation.

Q、mO,−VzmQ、−Vy (但し、Vy:キャパシタC3の電荷が午ヤパシタCI
K@送されたときの充電々圧) この操作が繰抄返えされるのであるから、アナ四グ出力
V、は次式のように示される。
Q, mO, -VzmQ, -Vy (However, Vy: The charge of capacitor C3 is
Since this operation is repeated, the analog output V is expressed as follows.

因K、中ヤパシタCI  $01  +Csが等しけれ
ばV、−ダ aシ  ・(+)  ・V、となる。
If factor K and middle yapashita CI $01 +Cs are equal, then V, -d a ・(+) ・V.

L−rl 然し乍ら、製造上の加工精度により、キャパシタC* 
 −Cs  −Cs I’Cw4差が生じる0例えば、
キャパシタC,,C,に誤差が生じる場合は、直線性誤
差を発生し、キャパシタC,,C,による1差は利、得
m*を発生する。利得機差は基準電圧V。
L-rl However, due to manufacturing precision, the capacitor C*
-Cs -Cs I'Cw4 0 where the difference occurs For example,
If an error occurs in the capacitors C,,C,, a linearity error occurs, and one difference due to the capacitors,C,,C,generates a gain,m*. The gain machine difference is the reference voltage V.

を1整することで容易に補償できるから、直線性誤差を
補償すればよい、そこで、キャパシタC1の電荷を次の
ような関係に投定する。
Since it can be easily compensated for by setting C1 to 1, it is sufficient to compensate for the linearity error.Therefore, the charge of the capacitor C1 is assigned to the following relationship.

(3,−20、0−+(Ct +C* )また、直線性
誤差を補償する本発明に係る実施例を第2図に示す。t
42図の実権例に於ては、キャパシタCI 、O,がス
イッチS、、S、によって入れ換えることが可能に形成
されている。スイッチ8.の他端の一方がキャパシタC
Iの一端に接続され、他方がキャパシタC1の一端に接
続され、また、スイッチS!の他端の一方がキャパシタ
C1の一端に接続され、池方がキャパシタC3の一端に
接続されている・他の回路構成は第111と同様である
(3, -20, 0-+(Ct +C*) Also, an embodiment according to the present invention that compensates for linearity errors is shown in FIG. 2.t
In the practical example of FIG. 42, the capacitors CI, O, are configured to be replaceable by switches S, , S,. Switch 8. One of the other ends is capacitor C
I, the other end is connected to one end of the capacitor C1, and the switch S! One of the other ends is connected to one end of the capacitor C1, and the other end is connected to one end of the capacitor C3.Other circuit configurations are the same as the 111th.

まず、スイッチS、がキャパシタC3の一端に接続され
、スイッチS、が中ヤパシタC8の一端に接続された状
態で第1回目のD/A変換を行う。
First, the first D/A conversion is performed with the switch S connected to one end of the capacitor C3 and the switch S connected to one end of the intermediate capacitor C8.

そのときの積分器ムの出力電圧v0は次式のようになる
。″ 次に、午ヤパシタC3に転送された電荷Q、を放電しな
いで、スイッチS、、S、を切り換える。
The output voltage v0 of the integrator at that time is expressed by the following equation. ``Next, the switches S, , S, are switched without discharging the charge Q, transferred to the power capacitor C3.

スイッチS・を切抄換え、キャパシタCIからキャパシ
タC8に接続する。また、スイッチ8.を切抄換先、キ
ャパシタC,からキャパシタC1に接続し、再¥M8B
からD/A@襖を行う。
Switch S is switched to connect capacitor CI to capacitor C8. Also, switch 8. Connect the switching destination, capacitor C, to capacitor C1, and re-connect ¥M8B.
From D/A@fusuma.

Lビット目の出力V、は次式で示される。The output V of the L-th bit is expressed by the following equation.

となる。becomes.

ここで、C,−C(1+Δ)、C1−C(1−Δ)とす
ると、 理想出カーv烏との誤差 ΔVzは L ΔV↓−ユ住づYΔ・ となり大巾に改善畜れる。従って、誤差の4和は−Δ1
〜++Δ電の範囲になる。即ち、中ヤノ(シタC,,C
,の誤差が1%であれば変換の誤差は1101jllな
る。キャパシタの容量の誤差がα1%まで可能であるの
でこの場合の変換誤差は1PPMとなり、極めて効果的
である。
Here, if C, -C (1 + Δ) and C1 - C (1 - Δ), then the error ΔVz from the ideal output car v will be L ΔV ↓ - YusumizuYΔ・, which will be a great improvement. Therefore, the sum of four errors is -Δ1
It will be in the range of ~++Δelectricity. That is, Nakayano (Sita C,,C
, if the error is 1%, the conversion error will be 1101jll. Since the capacitance error of the capacitor can be up to α1%, the conversion error in this case is 1 PPM, which is extremely effective.

第3図は本発明に係るD/ム変換器の他の実施例であり
、中ヤパシタC,,C,の切り換えを第211!lの実
施例ではスイッチ8..8.によって行っているが、第
3図に於ては、スイッチS、、a。
FIG. 3 shows another embodiment of the D/MU converter according to the present invention, in which the middle capacitors C, , C, are switched at the 211th! In the embodiment of switch 8. .. 8. However, in FIG. 3, the switches S, , a.

を用いている。また、その場合放電を促すスイッチ8□
・が付加される。これらのスイッチは、第2図と同様な
操作を繰り返し、デジタル入力信号をD/ム変換する・ 尚、中ヤパシタはMO8キャパシタ吹いは、接散容量を
用いたキャパシタンス等で形成され、スイッチはMOS
 )ランジスタのみならず、種々のトランジスタスイッ
チが可能である・また、切り換えスイッチ8..8.は
少なくとも二つのトランジスタスイッチで形成される。
is used. In that case, switch 8□ to promote discharge.
・is added. These switches repeat the same operation as shown in Figure 2 to convert the digital input signal into D/M. Note that the middle capacitor is an MO8 capacitor, and the switch is formed of a capacitance using a dissipative capacitor, etc.
) Not only transistors but also various transistor switches are possible.・Also, selector switches 8. .. 8. is formed by at least two transistor switches.

熱論、本発明は第2図及び第3図に限ることなく、キャ
パシタam 、a、Vc充電された電荷をスイッチ群を
棟作することによって、二回のD/A変換行う本発明の
主管を逸脱することなしに、スイッチの組み合せによる
種々の応用例がある。
Thermal theory, the present invention is not limited to FIGS. 2 and 3, but the main body of the present invention is to perform two D/A conversions by using the charges charged in the capacitors am, a, and Vc to form a group of switches. Without departing from this, there are various applications of combinations of switches.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は中ヤパシタを用いたD/▲変換器の従来例であ
る。 輯2図は本発明κ係るD/l変換器の一実施例である。 第3図は本発明に係るD/A変換器の他の111例であ
る。 ′I!51図 第2図
Figure @1 is a conventional example of a D/▲ converter using a medium yapashita. Figure 2 shows an embodiment of a D/l converter according to the present invention. FIG. 3 shows another 111 example of the D/A converter according to the present invention. 'I! Figure 51 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 容量の略等しい第1と第2のキャパシタと、これらのキ
ャパシタの充電、放電とキャパシタ間の電荷分配並びに
積分器Kij41のキャバシメ綿或いは第2のキャパシ
タの充電々荷を転送するスイッチ群とを含み、第1のキ
ャパシタの電荷を第2ノキヤパシタに分配し、デジタル
入力信号ノビットに応じて1Ii2のキャパシタの光電
々荷を肢積分器に転送させるか、または、第2のキャパ
シタの電荷を放電させて、MSB(上位ビット)よ抄順
次前記デジタル入力信号をアナ四グ変換する$1の手段
と、第1の手段の後に第2のキャパシタの電荷を第1の
キャパシタに分配し、前記デジタルせることKよって、
MSBより順次前記デジタル入力信号をアナ謂グ変換す
る第2の手段とよりなり、第1と$2の手段によって得
たアナ關グ変換出力の和を唆デジタル入カ信号のアナロ
グ変換出力として得ることを特徴とするD/A変換器。
It includes first and second capacitors having substantially equal capacities, and a switch group for charging and discharging these capacitors, distributing the charge between the capacitors, and transferring the charge of the integrator Kij41 or the second capacitor. , the charge of the first capacitor is distributed to the second capacitor, and the photocharge of the capacitor 1Ii2 is transferred to the limb integrator according to the digital input signal Nobit, or the charge of the second capacitor is discharged. , $1 means for converting the digital input signal from analog to analog in order of MSB (most significant bit), and distributing the charge of a second capacitor to the first capacitor after the first means, and converting the digital input signal to the digital signal. Therefore, K.
A second means converts the digital input signal into analog to analog in order from the MSB, and the sum of the analog conversion output obtained by the first and second means is obtained as an analog conversion output of the digital input signal. A D/A converter characterized by:
JP13293781A 1981-08-25 1981-08-25 D/a converter Pending JPS5834624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13293781A JPS5834624A (en) 1981-08-25 1981-08-25 D/a converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13293781A JPS5834624A (en) 1981-08-25 1981-08-25 D/a converter

Publications (1)

Publication Number Publication Date
JPS5834624A true JPS5834624A (en) 1983-03-01

Family

ID=15092982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13293781A Pending JPS5834624A (en) 1981-08-25 1981-08-25 D/a converter

Country Status (1)

Country Link
JP (1) JPS5834624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639231A (en) * 1986-06-30 1988-01-14 Fujitsu Ltd Digital analog converting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104532A (en) * 1980-01-25 1981-08-20 Toshin Prod Kk Digital-analog converting circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104532A (en) * 1980-01-25 1981-08-20 Toshin Prod Kk Digital-analog converting circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639231A (en) * 1986-06-30 1988-01-14 Fujitsu Ltd Digital analog converting method
JPH0462617B2 (en) * 1986-06-30 1992-10-07 Fujitsu Ltd

Similar Documents

Publication Publication Date Title
US6107871A (en) Double sampling analog low pass filter
JP3143567B2 (en) Delta-sigma modulator
JPH06120827A (en) A/d converter
US5729229A (en) Data independent loading of a reference in a sampled data integrator
JPH0262969B2 (en)
JPS58500684A (en) Capacitive D/A converter for filter interface circuit
JPS5834624A (en) D/a converter
JP3491226B2 (en) Delta-sigma modulator
US6362761B1 (en) Efficient switched capacitor integrator
JPS6011491B2 (en) AD conversion circuit
JPS6258571B2 (en)
US5426413A (en) High speed integrating digital-to-analog converter
JPS59107628A (en) Digital-analog converter
WO2021144941A1 (en) Digital/analog synthesis integrator and δς modulator using same
JPS59172828A (en) Analog voltage/digital signal converting circuit
JP2969621B2 (en) Differential input type A / D converter
KR100415087B1 (en) A device for transforming digital signal to analog signal
JPS5938768B2 (en) decoding circuit
CN105811989A (en) Integrator gain multiplication circuit applied to sigma-delta modulator
JPH09266446A (en) Analog-digital converter and single-chip microcomputer incorporating the same
JPS62136130A (en) Digital-analog converter
SU809549A1 (en) Digital-analogue converter with automatic correction of non-linearity
JPH05268094A (en) Ladder shape da converter
JPS63267017A (en) Analog-digital conversion circuit device
JPH04156722A (en) D/a converter