JPS5834133A - Production of api standard class x80 steel pipe having excellent low temperature toughness - Google Patents

Production of api standard class x80 steel pipe having excellent low temperature toughness

Info

Publication number
JPS5834133A
JPS5834133A JP13185881A JP13185881A JPS5834133A JP S5834133 A JPS5834133 A JP S5834133A JP 13185881 A JP13185881 A JP 13185881A JP 13185881 A JP13185881 A JP 13185881A JP S5834133 A JPS5834133 A JP S5834133A
Authority
JP
Japan
Prior art keywords
less
steel pipe
rolling
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13185881A
Other languages
Japanese (ja)
Inventor
Isao Takada
高田 庸
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13185881A priority Critical patent/JPS5834133A/en
Publication of JPS5834133A publication Critical patent/JPS5834133A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a high tensile large diameter steel pipe having excellent low temp. toughness by subjecting steel contg. prescribed contents of C, Si Mn, P, S, Nb, Al, etc. to machining and heat treatment under specific conditions. CONSTITUTION:The steel contg., by weight %, <=0.15% C, <=0.7% Si, <=0.5-2.5% Mn, <=0.025% P, <=0.005% S, 0.001-0.15% Nb, <=0.07% Al, etc. is melted. A slab of thickness from 300mm. up to 3 times the thickness of the final product is cast continuously. At the point of the time when the surface temp. attains 1,000- 800 deg.C, rough rolling is started. Upon ending of the rough rolling, finish rolling is started at <=60sec time and 950-750 deg.C temp., and the finish rolling is finished at >=60% draft and Ar3 transformation point -650 deg.C temp. The hot-rolled steel strip is coiled at 750-450 deg.C, and is formed into a steel pipe. The steel pipe is heated to a temp. range from Ac3 transformation point -50 deg.C up to 1,100 deg.C and is cooled between 800-500 deg.C at the average cooling rate CR ( deg.C/sec) satisfying the equation. Finally, the steel pipe is cooled down to ordinary temp.

Description

【発明の詳細な説明】 本発明は低温靭性にすぐれたAPI規格XIO級鋼管の
製造方法に係り、特に寒冷地のパイプライン用高張力大
径鋼管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an API standard XIO class steel pipe with excellent low-temperature toughness, and particularly to a method for manufacturing a high-tensile, large-diameter steel pipe for pipelines in cold regions.

近年、石油、天然ガスなどのエネルギー資源の開発が進
められ、特に寒冷地において広範囲に行われるようにな
り、これに伴って輸送用パイプラインの敷設が、急速に
延びつつある。しかもこれらのパイプラインに用いられ
る鋼管は次第に大径化する頷崗にあると共に、高張力化
が要求されるようになって来た。これらの寒冷地のパイ
プライン用鋼管は低温下に設置されるので、低温靭性に
対する要求も当然のことながら厳しいものがある。従っ
てこれらの鋼管用素材は大径鋼管用としてすぐれた低温
靭性と高張力を併せ有する特性でなければならぬ。
BACKGROUND ART In recent years, the development of energy resources such as oil and natural gas has been progressing, and the development of energy resources such as oil and natural gas has become widespread, especially in cold regions, and the construction of transportation pipelines is rapidly increasing. Moreover, the steel pipes used in these pipelines are becoming increasingly larger in diameter and require higher tensile strength. Since steel pipes for pipelines in these cold regions are installed at low temperatures, there are naturally strict requirements for low-temperature toughness. Therefore, these materials for steel pipes must have properties that combine excellent low-temperature toughness and high tensile strength for use in large-diameter steel pipes.

現在パイプラインに用いられる大径高張力銅管は、主と
してUOE法、スパイラル造管法またはレール7オーム
後電縫溶接する方法によって製造されている。このうち
UO冠銅管は厚板々ルで製造される鋼板を素材とし、ス
・叱イラル鋼曽および電縫鋼管は熱延鋼帯を素材として
お9、アメリカのAPI規格によるX70級までの強度
を有する素材は主として制御圧延によって製造されてい
る。
Large-diameter high-tensile copper pipes currently used for pipelines are mainly manufactured by the UOE method, the spiral pipe manufacturing method, or the method of electrical resistance welding after a 7-ohm rail. Among these, UO-crowned copper pipes are made from steel plates produced by thick plates, while Su-Keiral steel pipes and ERW steel pipes are made from hot-rolled steel strips. Materials having strength are mainly manufactured by controlled rolling.

一般に制御圧延材は比較的高い強度を有すると共に、低
温靭性にもすぐれ、パイプライン用^張力大価銅管素材
に適した材質特性を有せしめることができる。制御圧延
・材は圧延後直ちに再結晶を開始するオーステナイト温
度領域(以下再結晶T領域と称する)、圧延のパス間に
再結晶が起らないオーステナイト領域(以下未再結晶T
領域と称する)、およびオーステナイト、7エライト2
相領域(以下T+iと称する)の各領域に対してそれぞ
れめ圧下量およびt5終圧延仕上温度を規制し、各亀度
領域にお叶る圧下配分と仕上温度を調整することにより
要求される材質特性を満足させる方法をとっている。需
要家の低温靭性に対する要求は最近のパイプライン敷設
地の寒冷化にともなって厳しくなってきており、ざらに
輸送力増大のため輸送圧を高める方向に進んでいる。こ
のため一部ではX80級の高強度を有しかつ低温靭性も
良好な鋼管の使用が計画されており、その需要が今後増
大する傾向にある。このX80級鋼管用素材に対して低
温靭性が良好であるだけでなく。
Control-rolled materials generally have relatively high strength and excellent low-temperature toughness, and can have material properties suitable for high-strength, high-value copper pipe materials for pipelines. The controlled rolling material has an austenitic temperature region where recrystallization starts immediately after rolling (hereinafter referred to as the recrystallized T region), and an austenitic temperature region where recrystallization does not occur between rolling passes (hereinafter referred to as the non-recrystallized T region).
), and austenite, 7 erite 2
The required material quality can be achieved by regulating the amount of rolling reduction and finishing temperature of t5 final rolling for each region of the phase region (hereinafter referred to as T+i), and adjusting the distribution of rolling reduction and finishing temperature that correspond to each radius region. A method is adopted that satisfies the characteristics. Customers' requirements for low-temperature toughness have become more severe as pipeline sites have become colder in recent years, and there is a general trend toward increasing transportation pressure in order to increase transportation capacity. For this reason, some plans are being made to use steel pipes that have high strength of the X80 class and good low-temperature toughness, and the demand for such pipes is likely to increase in the future. This X80 class steel pipe material not only has good low temperature toughness.

現地における溶接施工を容易に行うために、圧延のまま
の素材では強度の確保が非常に困難な低い炭素当量が要
求される。
In order to facilitate on-site welding, a low carbon equivalent is required, which is extremely difficult to ensure strength with as-rolled materials.

炭素当量が制限された組成の素材を用い、X80級の強
度を得るためには、素材圧延時における低温領域での圧
下量の増大と熱延仕上温度のより低温化が必要となる。
In order to obtain X80 class strength using a material with a composition with a limited carbon equivalent, it is necessary to increase the amount of reduction in the low temperature region during rolling of the material and lower the hot rolling finishing temperature.

しかし圧延温度をAr、に比べて著しく低下させ、低温
領域での圧下量を増加させ過ぎると、強度は著しく上昇
するが、低温靭性が劣化して(る、低温靭性の劣化がな
い低温範囲で効果的な制御圧延を行うには、この温度領
域での圧下量をできるだけ大ぎ<シ、かつ圧延談、加工
組織の回復がないうちに連続的に圧延をくり返して、未
再結晶のままの墨積圧下亭を大きくする必要があるが、
これを現行の加熱圧延法で行うのは困難であって、特に
スパイラル鋼管または電縫鋼管用素材となるホットスト
リップミルで圧延される熱延鋼帯の圧延の場合は著しく
困難である。
However, if the rolling temperature is significantly lowered compared to Ar, and the rolling reduction amount is increased too much in the low temperature range, the strength will increase significantly, but the low temperature toughness will deteriorate. In order to perform effective controlled rolling, the amount of reduction in this temperature range must be as large as possible, and the rolling process must be repeated continuously before the processed structure recovers to prevent the unrecrystallized material from forming. It is necessary to enlarge the ink pressure lower part,
It is difficult to perform this with the current hot rolling method, and it is particularly difficult to roll a hot rolled steel strip that is rolled in a hot strip mill to be used as a material for spiral steel pipes or electric resistance welded steel pipes.

ホットストリップミルによる熱間圧延は通常粗圧延およ
び仕上圧延と称されている2段階の圧延から成り、粗圧
延には一部可逆式圧延機も使用されているが、仕上圧延
は隣接した数個の一−ルによ鴨一方向に連続圧延される
ため、圧延中にシートバーの形状に曲りが生じると圧延
不能となる。
Hot rolling by a hot strip mill usually consists of two stages of rolling called rough rolling and finishing rolling. Some reversible rolling mills are also used for rough rolling, but finishing rolling consists of two steps called rough rolling and finishing rolling. Since the sheet bar is continuously rolled in one direction by one roll, if the shape of the sheet bar is bent during rolling, rolling becomes impossible.

そこで仕上圧延前のシートバーの形状が問題になり、形
状が均一でない先端部は圧延前に剪断機によって切落し
適正形状としている。ところが剪断機の能力によってシ
ートバーの厚ざが規制され、そのため未再結晶T領域に
おいて、厚板ミルの場合のような大きな臣下量を取るこ
とができない。
Therefore, the shape of the sheet bar before finishing rolling becomes a problem, and the leading end portion, which is not uniform in shape, is cut off with a shearing machine to give it an appropriate shape before rolling. However, the thickness of the sheet bar is regulated by the capacity of the shearing machine, and therefore it is not possible to take a large amount of shearing in the unrecrystallized T region as in the case of a plate mill.

従ってホットストップ1ルで製造される熱延鋼帯の強度
と靭性はかなり限定される。
Therefore, the strength and toughness of hot-rolled steel strip produced at hot stops is quite limited.

現行の圧延機と圧延方法によって、シートバーIIり4
11r一端、IIを切り落す必要のないようなスラブの
場合、または非常に軽度の粗圧延後に仕上圧延を行なう
場合には、スラブの加熱炉からの抽出後、または粗圧延
終了から仕上圧延開始までの間に規定温度までの冷却の
ため通常長時間の温度待ちが必要である。その結果着し
い圧延能率の低下を来たすほか、圧下後のγ粒の粗大化
による低温靭性の劣化が起る欠点がある。この長時間の
温度待ちなは次の如き他の問題が発生する。すなわち、
この場合には長時間低温領域においてスラブを力n熱す
るので、制御圧延に不可欠な固溶Nb  力fすべて炭
・窒化物として析出してしまい、そのため低温領域での
圧下量を増大しても所望の高強度、高靭性を得ることが
できないという問題がある。
With the current rolling mill and rolling method, sheet bar II
In the case of a slab where it is not necessary to cut off one end of 11r or II, or when finish rolling is performed after very light rough rolling, after the slab is extracted from the heating furnace or from the end of rough rolling to the start of finish rolling. During this period, it is usually necessary to wait for a long time to cool down to the specified temperature. As a result, there is a drawback that in addition to a severe decrease in rolling efficiency, low-temperature toughness deteriorates due to coarsening of γ grains after rolling. This long temperature waiting period causes other problems as follows. That is,
In this case, since the slab is heated in a low temperature region for a long period of time, all of the solid solute Nb, which is essential for controlled rolling, will precipitate as carbon and nitrides, so even if the rolling reduction in the low temperature region is increased. There is a problem that desired high strength and high toughness cannot be obtained.

従来法により製造される圧延のままの熱延鋼帯には、上
記の如き強度と低温靭性に関する制約力fあり、これを
x80級鋼管素材に適用する場合、強度の面からみると
Mo、Nl、Nb  およびvなどの高価な特殊元素を
多量に添加せねばならず、またXSO級の強度を満足し
て4十分な低温靭性邊1得られる可能性は小さい。たと
丸上記會金元素の多量の添加により、高強度、高靭性が
得られたとしても近年特にこれら特殊合金元素の価格は
着しく高騰しているので、従来法により製造される素材
を使用したX8G級鋼管は著しく高価になる。
As-rolled hot-rolled steel strip produced by conventional methods has the above-mentioned constraints on strength and low-temperature toughness, and when this is applied to x80 class steel pipe material, from the strength perspective Mo, Nl It is necessary to add large amounts of expensive special elements such as , Nb, and v, and it is unlikely that sufficient low-temperature toughness can be obtained while satisfying the strength of the XSO class. Although high strength and high toughness can be obtained by adding a large amount of the above-mentioned alloying elements, the prices of these special alloying elements have risen sharply in recent years, so it is difficult to use materials produced by conventional methods. X8G class steel pipes are significantly more expensive.

高価な合金元素の多量添加なしに、また現地溶接性の点
から要求される低い炭素当量の組成を有する熱延銅帯を
素材としてχ80級鋼管を製造するには、従来法と興な
る新たな圧延法により高強度高靭性の素材を得るととも
に、その素材から成形された鋼管に対して”−1さらに
強度を上昇させる手段をとる必要がある。成形後に強度
を上昇させる比較的簡単な手段としてひずみ時効処理が
考えられるが、素材の炭素当量が低い場合には、鋼管に
時効処理を施してもX80級の強度の確保は難しい、低
い炭素当量の材料の強度を上げる手段として公知のもの
に、焼入処理または焼入、焼もどし処理があるが、焼入
処理または焼入、焼もとし処理を施した鋼管いわゆる調
質鋼管は制御圧延材を素材とした鋼管にくらべて、全厚
の脆性破壊停、  正特性を評価するとされている深さ
5露のプレス度の低いパイプラインに対して調質銅管は
適用されなかった。
In order to manufacture χ80 class steel pipes from hot-rolled copper strips, which have a low carbon equivalent composition required from the viewpoint of on-site weldability, without adding large amounts of expensive alloying elements, conventional methods and new methods are required. In addition to obtaining a high-strength, high-toughness material by rolling, it is necessary to take steps to further increase the strength of steel pipes formed from that material. Strain aging treatment may be considered, but if the carbon equivalent of the material is low, it is difficult to ensure the strength of the X80 class even if the steel pipe is aged, so this is a known method to increase the strength of materials with low carbon equivalents. , quenching treatment, quenching, and tempering treatment, but steel pipes that have undergone quenching treatment, quenching, and tempering treatment, so-called tempered steel pipes, have a lower overall thickness than steel pipes made from controlled rolled materials. Tempered copper pipe was not applied to a pipeline with a low degree of pressing at a depth of 5 dew, which is said to evaluate brittle fracture resistance and positive characteristics.

本発明の目的は、調質鋼管のDWTT特性を改善し、低
温靭性にすぐれたAPI規格XSO級銅管の製造方法を
提供するにある。
An object of the present invention is to provide a method for manufacturing an API standard XSO class copper tube that improves the DWTT characteristics of a tempered steel tube and has excellent low-temperature toughness.

本発明者らは、調質鋼管のDWTT特性の改善を目的と
して、化学組成および圧延方法の異なる多くの素材から
製造された鋼管に焼入処理または焼入、焼もどし処理を
施し、それらの強度とDWTT特性を調査した結果、特
定の化学組成を持ち、かつ適切な制御圧延によって製造
され、良好な低温靭性を有する素材から成形された鋼管
は、vA人処理または焼入、焼もどし処理を施された後
、X80級鋼管として十分な強度と良好なりWTT特性
を有することを見出した。
In order to improve the DWTT characteristics of heat-treated steel pipes, the present inventors performed quenching or quenching and tempering on steel pipes manufactured from many materials with different chemical compositions and rolling methods, thereby improving their strength. As a result of investigating the DWTT characteristics, we found that steel pipes with a specific chemical composition, manufactured by appropriately controlled rolling, and formed from materials with good low-temperature toughness should be subjected to vA treatment or quenching and tempering treatment. It was found that the steel pipe had sufficient strength and good WTT characteristics as an X80 class steel pipe.

本発明者らは上記の知見をもとに下記要賀の4発明を完
成した。
The present inventors have completed the following four inventions based on the above knowledge.

第1発羽の要賀とするところは次のとおりである。すな
わち重量比にてCIo、15%以下、5ft0.70X
以下、)& t o、5o 〜2.56%、PI3.0
25%以下、sto、oos%以下、Nbto、010
〜0.1SON、 、u !  0.070%以下を含
有し更に必11ニJ9 V l 0.010〜@、15
0X、 TI ! 0.005〜0.111ON、 Z
r t O,005〜0.150%、Mo to、os
 〜o、so%、 Cu g O,10〜1.00%、
N1t6.10 〜4.00X 、  Cr  t  
0.1 0 〜1.0 0X 、希土類元素to、02
0%’以下、CaI2.010%以下のうちから選ばれ
た1種または2種以上を含み、かつ にて示される炭素当量Ceqがo、45以下であり、残
部が実質的にFeより成る鏑のAPI規格X8゜級鋼管
の製造方法において、300■から最終成品厚ざの3倍
までの厚さを有する連続鋳造スラブを製造する段階と、
前記スラブをそのままもしくは20分以内保温または加
熱した後、誼スラブの表面温度が1000〜soo℃に
なった時点で粗圧延を開始する段階と、前記粗圧延終了
後60秒以内に950〜750℃の温度範囲で仕上圧延
を開始し該圧延時の圧下率を60%以上としAr、 l
”態点〜65G℃の温度範囲で仕上圧延を終了する段階
と、前記熱延鋼帯を750〜450℃の温度範囲で巻取
る段階と、前記熱延銅帯を鋼管に成形する段階と、前記
鋼管をA、変態点−50℃から1100℃までの温度範
囲に加熱する段階と、前記加熱した銅管を5oo−so
o℃の間の平均冷却速度CR(t/5ee)が下記の式
を満足する如く常温まで冷却する段階と、を有して成る
ことを特徴とする低温靭性にすぐれたAPI規格χ80
Q(IIII入性指原性指標 −vlr (x+o、5
4st )(t+4.1ow)(1+2.23Cr)(
1+O,!52Ni  )(1+3.14Mo)(1+
0.27Cu)第2発明の要嘗とするところは上記第1
発明と同一の組成の鋼のAPI規格X80級鋼管の製造
方法において、第1発明と同一の連続鋳造、熱闘圧延お
よび造管段階の後、前記鋼管を編変態点−5O℃から1
100℃までの温度範囲に加熱する段階と、前記の加熱
した鋼管を800〜SOO℃の間の平均冷却速度CR(
’C/HIC)が下記の式を満足する如く500℃以下
まで冷却する段階と、前記冷却した鋼管を再び500℃
〜Ae1変態点の温度II!囲に加熱後冷却する段階と
、を有して成ることを特徴とする低温靭性にすぐれたA
PI規格XSO級鋼管の製造方法である。
The main points for the first flight are as follows. That is, CIo in weight ratio, 15% or less, 5ft0.70X
Below, ) & to, 5o ~2.56%, PI3.0
25% or less, sto, oos% or less, Nbto, 010
~0.1SON, ,u! Contains 0.070% or less and must also contain 11 d J9 V l 0.010~@, 15
0X, TI! 0.005~0.111ON, Z
r t O, 005-0.150%, Mo to, os
~o, so%, Cu g O, 10-1.00%,
N1t6.10 ~4.00X, Cr t
0.1 0 ~ 1.0 0X, rare earth element to, 02
0% or less, CaI 2.010% or less, and has a carbon equivalent Ceq of o, 45 or less, and the remainder is substantially Fe. In the method for manufacturing API standard
A step of starting rough rolling when the surface temperature of the slab reaches 1000 to 100°C after keeping or heating the slab as it is or within 20 minutes, and 950 to 750°C within 60 seconds after the completion of the rough rolling. Finish rolling is started at a temperature range of 60% or more, and Ar, l
a step of finishing finish rolling in a temperature range of 750 to 450° C.; a step of forming the hot rolled copper strip into a steel pipe; A step of heating the steel pipe to a temperature range from a transformation point of -50°C to 1100°C, and heating the heated copper pipe to a temperature range of 5oo-so.
API standard χ80 with excellent low temperature toughness, characterized by comprising a step of cooling to room temperature such that the average cooling rate CR (t/5ee) during the temperature range of 0°C satisfies the following formula:
Q(III digitogenic index −vlr (x+o, 5
4st)(t+4.1ow)(1+2.23Cr)(
1+O,! 52Ni)(1+3.14Mo)(1+
0.27Cu) The main point of the second invention is the above-mentioned first invention.
In a method for producing an API standard X80 class steel pipe of steel having the same composition as the invention, after the same continuous casting, hot-fight rolling and pipe-making steps as in the first invention, the steel pipe is heated from a knitting transformation point of -50°C to 1°C.
heating the heated steel pipe to a temperature range of up to 100°C and cooling the heated steel pipe at an average cooling rate CR (
'C/HIC) is cooled to below 500°C so that it satisfies the following formula, and the cooled steel pipe is heated to 500°C again.
~Temperature II of Ae1 transformation point! A with excellent low-temperature toughness, characterized by comprising a step of heating and then cooling.
This is a method for manufacturing PI standard XSO class steel pipes.

CR≧ 30.8/Q 第3発明の要旨とするところは、上記第1発明と同一組
成の鋼のAPI規格X80級鋼管の製造方法において第
1発明の同一の連続鋳造スラブを製造する段階後、前記
スラブをそのままもしくは20分以内保温または加熱し
た後該スラブの表面温度が1000〜750℃になった
時点で仕上圧延を開始し95C1℃以下における圧下率
を60%以上とする仕上圧延を行った後Ar、 f態点
〜650℃の温度範囲で仕上圧延を終了する段階と、前
記熱延銅帯を750〜450℃の温度範囲で巻取る段階
と、前記熱延銅帯を鋼管に成形する段階と、前記鋼管を
Ac、変態点−50℃から1100℃までの温度範囲に
加熱する段階と、前記加熱した鋼管を800−500℃
の間の平均冷却速度CR(℃/5ee)が下記の式を満
足する如く常温まで冷却する段階と、を有して成ること
を特徴とする低温靭性にすぐれたAPI規格X80級鋼
管の製筒4尭明の要嘗とするところは上記第1発明と同
一組成の鋼のAPI規格X80級鋼管の製造方法におい
て、第3発明と同一の連続鋳造、熱間圧延および造管段
階の後、前記鋼管をA% l’態点−50℃から110
0℃までの温度範囲に加熱する段階と、前記加熱した鋼
管を800〜500℃の間の平均冷却速度CR(t/5
ec)が下記の式を満足する如(500℃以下まで冷却
する段階と、前記冷却した鋼管を再び500℃〜A自変
態点の温度範囲に加熱後冷却する段階と、を有して成る
ことを特徴とする低温靭性にすぐれたAPI規格X80
級鋼管の製造方法である。
CR≧30.8/Q The gist of the third invention is that after the step of manufacturing the same continuous casting slab of the first invention in the method for manufacturing an API standard X80 class steel pipe of steel having the same composition as the first invention, , After the slab is kept warm or heated for 20 minutes or less, finish rolling is started when the surface temperature of the slab reaches 1000 to 750°C, and finish rolling is performed with a reduction rate of 60% or more at 95C1°C or less. After finishing the finish rolling in a temperature range of Ar, f-state to 650°C, winding the hot rolled copper strip in a temperature range of 750 to 450°C, and forming the hot rolled copper strip into a steel pipe. heating the steel pipe to a temperature range of Ac, transformation point -50°C to 1100°C; heating the heated steel pipe to 800-500°C;
and a stage of cooling to room temperature such that the average cooling rate CR (℃/5ee) during the period satisfies the following formula. 4. The main point of Takamei is that in the method for manufacturing an API standard Steel pipe A% l' state from -50℃ to 110
heating the heated steel pipe to a temperature range of up to 0°C, and heating the heated steel pipe to an average cooling rate CR (t/5
ec) satisfies the following formula (including the step of cooling to 500°C or less, and the step of heating the cooled steel pipe again to a temperature range of 500°C to A self-transformation point and then cooling it. API standard X80 with excellent low temperature toughness characterized by
This is a method for manufacturing grade steel pipes.

CR≧ 30.s/Q すなわち1本発明はNb  を含有する低炭素連続鋳造
スラブを短時間保温または加熱後、1000〜800℃
になった時点で粗圧延を開始し、粗圧延終了から仕上圧
延開始までの経過時間を60秒以内として950〜75
0℃で仕上圧延を開始するか、または粗圧延を行わずに
1000〜750℃で仕上圧延を開始して、圧延中の未
再結晶r領域およびa+1領域における合計圧下率を6
0%以上とし、仕上正弧終了温度をAr、〜650℃の
範囲とすることにより、Nb の固溶量が減少する低温
T領域および7+a領域での圧延中に、圧延により生じ
る転位位置にNb  の炭窒化物が析出し、それが転位
の移動と消滅による再配列を妨げ、短時間の正弧パス関
に再結晶が起らず、上記工程の如くパス間の時間が短か
い圧延が連続的に行われると、再結晶が起らないまま圧
下量が累積され、鶏の炭窒化物が多量かつ微細に分散析
出する。
CR≧30. s/Q That is, 1 The present invention is a low carbon continuous casting slab containing Nb that is heated to 1000 to 800°C after being kept warm or heated for a short time.
Rough rolling is started when the temperature is 950 to 75, assuming that the elapsed time from the end of rough rolling to the start of finish rolling is within 60 seconds.
Start finish rolling at 0°C, or start finish rolling at 1000-750°C without rough rolling, and reduce the total rolling reduction in the unrecrystallized r region and a+1 region during rolling to 6
0% or more, and the finishing positive arc end temperature is set to Ar, ~650°C. During rolling in the low-temperature T region and 7+a region where the amount of solid solution of Nb decreases, Nb is added to the dislocation positions caused by rolling. Carbonitrides precipitate, which prevents rearrangement due to movement and annihilation of dislocations, and recrystallization does not occur on short-time positive arc passes, resulting in continuous rolling with short interpass times as in the above process. If this process is carried out over time, the amount of reduction will be accumulated without recrystallization occurring, and a large amount of chicken carbonitride will be precipitated in a finely dispersed manner.

この多量かつ微細に分散析出したNb  の炭窒化物は
、圧延後の焼入れ再加熱時にオーステナイト粒を従来の
制御圧延材の場合に比べ著しく微細化し、調質処理後の
DWTT特性を著しく改曽させる。
These Nb carbonitrides, which are precipitated in large amounts and finely dispersed, make the austenite grains much finer than in conventional control-rolled materials during quenching and reheating after rolling, and significantly improve the DWTT characteristics after tempering. .

鋼管に要求される特性がX80級の強度とD−WTTに
釦ける脆性破壊出現温度が低い場合には本発明法により
製造された素材を(Ac、 −50℃)〜1100℃の
温度範囲に加熱後強制冷却すればよく、上記の要求に加
え高い衝撃吸収エネルギーが要求されるとぎは、さらに
焼もどし処理を施すのである。
If the characteristics required for a steel pipe are X80 class strength and a low brittle fracture appearance temperature required for D-WTT, the material manufactured by the method of the present invention can be heated to a temperature range of (Ac, -50℃) to 1100℃. It is sufficient to perform forced cooling after heating, and if a high impact absorption energy is required in addition to the above requirements, a further tempering treatment is performed.

本発明に使用するスラブの成分限定理由は次のと粕りで
ある。
The reasons for limiting the ingredients of the slab used in the present invention are as follows.

I Cは強度を高めるために必要であるが、0.15%を越
えると、接接性および低温靭性が著しく劣化するので、
0.15%以下に限定した。
I C is necessary to increase strength, but if it exceeds 0.15%, weldability and low temperature toughness will deteriorate significantly.
The content was limited to 0.15% or less.

8口 別 は鋼の脱酸と強度上昇のために添加されるが、0.
70%を越えると低温靭性を劣化させるので、0.70
%以下に限定した。
8 parts are added to deoxidize steel and increase its strength, but 0.
If it exceeds 70%, low temperature toughness deteriorates, so 0.70
% or less.

細−を 庵 は低温靭性を劣化させずに強度を高める特性がある
ので本発明の如き高張力、高靭性鋼には不可欠の元素で
あり、少くとも0.50%を必要とするが、)、50%
未満では強度上昇に対する効果が小ざ(、また2、50
%を越えるとスラブに割れが多発するので、0.1So
〜2.2$0%の範囲に限定した。
Hoso-wo-an has the property of increasing strength without deteriorating low-temperature toughness, so it is an essential element for high-strength, high-toughness steel such as the present invention, and requires at least 0.50%.) ,50%
If it is less than 2,50%, the effect on increasing strength will be small.
If it exceeds 0.1So, cracks will occur frequently in the slab.
~2.2$0% range.

s 不可避的不純物として鋼中に含まれる元素であり、特に
0.02!S%を越えると低温靭性を著しく劣化させる
ので上限を0.021%%とした。
s An element contained in steel as an unavoidable impurity, especially 0.02! If it exceeds S%, the low temperature toughness will be significantly deteriorated, so the upper limit was set at 0.021%.

S ! Pと同様に不可避的不純物として鋼中に含まれる元素で
あるが、0.005%を越えると圧延方向に対して直角
方向の衝撃吸収エネルギーを着しく低下させるので上限
を0.005%とした。
S! Like P, it is an element that is included in steel as an unavoidable impurity, but if it exceeds 0.005%, the impact absorption energy in the direction perpendicular to the rolling direction will be seriously reduced, so the upper limit was set at 0.005%. .

Nb  t Nb は再結晶遅延作用および析出硬化作用がある元素
で制御圧延材には不可欠の元素である。しかし0.01
0%未満ではその効果が極めて少く。
Nb t Nb is an element that has a recrystallization retarding effect and a precipitation hardening effect, and is an essential element for controlled rolling materials. But 0.01
If it is less than 0%, the effect will be extremely small.

反対に0.150%を越える多量の添加は鋼管製造時の
溶接金属の低温靭性を著しく劣化させるので0.010
〜0.150%の範囲に限定した。
On the other hand, addition of a large amount exceeding 0.150% significantly deteriorates the low-temperature toughness of weld metal during steel pipe manufacturing, so 0.010%
It was limited to a range of 0.150%.

11 紅は鋼の脱酸および結晶粒の微細化に極めて有効な元素
であるが、o、oyo%を越えると鋼板の表面性状を悪
化させ内部欠陥をもたらすほか、鋼管溶接部の超音波探
傷による不良を多発させるので0.070%以下に限定
した。
11 Red is an extremely effective element for deoxidizing steel and refining crystal grains, but if it exceeds o or oyo%, it deteriorates the surface quality of the steel plate and causes internal defects, and it also Since it causes many defects, it is limited to 0.070% or less.

上記限定組成を本発明鋼の基本組成とするが、必要によ
り次の限定量ノv、 ’rt 、 Zr%Mo、 Cu
The above limited composition is the basic composition of the steel of the present invention, but if necessary, the following limited amounts Nov, 'rt, Zr%Mo, Cu
.

Nl5Cr、希土類元素(以下REVと称する)jdよ
び偽 のうちより選ばれた1種または2種以上を添加す
ることにより本発明の目的がより効果的に達成される。
The object of the present invention can be more effectively achieved by adding one or more selected from among Nl5Cr, rare earth elements (hereinafter referred to as REV), and REV.

これらの選択添加元素の限定理由は次のとおりである。The reasons for limiting these selective addition elements are as follows.

■雪 ■はその析出硬化作用のために強度向上に有効な元素と
して添加されることがあるが、o、ot。
■Snow■ is sometimes added as an effective element for improving strength due to its precipitation hardening effect, but o, ot.

%未満では効果が少<、0.150Xを越えると低温靭
性が劣化するので0.010〜0.150%の範囲に限
定した。
If it is less than 0.1%, the effect is small, and if it exceeds 0.150X, the low-temperature toughness deteriorates, so it is limited to a range of 0.010 to 0.150%.

i11 〒1  は結晶粒の微細化および強度上昇の目的で添加
されることがあるが、o、oos%未満ではその効果が
ほとんどな(,0,150%を越えると鋼板の表面欠陥
が多発するので0.005〜0.150%の範囲に限定
した。
i11 〒1 is sometimes added for the purpose of refining grains and increasing strength, but if it is less than 0,00% it has little effect (if it exceeds 0,150%, surface defects of the steel sheet will occur frequently). Therefore, it was limited to a range of 0.005 to 0.150%.

Zr意 Zr  は硫化物の形態制御および結晶粒の微細化のた
めに添加されることがあるが、0.005%未満ではそ
の効果が極めて小さく、0.15otXを越えると鋼材
の表面欠陥が多発するので0.005〜0150%の範
囲に限定した。
Zr-Zr is sometimes added to control the morphology of sulfides and refine grains, but if it is less than 0.005%, its effect is extremely small, and if it exceeds 0.15otX, surface defects in steel materials occur frequently. Therefore, it was limited to a range of 0.005% to 0.150%.

at 動 は低温−性を劣化させずに強度を上昇させる元素と
して添加されることがあるが、0.05%未満ではその
効果が小さく、0.50%を越えると鋼管tII接時の
溶接熱影響部の低温靭性を著しく劣化させるので、0.
05〜0.50Xの範囲に限定した。
At-dynamics is sometimes added as an element to increase strength without deteriorating low-temperature properties, but if it is less than 0.05%, its effect is small, and if it exceeds 0.50%, it will increase the welding heat when welding steel pipes to TII. 0.0 because it significantly deteriorates the low-temperature toughness of the affected zone.
The range was limited to 0.05 to 0.50X.

1 CaもMoと同様に低温靭性を劣化させずに強度を高め
る元素として添加されることがあるが、0.10%未満
ではその効果が小さく、100%を越えると赤熱脆性の
欠陥を生じるので0.10〜1.00%の範囲に限定し
た。
1 Like Mo, Ca is sometimes added as an element that increases strength without deteriorating low-temperature toughness, but if it is less than 0.10%, the effect is small, and if it exceeds 100%, red-hot brittle defects will occur. It was limited to a range of 0.10 to 1.00%.

Nl雪 N1  は低温靭性を高め、かつ強度を上昇させる元素
として添加されることがあるが、0.10%未満ではそ
の効果が小さく、またパイプライン用大径鋼管材として
要求される低温靭性の範囲では、4.0O%を越える多
量の添加が必要な(、かつ鳥価でもあるので0.10〜
tooxの範囲に限定した。
Nl Snow N1 is sometimes added as an element to improve low-temperature toughness and strength, but if it is less than 0.10%, its effect is small, and it does not improve the low-temperature toughness required for large-diameter steel pipe materials for pipelines. In the range, it is necessary to add a large amount exceeding 4.0% (and it is also a bird value, so it is 0.10~
limited to the range of toox.

rt Cr は強度を高めるために添加されることがあるが、
0.10%未満ではその効果がほとんどなく。
rtCr is sometimes added to increase strength, but
If it is less than 0.10%, there is almost no effect.

1.00%を越えると低温靭性を著しく劣化させるので
0.10〜1.00%の範囲に限定した。
If it exceeds 1.00%, low-temperature toughness will be significantly deteriorated, so it is limited to a range of 0.10 to 1.00%.

R詣 I REMは硫化物の形態制御効果があや、かつ圧延方向に
直角の方向の衝撃吸収エネルギーを増加させるために添
加されることがあるが、0.020%を越えると鋼板の
表面および内部欠陥を多発させるので0.020%以下
に限定した。
REM I REM is sometimes added to control the shape of sulfides and to increase the impact absorption energy in the direction perpendicular to the rolling direction, but if it exceeds 0.020%, it will damage the surface and interior of the steel sheet. Since it causes many defects, it is limited to 0.020% or less.

m  I CIもREVとほぼ同一効果があるが、0.010%を
越えると鋼板の表面および内部欠陥を多発させるので0
.0IOX以下に限定した。
m I CI has almost the same effect as REV, but if it exceeds 0.010%, it will cause many surface and internal defects of the steel plate, so it should not be
.. It was limited to 0IOX or less.

C@qs とする炭素当量C@qが0.45%を越えると現地にお
ける溶接施工時に割れ防止のための予熱などが必要であ
1作業が鴎しくなるので0.45X以下に限定したが、
望ましくは0.43%以下である。
If the carbon equivalent C@q exceeds 0.45%, it will be necessary to preheat to prevent cracking during on-site welding, making the work difficult, so we limited it to 0.45X or less.
It is preferably 0.43% or less.

本発明に使用されるスラブは上記必須限定成分のほか、
必要により選択添加される元素のほかは。
In addition to the above-mentioned essential limited ingredients, the slab used in the present invention has:
Other than elements that are selectively added as necessary.

残部は実質的にFe  より成るものである。The remainder consists essentially of Fe.

次に本発明における制御圧延の限定理由について説明す
る。
Next, the reason for limiting the controlled rolling in the present invention will be explained.

先づスラブの厚さを300■から最終成品厚ざの3倍ま
でと規制したのは、スラブ厚さが300■を越えると制
御m始温度までの冷却に長時間を要し、その間に鳩 の
羨・窒化物が析出してしまい制御圧延による強度と靭性
の向上が達成されなくなる。またスラブ厚さが最終成品
厚さの3倍未満の場合には効果的な制御圧延が行えない
からである。
First, the thickness of the slab was regulated from 300 mm to 3 times the thickness of the final product.If the thickness of the slab exceeds 300 mm, it will take a long time to cool down to the starting temperature of the control.・Nitrides precipitate, making it impossible to improve strength and toughness through controlled rolling. Further, if the slab thickness is less than three times the final product thickness, effective controlled rolling cannot be performed.

また、本発明において使用するスラブを連続鋳造スラブ
と限定したのは、造塊、もしくは分塊圧延法をとる場合
には、300−以下の厚さを有する鋼塊を得ようとすれ
ば鋼塊の寸法が著しく小ざくな9、歩留の低下のみなら
ず加熱および正弧能率の低下が生じて着しく=スト高と
なるからであって連続鋳造法による場合は上記寸法のス
ラブを得易いからである。
Furthermore, the reason why the slabs used in the present invention are limited to continuous casting slabs is because when ingot making or blooming rolling methods are used, if a steel ingot with a thickness of 300 mm or less is to be obtained, the steel ingot is This is because the dimensions are extremely small9, which not only decreases the yield but also decreases heating and forward arc efficiency, resulting in a severe strike height.If continuous casting is used, it is easier to obtain slabs with the above dimensions. It is from.

次に圧延前のスラブを必要により20分以内のび端部の
スラブ内部にくらべて冷却速度が大きい部分の温度が過
度に低下した場合均一な圧延が困難であるため冷却し易
い部分の保温もしくは加熱を図るものである。而してそ
の処要時間を20分以内と規制したのは20分を越すと
Nb の炭 ・窒化物が析出してしまい、低温領域での
圧下量を増大しても所望の^強度、高靭性が得られなく
なるからである。
Next, if necessary, the slab before rolling is stretched within 20 minutes.If the temperature in the part where the cooling rate is faster than the inside of the slab at the end drops excessively, it will be difficult to roll uniformly, so keep warm or heat the part that is easy to cool. The aim is to However, the treatment time was regulated to within 20 minutes because if it exceeded 20 minutes, Nb carbon/nitride would precipitate, and even if the reduction amount in the low temperature region was increased, the desired strength and high strength could not be achieved. This is because toughness cannot be obtained.

粗圧延を行なう場合、その開始温度を1000〜800
℃と限定したのは、この温度をはずれて800℃未満も
しくは1000′cを越す粗圧延開始温度では低温靭性
の劣化が著しいからである。
When performing rough rolling, the starting temperature is 1000 to 800.
The reason why it is limited to 0.degree. C. is because the low-temperature toughness deteriorates significantly at rough rolling start temperatures below 800.degree. C. or above 1000'C.

粗圧延を実施する場合、粗圧延終了から仕上圧延開始ま
での経過時間を60秒以内と規制したのは、60秒を越
えると1粒の粗大化が生じ低温靭性が劣化するからであ
る。
When rough rolling is performed, the elapsed time from the end of rough rolling to the start of finish rolling is regulated to within 60 seconds because if it exceeds 60 seconds, coarsening of one grain occurs and low temperature toughness deteriorates.

粗圧延優に仕上圧延を行う場合の圧延開始温度を一10
〜750℃、粗圧延なしに仕上圧延を行う場合の圧延開
始温度を1000〜7$Otl:にしたのは、いずれも
この範囲から4よずれるときに1よ低温靭性の劣化が甚
しいからである。
The rolling start temperature when performing rough rolling and finish rolling is -10
~750℃, and the rolling start temperature when performing finish rolling without rough rolling was set to 1000~7$Otl: in both cases, when deviating from this range by 4 degrees, the deterioration of low temperature toughness is severe by 1 degrees. be.

950℃以下の温度領域における圧下率を60%以上と
したのは、これと粗圧延終了力1ら仕上圧延開始までの
経過時間を60秒以内またζよ粗圧延を行わずに仕上圧
延を行う工程とを組合わせ各圧延中の各パス間の再結晶
を起させなlIXよう書こして未再結晶累積臣下量を増
大させ著しく転位密度を高めてNb の炭窒化物を微細
6二分散析出させた場合にのみ添付図面に示すよう番こ
、成形後畠こ加熱、制御冷却または焼入、焼もどし処理
を施した鋼管のDWT丁特性が良好であるためである。
The reason why the rolling reduction ratio in the temperature range of 950°C or lower is set to 60% or more is that the elapsed time from the rough rolling end force 1 to the start of finish rolling is within 60 seconds, and ζ is that finish rolling is performed without rough rolling. In combination with the process, recrystallization is not caused between each pass during each rolling process, the cumulative amount of unrecrystallized particles is increased, the dislocation density is significantly increased, and Nb carbonitrides are precipitated in a fine 6-bidisperse manner. This is because, as shown in the attached drawings, the DWT properties of steel pipes that have been subjected to rolling, heating after forming, controlled cooling, quenching, and tempering are good only when this is done.

添付図面はC10,09魁SM0.24%、isl、6
2%、Plo、013%、8sO,O(1%、Nb10
.036%、A/、10.031%、Vgo、071t
XIII部が実質的にF@から成り、炭素当量力(0,
37の粗虞のスラブを用い、粗圧延開始温度力τ980
〜880℃、仕上圧抵終了温度力(730〜700℃、
巻取員度が590〜550℃の条件で製造した熱延鋼帯
から外径1016m%肉厚143mの管に成形し、成形
後920℃に加熱し、加熱後冷却途中の5oo−soo
℃の間の冷却速度を15℃/se@(>7.611/Q
−2,9)として常!lt、で冷却したスパイラル鋼管
と、950℃に加熱、加熱後冷却途中のSOO〜500
℃間の冷却速度を40″17secC>80.tj/Q
−7,IJ ) トL ”t” 250℃マチ冷却し、
再び600℃に加熱し、1分間保持の焼もどし処理を施
した鋼管において、950℃以下の温度領域における圧
下率および粗圧延終了から仕上圧延開始までの経過時間
と管軸に対して直角方向のDWT丁における砥性破面率
85%を示す温度(DWT丁85jlFATT)との関
係を示している。
The attached drawing is C10,09 Kai SM0.24%, isl, 6
2%, Plo, 013%, 8sO,O (1%, Nb10
.. 036%, A/, 10.031%, Vgo, 071t
Part XIII consists essentially of F@, carbon equivalent force (0,
Using a slab with a roughness of 37, the rough rolling start temperature force τ980
~880℃, finishing pressure resistance end temperature force (730~700℃,
A hot-rolled steel strip manufactured at a winding degree of 590 to 550°C is formed into a tube with an outer diameter of 1016 mm and a wall thickness of 143 m. After forming, it is heated to 920° C. After heating, it is heated to 5oo-soo during cooling.
The cooling rate between ℃ and 15℃/se@(>7.611/Q
-2,9) always! Spiral steel pipe cooled at lt, heated to 950℃, SOO~500℃ during cooling
Cooling rate between ℃ 40″17secC>80.tj/Q
-7,IJ) tL "t" Cooled to 250℃,
For steel pipes that have been tempered again by heating to 600°C and holding for 1 minute, the rolling reduction ratio in the temperature range below 950°C, the elapsed time from the end of rough rolling to the start of finish rolling, and the direction perpendicular to the pipe axis are shown. It shows the relationship with the temperature (DWT knife 85jlFATT) at which the abrasive surface fracture rate of DWT knife is 85%.

なお図中にえける表示印は第1表に示すとおりである0
図中から明らかなように粗圧延終了から仕上開始までの
経過時間が4秒の場合、950℃以下の温度領域におけ
る合計圧下率が60%以上においてDWTT特性がすぐ
れているので、950℃以下の合計圧下率を60%以下
に限定した。
The display marks in the figure are as shown in Table 1.
As is clear from the figure, when the elapsed time from the end of rough rolling to the start of finishing is 4 seconds, the DWTT characteristics are excellent when the total rolling reduction in the temperature range of 950°C or less is 60% or more. The total rolling reduction rate was limited to 60% or less.

仕上正弧終了温度f Ar、〜650℃としたのは終了
温度がArmを越えるときには、圧延中の未結第  1
  表 晶累積圧下量が十分でなく、鋼管成形後の加熱時に微細
なオーステナイト粒が得られず、また6150℃未満の
ときには、素材の強度が上昇して成形困曙になるからで
ある。
The finishing positive arc finishing temperature f Ar is set at ~650°C because when the finishing temperature exceeds Arm,
This is because the surface crystal cumulative reduction amount is not sufficient and fine austenite grains cannot be obtained during heating after forming the steel pipe, and when the temperature is lower than 6150°C, the strength of the material increases and forming becomes difficult.

巻取温度範囲を750〜450℃としたのは巻取温度が
750℃を越えるときは、Nb の炭窒化物およびFe
、Cの凝集粗大化が起って低温靭性が劣化し、4sO℃
未満のときには、−材の強度が著しく高く成形困難にな
るからである。
The reason why the coiling temperature range is 750 to 450℃ is that when the coiling temperature exceeds 750℃, Nb carbonitride and Fe
, C agglomeration and coarsening occur, resulting in deterioration of low-temperature toughness, resulting in 4sO℃
If it is less than 1, the strength of the material becomes extremely high and it becomes difficult to mold it.

次に本発明における鋼管成形後の熱処理条件における限
定理由を説明する。
Next, the reason for limitations on the heat treatment conditions after steel pipe forming in the present invention will be explained.

鋼管成形後の加熱温度を(Ar、−30℃)〜1100
℃の範囲としたのはmAr550℃より低い場合には、
強度の低下と低温靭性の劣化を招き、 1100℃を越
す場合にはオーステナイト粒の粗大化による低am性の
劣化を生じるからである。
Heating temperature after steel pipe forming (Ar, -30℃) ~ 1100
The range of °C was set as mAr lower than 550 °C,
This is because it causes a decrease in strength and deterioration of low-temperature toughness, and when the temperature exceeds 1100°C, austenite grains become coarser, resulting in deterioration of low am property.

加熱後、常温まで冷却して製品とする場合に。After heating, the product is cooled to room temperature.

79以上としたのは、本発明の範囲の炭素当量045以
下特に礒ましくは0.43以下の鋼管をこれより遅い速
度で冷却するとX80級の強度が得られないからであり
、制御冷却を800〜500℃の範1に限定したのは、
この範囲の冷却速度を上記のように管理すれば十分満足
する材質が得られるからである。
The reason for setting the value to 79 or higher is that if a steel pipe with a carbon equivalent of 045 or less, particularly 0.43 or less, which is within the range of the present invention, is cooled at a slower rate, the strength of the X80 class cannot be obtained. The range 1 was limited to 800-500℃.
This is because if the cooling rate in this range is managed as described above, a sufficiently satisfactory material can be obtained.

加熱611500℃以下の温度に冷却後続もどし加熱を
行う第2、第4発明の場合に、最初の加熱後の冷却造中
における800〜500’C間の冷却速度を1m&8/
Q以上としたのは、本発明の**の炭素当量0.45以
下特に望ましくは0.43以下の鋼管をこれより遅い速
度で冷却すると焼もどし後X80級の強度が得られない
からである。また最初の加熱後の冷却を500℃以下の
温度としたのは、SOO℃を越える温度で冷却をやめて
、焼もどし再加熱を行うと本発明の範囲の炭素当量の鋼
管においてはX80級の強度が得られないからであり、
500℃以下の温度まで冷却すれば、以後の焼もどし再
加熱を本発明の範囲内の適当な条件で行えば、十分にX
80級の強度とすぐれた低温靭性が得られるからである
Heating 611 In the case of the second and fourth inventions in which cooling to a temperature of 500°C or less is performed, the cooling rate during cooling production after the first heating is 1 m & 8/
The reason for setting it above Q is that if a steel pipe of the present invention having a carbon equivalent of 0.45 or less, particularly preferably 0.43 or less, is cooled at a slower rate than this, the strength of the X80 class cannot be obtained after tempering. . In addition, the reason why the cooling after the first heating was set to a temperature of 500°C or less is because if cooling is stopped at a temperature exceeding SOO°C and tempered and reheated, the steel pipe with the carbon equivalent within the range of the present invention will have a strength of X80 class. This is because it is not possible to obtain
If it is cooled to a temperature of 500°C or less, and the subsequent tempering and reheating is carried out under appropriate conditions within the scope of the present invention, the X
This is because strength of grade 80 and excellent low-temperature toughness can be obtained.

また第2、第4発明において、焼もどし加熱時の温度範
囲を500℃〜Ac、としたのは、焼もどし温度が50
0℃未満のとぎには、目的とする高い吸収エネルギーが
得られず、 Ac、変態点を越えると低温靭性が著しく
劣化するからである。焼もどし時の温度と保持時間の選
定は?(1計IAgt)xlO”(T+絶対温度、it
保持時間分)で褒わされる焼もどしパラメータが115
〜19.5の範囲内で、化学組成と実作業における能率
等を考慮して行われる。
Further, in the second and fourth inventions, the temperature range during tempering heating is set to 500°C to Ac.
This is because if the temperature is less than 0°C, the desired high absorbed energy cannot be obtained, and if the temperature exceeds the Ac transformation point, the low temperature toughness deteriorates significantly. How to choose temperature and holding time during tempering? (1 total IAgt)xlO” (T+absolute temperature, it
The tempering parameter rewarded by holding time is 115.
-19.5, taking into account the chemical composition and efficiency in actual work.

上記の如く、本発明は鋼の成分組成を限定した連続鋳造
スラブを使用し、本発明特有の制御正弧を実施し、その
熱延鋼帯から造管し調質処理を行うことにより、低温靭
性にすぐれたAPI規格X80級鋼管を得ることができ
た。
As mentioned above, the present invention uses a continuously cast slab with a limited steel composition, implements the controlled positive arc unique to the present invention, and produces a pipe from the hot rolled steel strip and heats it at a low temperature. API standard X80 class steel pipe with excellent toughness could be obtained.

実施例 化学組成がすべて本発明の限定組成を満足する連続鋳造
スラブを使用し、本発明の要件を満足する保温もしくは
加熱を行った後制御正弧を行い、ついで造管、調質処理
した本発明鋼管と、本発明815%FATTおよび2■
Vノツチフルサイズ試験片による一80℃におけるシャ
ルピー吸収エネルギー等の比較試験を行いその結果を第
2表に示した。
Examples A continuously cast slab whose chemical composition satisfies all the limiting compositions of the present invention is used, heat is kept or heated to meet the requirements of the present invention, and then controlled forward arcing is performed, followed by pipe making and tempering treatment. Invention steel pipe, invention 815% FATT and 2■
Comparative tests such as Charpy absorbed energy at -80°C were conducted using V-notch full-size test pieces, and the results are shown in Table 2.

すなわち第2表に示す化学組成と炭素当量を有する供試
材A−L鋼から連続鋳造法によって、第2表に示す厚さ
のスラブを製造し、これらのスラブを表面、裏面および
端部を保温するため3分間加熱後、粗圧延開始温度98
0〜880’C,仕上圧延開始温度930〜830 ′
c、第2表に示す粗圧延終了温度から仕上圧延開始まで
の経過時間(ただし供試材りは粗圧延を実施せず)、第
2表に示す950℃以下の温度領域における合計圧下率
That is, slabs with the thickness shown in Table 2 were manufactured using the continuous casting method from the test material A-L steel having the chemical composition and carbon equivalent shown in Table 2, and the front, back, and end portions of these slabs were After heating for 3 minutes to keep warm, rough rolling start temperature 98
0~880'C, finish rolling start temperature 930~830'
c, the elapsed time from the rough rolling end temperature to the start of finish rolling shown in Table 2 (however, rough rolling was not performed on the sample material), and the total rolling reduction in the temperature range of 950°C or less shown in Table 2.

仕上圧延終了温度730〜700 ℃、および巻取温度
s90〜550℃の条件で圧延して銅帯とし、この銅帯
から外111011■、肉厚14.3■のスパイラル銅
管を成形した。これらのスパイラル鋼管は誘導加熱によ
り920’Cまで加熱され、このうち一部は加熱後、1
12表に示す冷却条件で常温まで冷却され、残やは第2
表に示す条件で250℃まで冷却後、第2表の如(焼も
どし処理を施された。
A copper strip was obtained by rolling at a finish rolling temperature of 730 to 700° C. and a winding temperature of s of 90 to 550° C. A spiral copper tube having an outer diameter of 111011 cm and a wall thickness of 14.3 cm was formed from this copper strip. These spiral steel pipes are heated to 920'C by induction heating, and some of them are heated to 1
It is cooled to room temperature under the cooling conditions shown in Table 12, and the residue is
After cooling to 250° C. under the conditions shown in the table, the samples were tempered as shown in Table 2.

一方、本Jiv4法による鋼管と比較するため、本発!
llI論の鋼管と同一の化学組成、炭素当量釦よび肉厚
と外径を持つ鋼管M−Xを本発明のいずれかの要件を満
足しない製造条件によって連鋳スラブから製造した。な
お比較鋼管において本発明の要件を満足しない処理条件
についてはアンダーラインを第2表に付した。
On the other hand, in order to compare with the steel pipe made by this JIV4 method, we decided to use the original!
A steel pipe M-X having the same chemical composition, carbon equivalent button, wall thickness and outer diameter as the steel pipe of II theory was manufactured from a continuous cast slab under manufacturing conditions that do not satisfy any of the requirements of the present invention. Note that processing conditions that do not satisfy the requirements of the present invention in the comparative steel pipes are underlined in Table 2.

第2表に示すすべての鋼管のAr、は800〜750℃
、編は880〜830℃、Ac、は670〜720℃で
ある。
Ar of all steel pipes shown in Table 2 is 800-750℃
, 880 to 830°C, and Ac, 670 to 720°C.

第2表から明らかなように本発明による鋼管は、比較鋼
管に比してDWTT特性および一80℃におけるシャル
ピー吸収エネルギーがすぐれてお艶。
As is clear from Table 2, the steel pipe according to the present invention has superior DWTT characteristics and Charpy absorbed energy at -80°C, and is glossy compared to the comparative steel pipe.

X80級の強度とすぐれた低温靭性を有していることが
わかる。
It can be seen that it has X80 class strength and excellent low temperature toughness.

上記実施例より明らかな如く、本発明においては特定組
成の鋼の連続鋳造スラブを使用し、ホットストリップミ
ルによる制御圧延を行い、更に造管後の鋼管を調質熱処
理することによって低温靭性のすぐれたAPI規格X8
0級鋼管を製造することができた。
As is clear from the above examples, the present invention uses a continuously cast slab of steel with a specific composition, performs controlled rolling with a hot strip mill, and further heat-treats the steel pipe after pipe making to achieve excellent low-temperature toughness. API standard X8
We were able to manufacture grade 0 steel pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は成形後熱処理を施したスパイラル鋼管におい
て、銅帯素材圧延中の950℃以下の温度領域における
合計圧下率および粗圧延終了から仕上圧延開始までの経
過時間と管軸に対して直角方向のDWTT85%FAT
Tとの関係を示す相関図である。 代理人中路武雄
The attached drawing shows the total rolling reduction in the temperature range below 950°C during rolling of the copper strip material, the elapsed time from the end of rough rolling to the start of finish rolling, and the direction perpendicular to the tube axis for a spiral steel pipe that has been heat-treated after forming. DWTT85%FAT
It is a correlation diagram showing the relationship with T. Agent Takeo Nakaji

Claims (4)

【特許請求の範囲】[Claims] (1)  重量比にてC10,15%以下、Si t 
0.70%以下、Mn50.50〜2.50%、?!0
.025%以下、s+o、oos%以下、Nb ! 0
.010〜0.150%、AAto、070X以下を含
有し更に必要によeV t o、o t o 〜o、i
 so%、TiI4.005〜0.150%、Zr  
+ 0.005〜0.150%、MotO,05〜0.
50%、Cu t 0.10〜1.00%、Nl+0.
10〜4.00%、Cr : 0.10〜1.00%、
希土類元素:0.020%以下、Cm + 0.010
%以下のうちから選ばれた1種または2種以上を含み、
かつ にて示される炭素当量Ceqが0.45以下であゆ、残
部が実質的にFe  より成る鋼のAPI蜆格XIO級
鋼管の製造方法においで、300■から最終成品厚ざの
3倍までの厚さを有する連続鋳造スラブを製造する段階
と、前記スラブをそのままもしくは20分以内保温また
は加熱した後、該スラブの表Wa度が1000〜800
℃になった時点で粗圧延を開始する段階と、前記粗圧延
終了後60秒以内に9!sO〜750℃の温度範囲で仕
上圧延を開始し該圧延時の圧下率を60911以上とし
Ar、変態点〜6sO℃の温度範囲で仕上圧延を終了す
る段階と、前記熱延鋼帯を750〜450℃の温度範囲
で巻取る段階と、前記熱延銅帯を鋼管に成形する段階と
、前記鋼管をAc、変態点−50℃から1100℃まで
の温度範囲に加熱する段階と、前記加熱した鋼管を80
0〜500℃の間の平均冷却速度OR(C/ sec 
)  が下記の式を満足する如(常温まで冷却する段階
と、を有して成ることを特徴とする低am性にすぐれた
API規格X80Q(鋳入性指標) = v’6 (1
+0.6451 )(1+4.10Mn )(1+2.
23Cr)(1+0.52Ni  )(1+3.14M
o)(1+0.27Cu)ただしC,Si、Mn、Cr
、 Ni%Mo、 Cuは鋼の重量%。
(1) C10.15% or less by weight, Si t
0.70% or less, Mn 50.50-2.50%, ? ! 0
.. 025% or less, s+o, oos% or less, Nb! 0
.. 010 to 0.150%, AAto, 070X or less, and further as necessary eV to, o to to o, i
so%, TiI4.005-0.150%, Zr
+0.005-0.150%, MotO, 05-0.
50%, Cut 0.10-1.00%, Nl+0.
10-4.00%, Cr: 0.10-1.00%,
Rare earth elements: 0.020% or less, Cm + 0.010
Contains one or more types selected from below %,
In the method for manufacturing API grade XIO class steel pipes of steel with a carbon equivalent Ceq of 0.45 or less and the remainder substantially consisting of Fe, manufacturing a continuous cast slab having a thickness, and after the slab is kept warm or heated as it is or within 20 minutes, the surface Wa degree of the slab is 1000 to 800.
℃, and within 60 seconds after the completion of the rough rolling, 9! A step of starting finish rolling in a temperature range of sO to 750°C, setting a rolling reduction rate of 60911 or more during the rolling, and finishing finish rolling in a temperature range of transformation point to 6sO°C; a step of winding the hot-rolled copper strip in a temperature range of 450°C; a step of forming the hot-rolled copper strip into a steel pipe; a step of heating the steel pipe to a temperature range of Ac, a transformation point of -50°C to 1100°C; 80 steel pipes
Average cooling rate OR (C/sec
) satisfies the following formula (API standard X80Q (castability index) = v'6 (1
+0.6451)(1+4.10Mn)(1+2.
23Cr)(1+0.52Ni)(1+3.14M
o) (1+0.27Cu) However, C, Si, Mn, Cr
, Ni%Mo, Cu are weight% of steel.
(2)重量比にてC:0.15%以下、St : 0.
70%以下、Mn : 0.50〜2.50%、P:0
.025%以下、S:0.005%以下、Nb:o、o
io〜0.150%、l’J−:0.070%以下を含
有し更に必要によりV : 0.010−0.150%
、Ti : 0.005〜0.150%、Zr : 0
.005〜0.150%、Mo : 0.05〜0.5
0%、Cu : 0.10〜1.00%、Ni:0.1
0〜4.00%、Cr : 0.10〜1. O0%、
希土類元素40.020%以下、Ca:0.010%以
下のうちから選ばれた1種または2種以上を含み、かつ
6       5        15にて示される
炭素当量Ceqが0.45以下であり。 残部が実質的にFe  より成る鋼のAPI規格X80
級鋼管の製造方法において、300■から最終成品厚さ
の3倍までの厚さを有する連続鋳造スラブを製造する段
階と、前記スラブをそのままもしくは20分以内保温ま
たは加熱した後、該スラブの表面温度が1000〜80
0℃になった時点で粗圧延を開始する段階と、前記粗圧
延終了後60秒以内に950〜750℃の温度範囲で仕
上圧延を開始し該圧延時の圧下率を60%以上としAr
、変態点〜650℃の温度範囲で仕上圧延を終了する段
階と、前記熱延鋼帯を750〜450℃の温度範囲で巻
取る段階と、前記熱延鋼帯を鋼管に成形する段階と、前
記鋼管をAc3変態点−50℃から1100℃までの温
度範囲に加熱する段階と、前記加熱した鋼管を800〜
500℃の間の平均冷却速度(1;R(℃/ sec 
)が下記の式を満足する如く500℃以下まで冷却する
段階と、前記冷却した鋼管を再び500℃〜Ac、変襲
点の温度範囲に加熱後冷却する段階と、を有して成るこ
とを特徴とする低温靭性にすぐれたAPI規格X80級
鋼管の製造方法。 CR≧30.8/Q Q(焼入性指標)=lで−(1+0.64Si )(1
+4.10鳩)(1+2.23Cr)(1+0.52N
i)(1+3.14Mo)(1+0.27Cu)ただl
、C%Si、Mn、 Cr 、 Ni %Mo、 Cu
は鋼の重量%0
(2) C: 0.15% or less in weight ratio, St: 0.
70% or less, Mn: 0.50-2.50%, P: 0
.. 025% or less, S: 0.005% or less, Nb: o, o
io ~ 0.150%, l'J-: 0.070% or less, and if necessary, V: 0.010-0.150%
, Ti: 0.005-0.150%, Zr: 0
.. 005-0.150%, Mo: 0.05-0.5
0%, Cu: 0.10-1.00%, Ni: 0.1
0-4.00%, Cr: 0.10-1. 0%,
Contains one or more selected from rare earth elements 40.020% or less and Ca: 0.010% or less, and has a carbon equivalent Ceq represented by 6 5 15 of 0.45 or less. API standard X80 for steels with the remainder essentially consisting of Fe
In the manufacturing method of grade steel pipe, the step of manufacturing a continuous casting slab having a thickness of 300 mm to 3 times the final product thickness, and the step of manufacturing the slab as it is or after keeping it warm or heating it for within 20 minutes, Temperature is 1000-80
A step of starting rough rolling when the temperature reaches 0°C, and a step of starting finish rolling within 60 seconds after the completion of the rough rolling in a temperature range of 950 to 750°C, and setting a rolling reduction rate of 60% or more at Ar
, a step of finishing finish rolling in a temperature range of transformation point to 650° C., a step of winding the hot rolled steel strip in a temperature range of 750 to 450° C., and a step of forming the hot rolled steel strip into a steel pipe. heating the steel pipe to a temperature range from Ac3 transformation point -50°C to 1100°C; heating the heated steel pipe to a temperature range of 800°C to 1100°C;
Average cooling rate during 500 °C (1; R ( °C/sec
) to satisfy the following formula to below 500°C, and a step of heating the cooled steel pipe again to the temperature range of 500°C to Ac, the attack point, and then cooling it. A manufacturing method for API standard X80 class steel pipe with excellent low-temperature toughness. CR≧30.8/Q Q (hardenability index)=l -(1+0.64Si)(1
+4.10 pigeon) (1+2.23Cr) (1+0.52N
i) (1+3.14Mo)(1+0.27Cu) only
, C%Si, Mn, Cr, Ni%Mo, Cu
is the weight of steel %0
(3)重量比にてC:o、is%以下、Si : 0.
70%以下、Mn : 0.50〜2.50%、P:0
.025%以下、S:o、oos%以下、Nb : 0
.010〜0.150%、A−t:o、o’yo%以下
を含有し更に必要によりV:o、o1o〜0.150%
、Ti : 0.005〜0.150%、Zr : 0
.005〜0.150%、Mo : 0.05〜0.5
0%、Cu : 0.10〜1.00%、Ni : 0
.10〜4.00%、Cr:010〜1.00%、希土
類元素:0.020%以下、Ca:0.010%以下の
うちから選ばれた1種または2種以上を含み、かつ 6       5        15にて示される
炭素当量Ceqが0.45以下であり、残部が実質的に
Fe  より成る鋼のAPI規格xso”級鋼管の製造
方法において、300■から最終成品厚、さの3倍まで
あ厚さを有する連続鋳造スラブを製造する段階と、前記
スラブをそのままもしくは20分以内保温または加熱し
た後、該スラブの表面温度が1000〜750℃になっ
た時点で仕上圧延を開始し950℃以下における圧下率
260%以上とする仕上圧延を行った後Ar、変態点〜
650℃の温度範囲で仕上圧延を終了する段階と、前記
熱延鋼帯を750〜450℃の温度範囲で巻取る段階と
、前記熱延鋼帯を鋼管に成形する段階と、前記鋼管をA
c、変態点−50℃から1100℃までの温度範囲に加
熱する段階と、前記加熱した鋼管を800〜500℃の
間の平均冷却速度OR(℃/5ee)が下記の式を満足
する如く常温まで冷却する段階と、を有して成ることを
特徴とする低温靭性に−すぐれたAPI規格X80級鋼
管の製Q(焼入性指標) −VC(1+0.64 Si
 )’(1−1−4,10Mn )(1+2.23Cr
)(1+0.52Ni )(1+3.14Mo)(1+
0.27Cu)ただしC%Si、Mn、Cr%Ni 、
 Mo1Cuは鋼の重量%。
(3) C: o, is% or less in weight ratio, Si: 0.
70% or less, Mn: 0.50-2.50%, P: 0
.. 025% or less, S: o, oos% or less, Nb: 0
.. 010 to 0.150%, A-t: o, o'yo% or less, and if necessary V: o, o1o to 0.150%.
, Ti: 0.005-0.150%, Zr: 0
.. 005-0.150%, Mo: 0.05-0.5
0%, Cu: 0.10-1.00%, Ni: 0
.. Contains one or more selected from 10 to 4.00%, Cr: 010 to 1.00%, rare earth elements: 0.020% or less, Ca: 0.010% or less, and 6 5 In the manufacturing method of API standard xso'' class steel pipe of steel in which the carbon equivalent Ceq shown in No. 15 is 0.45 or less and the remainder is substantially Fe, the thickness of the final product is from 300 mm to 3 times the length. A step of manufacturing a continuous cast slab having a thickness, and after keeping the slab as it is or keeping it warm for 20 minutes or heating it, finish rolling is started when the surface temperature of the slab reaches 1000 to 750°C and 950°C or less. After finish rolling with a rolling reduction of 260% or more, Ar, transformation point ~
a step of finishing finish rolling in a temperature range of 650°C; a step of winding the hot rolled steel strip in a temperature range of 750 to 450°C; a step of forming the hot rolled steel strip into a steel pipe;
c. Heating the heated steel pipe to a temperature range from -50°C to 1100°C, and heating the heated steel pipe to room temperature such that the average cooling rate OR (°C/5ee) between 800 and 500°C satisfies the following formula: Q (hardenability index) - VC (1 + 0.64 Si
)'(1-1-4,10Mn)(1+2.23Cr
)(1+0.52Ni)(1+3.14Mo)(1+
0.27Cu) However, C%Si, Mn, Cr%Ni,
Mo1Cu is the weight percent of steel.
(4)  重量比にてC10,15%以下、812 Q
、7Q%以下、Mn f 0.50−L50 %、Pl
o、025%以下、Sgo、005%以下、Nb f 
0.010−0.150%% ktto、07(JI6
以下を含有し更に必要によりV l 0.010〜0.
150X、 71 I O,005〜0.IJ$0%、
Zr t O,005〜0.150X%Ne t 0.
05〜0.50%i’、Cu t 0.10〜1.0 
ON%Ni t O,10〜400.!%、Or r 
0.10〜1.00X、  希土類元素t−o、ozo
pg以下、Caro、010%以下ノウちから選ばれた
1種または2種以上を含み、かっにて示される炭素当量
Ceqが0.45以下であり、残部が実質的にF@ よ
り成る鋼のAPI規格XS O級鋼管の製造方法におい
て、SOO鱈がら最終成品厚ざの3倍までの厚ざを有す
る連続鋳造スラブを製造する段階と、前記スラブをその
ままもしくは20分以内保温または加熱した俵、該スラ
ブの表ms度が1000〜7JSO1l:になった時点
で仕上圧延を開始し950℃以下における圧下率を60
X以上とする仕上圧延を行った後Ar、変態点 〜aS
O℃の温度範囲で仕上圧延を終了する段階と、前記熱延
銅帯を750〜450℃の温度範囲で巻取る段階と、前
記熱延鋼帯を鋼管に成形する段階と、前記鋼管をAcs
変態点−50Cから1100℃t”cのa度*rmに加
熱する段階と、前記加熱した鋼管をSOO〜500℃の
間の平均冷却速度CR(t: / sec )が下記の
式を満足する如<500℃以下まで冷却する段階と、前
記冷却した鋼管を再び500C−Act変態点の温度I
!囲に加熱wit後冷却する段階と、を有して成ること
を特徴とする低温靭性にすぐれたAPI規格X80級鋼
管の製造方法。 CR≧30.8/Q Q(鋳入性指標) = ≠Σ(1+0.6481 ) 
(1+4.10Mw□(1+2.23Cr )(1+0
.52N1)(1+3.14M0)C1+0.27Cu
)t=りlic%ss、地、Cr 、 Nj %Mo 
、 Cu 1it14の重量%。
(4) C10.15% or less by weight, 812 Q
, 7Q% or less, Mn f 0.50-L50%, Pl
o, 025% or less, Sgo, 005% or less, Nb f
0.010-0.150%% ktto, 07 (JI6
Contains the following, and if necessary, V l 0.010 to 0.
150X, 71 I O, 005~0. IJ$0%,
Zr t O, 005-0.150X% Net 0.
05-0.50% i', Cut 0.10-1.0
ON%NitO, 10-400. ! %, Or r
0.10~1.00X, rare earth elements to, ozo
API of steel that contains one or more types selected from pg or less, Caro, 0.10% or less, has a carbon equivalent Ceq of 0.45 or less, and the remainder substantially consists of F@. In the method for manufacturing standard When the surface ms degree of the slab reaches 1000~7JSO1l:, finish rolling is started and the reduction rate at 950℃ or less is 60℃.
After finish rolling to X or higher, Ar, transformation point ~aS
A step of finishing finish rolling in a temperature range of 0°C, a step of winding the hot rolled copper strip in a temperature range of 750 to 450°C, a step of forming the hot rolled steel strip into a steel pipe, and a step of forming the steel pipe into an Acs
The step of heating from the transformation point -50C to 1100 °C t"c a degree*rm, and the average cooling rate CR (t: / sec) of the heated steel pipe between SOO and 500 °C satisfies the following formula: The step of cooling the steel pipe to below 500°C, and the step of cooling the cooled steel pipe again to the temperature I of 500C-Act transformation point.
! A method for producing an API standard X80 class steel pipe with excellent low temperature toughness, comprising the steps of heating and then cooling. CR≧30.8/Q Q (castability index) = ≠Σ(1+0.6481)
(1+4.10Mw□(1+2.23Cr)(1+0
.. 52N1) (1+3.14M0)C1+0.27Cu
)t=lic%ss, earth, Cr, Nj%Mo
, wt% of Cu1it14.
JP13185881A 1981-08-22 1981-08-22 Production of api standard class x80 steel pipe having excellent low temperature toughness Pending JPS5834133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13185881A JPS5834133A (en) 1981-08-22 1981-08-22 Production of api standard class x80 steel pipe having excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13185881A JPS5834133A (en) 1981-08-22 1981-08-22 Production of api standard class x80 steel pipe having excellent low temperature toughness

Publications (1)

Publication Number Publication Date
JPS5834133A true JPS5834133A (en) 1983-02-28

Family

ID=15067760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13185881A Pending JPS5834133A (en) 1981-08-22 1981-08-22 Production of api standard class x80 steel pipe having excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JPS5834133A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210212A (en) * 1985-07-08 1987-01-19 Nippon Kokan Kk <Nkk> Production of bend pipe
JPS62170458A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Steel for high toughness seam welded steel pipe having superior sour resistance
JPS62227067A (en) * 1986-03-28 1987-10-06 Nippon Steel Corp High toughness resistance welded tube having superior sour resistance
JPS63137144A (en) * 1986-11-28 1988-06-09 Nippon Steel Corp High-toughness seam welded tube having excellent sour resistance
US20120247606A1 (en) * 2011-04-01 2012-10-04 De Amar K Low-Molybdenum, High-Strength Low-Alloy 80 ksi Steel Plates Formed by Temperature-Controlled Rolling Without Accelerated Cooling
US20120247605A1 (en) * 2011-04-01 2012-10-04 De Amar K Molybdenum-Free, High-Strength, Low-Alloy X80 Steel Plates Formed by Temperature-Controlled Rolling Without Accelerated Cooling
CN104046923A (en) * 2014-06-25 2014-09-17 攀钢集团西昌钢钒有限公司 X80 pipeline steel smelted under semisteel conditions and production technique thereof
CN104250713A (en) * 2014-09-19 2014-12-31 江阴兴澄特种钢铁有限公司 X80-grade large-deformation-resistant pipeline steel plate and manufacturing method thereof
JP2016084539A (en) * 2011-03-30 2016-05-19 新日鐵住金株式会社 Electroseamed steel pipe for line pipe and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210212A (en) * 1985-07-08 1987-01-19 Nippon Kokan Kk <Nkk> Production of bend pipe
JPH0138851B2 (en) * 1985-07-08 1989-08-16 Nippon Kokan Kk
JPS62170458A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Steel for high toughness seam welded steel pipe having superior sour resistance
JPS62227067A (en) * 1986-03-28 1987-10-06 Nippon Steel Corp High toughness resistance welded tube having superior sour resistance
JPH0553857B2 (en) * 1986-03-28 1993-08-11 Nippon Steel Corp
JPS63137144A (en) * 1986-11-28 1988-06-09 Nippon Steel Corp High-toughness seam welded tube having excellent sour resistance
JP2016084539A (en) * 2011-03-30 2016-05-19 新日鐵住金株式会社 Electroseamed steel pipe for line pipe and manufacturing method therefor
US20120247606A1 (en) * 2011-04-01 2012-10-04 De Amar K Low-Molybdenum, High-Strength Low-Alloy 80 ksi Steel Plates Formed by Temperature-Controlled Rolling Without Accelerated Cooling
US20120247605A1 (en) * 2011-04-01 2012-10-04 De Amar K Molybdenum-Free, High-Strength, Low-Alloy X80 Steel Plates Formed by Temperature-Controlled Rolling Without Accelerated Cooling
CN104046923A (en) * 2014-06-25 2014-09-17 攀钢集团西昌钢钒有限公司 X80 pipeline steel smelted under semisteel conditions and production technique thereof
CN104250713A (en) * 2014-09-19 2014-12-31 江阴兴澄特种钢铁有限公司 X80-grade large-deformation-resistant pipeline steel plate and manufacturing method thereof
CN104250713B (en) * 2014-09-19 2017-01-11 江阴兴澄特种钢铁有限公司 X80-grade large-deformation-resistant pipeline steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3848465B2 (en) Method for producing thick high-tensile steel with excellent low-temperature toughness
JP5069863B2 (en) 490 MPa class low yield ratio cold-formed steel pipe excellent in weldability and manufacturing method thereof
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
JP6624103B2 (en) High strength hot rolled steel sheet and method for producing the same
JP6817434B2 (en) Steel materials for pressure vessels with excellent hydrogen-induced cracking resistance and their manufacturing methods
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JPS6155572B2 (en)
JPS5834133A (en) Production of api standard class x80 steel pipe having excellent low temperature toughness
JP2015190008A (en) Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPS5834132A (en) Production of api standard class x80 steel pipe having excellent low-temperature toughness
JPH06172858A (en) Production of seamless steel tube excellent in scc resistance and having high strength and high toughness
JPS6144122B2 (en)
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JPS6144123B2 (en)
JPH07286213A (en) Production of thick hot coil good in dwtt property
JPS6143413B2 (en)
JP7207358B2 (en) Manufacturing method of low yield ratio high tensile steel plate
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JPH04358026A (en) Production of seamless low alloy steel tube having fine-grained structure
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JP5413496B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
KR20180068087A (en) Ferritic stainless steel with improved impact toughness and method of manufacturing the same
JPS6143412B2 (en)