JPS5833309A - Slip wave resonator - Google Patents

Slip wave resonator

Info

Publication number
JPS5833309A
JPS5833309A JP13173981A JP13173981A JPS5833309A JP S5833309 A JPS5833309 A JP S5833309A JP 13173981 A JP13173981 A JP 13173981A JP 13173981 A JP13173981 A JP 13173981A JP S5833309 A JPS5833309 A JP S5833309A
Authority
JP
Japan
Prior art keywords
electrode
wave
resonator
interdigital
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13173981A
Other languages
Japanese (ja)
Other versions
JPH0134411B2 (en
Inventor
Yuzo Nakazawa
中沢 祐三
Kazuo Ono
和男 小野
Takao Morita
孝夫 森田
Masaki Tanaka
田中 昌喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP13173981A priority Critical patent/JPS5833309A/en
Publication of JPS5833309A publication Critical patent/JPS5833309A/en
Publication of JPH0134411B2 publication Critical patent/JPH0134411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02551Characteristics of substrate, e.g. cutting angles of quartz substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain an inexpensive resonator which has the excellent temperature characteristics and is insensitive to the contaimination on the surface, by setting the thickness of film at a prescribed value for a multipair interdigital transducer electrode provided on a quartz substrate that transmits the slip wave. CONSTITUTION:The rotary Y-cut angle is set counterclockwise in a range of -43 deg.--52 deg. in terms of the axis X for a quartz substrate which transmits the slip wave. The bus bar electrodes 2 and 3 are formed with Al on the substrate 1 in the direction of the axis Z'. These electrodes are so extended as to cross interdigital electrode fingers 4 and 5 alternately. The ratio h/lambda betwen the film thickness (h) of the extended electrode and the propagating slip wavelength lambda is regulated to >=2%, and the number of pairs of electrodes 4 and 5 is regulated to 800+ or -200. At the same time, the w/lambda ratio is regulated to 8-15 between the cross length (w) of the electrode finger and the wavelength lambda. As a result, the right-under-electrode enclosing effect is improved for the oscillating energy of the slip wave along with excellent temperature characteristics. Thus an inexpensive resonator, which is insensitive to the surface contamination and the aging and oscillates the high frequency up to about 1GHz with the basic wave and with virtually no spuriousness and high Q.

Description

【発明の詳細な説明】 本発明は一般にS S BW (5urface 8に
1mm1nlmm1n参Waマe)等と呼ばれている圧
電基#Lの表面直下を伝搬する波動(斯る種類の波動O
I!称を本発明の明細書に於いてはすべ夛波と称する)
tインタディジタル・トランスジ為−サtmによって励
起せしめ、そO振動エネルギを前記電極直下に閉じ込め
るタイプの共振器Ellする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a wave propagating just below the surface of a piezoelectric base #L (such type of wave O
I! In the specification of the present invention, the name is referred to as Betanha)
A type of resonator is used which is excited by an interdigital transformer and confines the vibrational energy immediately below the electrode.

従来、安定した高周波を得るには殆んどの場合水晶薄板
の厚みすべ9振動を利用していたが、その最高周波数は
水晶基板の厚さに依存する為基本波で40MHz程度が
限界でありて更に高い周波数を得るKは通常基本波周波
のオーバートーン振動管利用していた。しかしながらオ
ーバートーン次数社9次S度までが使用しうる限界であ
り、該次数が高くなると所冒容量比rが該次数O自乗に
比例して悪化し且つインピーダンスも上昇するので回路
とOマツチングが困難となる等の問題を生ずるものであ
−)え。
Conventionally, to obtain a stable high frequency, in most cases nine vibrations across the thickness of a crystal thin plate were used, but the maximum frequency depended on the thickness of the crystal substrate, so the fundamental wave was limited to about 40MHz. K to obtain even higher frequencies usually utilized an overtone vibrating tube of the fundamental frequency. However, the usable limit is up to the 9th overtone order, and as the order increases, the target capacitance ratio r deteriorates in proportion to the O square of the order, and the impedance also increases, making it difficult to match the circuit and O. That would cause problems such as difficulty.)

上述の如き間lI[を解決する一手段として最近、イン
タディジタル・トランスジ、−を電極によって弾性!l
I!面波を発生させ、これ1m用する周波にて励振しう
るものである。
Recently, as a means of solving the above-mentioned interdigital transition, an interdigital transistor has been developed that uses elasticity by electrodes. l
I! It generates a plane wave and can be excited at a frequency used for 1 m.

しかしながら弾性表面波共r71器は励振された波動が
圧電基板表面を伝搬する為、基I[表面の汚染或はエー
ジングによる素面状mlO変化の影響を強くうけると―
う欠陥があるのみならず周波数−温JI!特性に′)い
ても需畳者【充分満足させるものではなく、更に優れえ
特性が費求されている。
However, in surface acoustic wave resonators, the excited waves propagate on the surface of the piezoelectric substrate, so the radical I
Not only is there a defect, but also a frequency-warm JI! Even if the characteristics of the product are not enough to satisfy the customers, even better characteristics are required.

つ欠陥或は問題点tm去する為になされたものであって
、弾性表面波共振器と同等の高い周波数を基本波にて励
振でき、iつその波動が圧電適した表両汚染に強くエー
ジング特性、温度特性に優れ、且つスプリアスの極めて
少ない共振験結果とに基づいて詳11に説明する。
This was developed to eliminate the defects and problems in the piezoelectric resonator, which can excite the fundamental wave at a high frequency equivalent to that of a surface acoustic wave resonator. This will be explained in detail based on the resonance test results, which have excellent characteristics and temperature characteristics, and have extremely few spurious components.

圧電基板表面直下を伝搬するすべや波の存在及び多対の
インタディジタル・トランスジ島−サ電極によってこの
波を励起しうることは従前より知られていたが、これt
共振器に応用すゐ試みについては殆んど研究がなされて
いなかクディジタに@トランスジ暴−サ電極を設は良す
ペシ波共m器は発振条件′を満足することが困難であり
た上、発振してもそのQが極めて低くとうてい実用に耐
えるものではなかったからである。
It has been known for some time that there are smooth waves that propagate just below the surface of the piezoelectric substrate, and that these waves can be excited by multiple pairs of interdigital transducer electrodes.
Very little research has been done on attempts to apply it to resonators, and it has been difficult to satisfy the oscillation condition for PET wave resonators, although it is difficult to install a transducer electrode in the receiver. This is because even if it oscillated, its Q was extremely low and could hardly be put to practical use.

一方、本発明の発明者等は既に出願した弾性表面波共振
器に関する一連の特許出願、特願昭56−56710 
 等に於いて水晶基板表面に極めて膜厚の大なる(表面
波身長の1.5−以上)インタディジタル・トランスジ
、−サ電極會設けることによって少数の電極指対数によ
って充分大力るQを有しかつ副共振の少ない小im!o
共振加効果による表面波振動エネルギOw4じ込め効果
の強調及び電極指断面積の増大による等価抵抗の減少に
よるtのであろうと推論し大。
On the other hand, the inventors of the present invention have already filed a series of patent applications related to surface acoustic wave resonators, and Japanese Patent Application No. 56-56710.
In such cases, a sufficiently large Q can be achieved with a small number of pairs of electrode fingers by providing an interdigital transistor electrode assembly with an extremely large film thickness (more than 1.5 times the surface wave length) on the surface of a crystal substrate. And small im with little sub-resonance! o
It is inferred that this is due to the enhancement of the surface wave vibration energy confinement effect due to the resonance addition effect and the decrease in the equivalent resistance due to the increase in the cross-sectional area of the electrode fingers.

この推論をすべ9波KfIk用して、すべ多波を励起す
るインクディジタル・トランスジ纂−サ釆は考え&いが
、質量付加効果及び等価抵抗減少の効果を期待し得るで
あろう。
Based on this reasoning, an ink digital transformer assembly that uses all nine waves KfIk to excite all multi-waves can be considered, but the effect of adding mass and reducing the equivalent resistance can be expected.

本発明は以上の如き推定に基づいてなされたものであ〕
、電極膜厚會一定以上厚くした場合に実用性のある充分
に高いQt得ることが確認された。
The present invention was made based on the above estimation.]
It was confirmed that a sufficiently high Qt for practical use can be obtained when the electrode film thickness is increased beyond a certain level.

以下本発−の基礎とな−)友夷験結果について詳細に説
明する。
Below, we will explain in detail the results of the Yui experiment, which form the basis of this project.

第1Iaは本実験に使用したすべ)波共振器の構成を示
す図であ、る。
1Ia is a diagram showing the configuration of the smooth wave resonator used in this experiment.

先ず圧電基板lとして線温![特性を考慮して水晶の回
転Yカット、切断角lx軸に関して反時計廻pに一43
°Sv2°の範囲のものt使用し喪。この切断角を有す
る水晶基波を用いるならばすべ)波伝搬速度は同じ回転
Yカット水晶基板の弾性表ma伝搬連直に比してわずか
数−高速であるにすぎないが温度−周波数特性は三ri 次曲線となり極めて温[特性の良好なものキ参る。
First, line temperature as a piezoelectric substrate! [Taking into consideration the characteristics, the rotation of the crystal is Y-cut, and the cutting angle is 143 p counterclockwise with respect to the lx axis.
I don't use anything in the range of °Sv2°. If a crystal fundamental wave having this cutting angle is used, the wave propagation speed is only a few times faster than that of the same rotating Y-cut crystal substrate with a straight propagation table, but the temperature-frequency characteristics are It becomes a cubic curve and is extremely hot (if it has good characteristics).

因みに前記切断角管35@〜42°の範囲に遇ぺば温f
%性扛劣化するがすペク披伝搬速J[に前記弾性表面波
伝搬速度の約1.6倚となる。
Incidentally, when the cut angle tube is in the range of 35@~42°, the temperature f
However, the propagation velocity J becomes approximately 1.6 of the surface acoustic wave propagation velocity.

さて上記の如き水晶基板1上KAjt−用いてZ軸方向
にバスパー電極2,3を設け、両者から交互に多数のイ
ンクディジタル電極指4,4・・・・・・及び5 、5
 、 明−を交叉する如く弧長する。
Now, buspar electrodes 2 and 3 are provided in the Z-axis direction on the crystal substrate 1 as described above, and a large number of ink digital electrode fingers 4, 4, .
, The arc is long so that it intersects the light.

これは周知の如く蒸着したAj K対しiスフを介して
フォト・エツチングにょ多形成するものである。又前記
インタディジタル・トランスジ為−サ電極指4又扛5の
各々とこれに隣接する無電極部との合計幅はすべり披々
長λの半分となるようにし、両者の幅比は製造の容易さ
から1:IK構成するのが一般的である。
As is well known, this process is performed by photo-etching the evaporated AjK through the i-splash. Further, the total width of each of the interdigital transformer electrode fingers 4 or 5 and the adjacent non-electrode portion is set to be half of the sliding length λ, and the width ratio of the two is set to be easy to manufacture. From side 1: It is common to have an IK configuration.

更に前記インタディジタル電極指4,4.・・・・・・
及び5,5・・・・・・のオーバーラツプ幅を交叉長W
と称し、この値を変化するととによって共振器の緒特性
を制御することができる。
Furthermore, the interdigital electrode fingers 4, 4.・・・・・・
and the overlap width of 5, 5... is the intersection length W
By changing this value, the characteristics of the resonator can be controlled.

以上の如き形状のインタディジタル・トランスジューサ
電極は少なくとも弾性表面波共振器を構成する上では表
面波反射用すだれ状金属或は溝又は孔を備えた共振器に
比して構成単純で、すベシ波共振器に於いて4同様の効
果があると考えられる。
The interdigital transducer electrode having the shape described above has a simpler structure than a resonator equipped with interdigital metal interdigitators or grooves or holes for reflecting surface waves, at least in constructing a surface acoustic wave resonator, It is thought that the same effect as in 4 is produced in the resonator.

以上の如きインタディジタル・トランスジューサ電極を
設けた共振器を用いて行りた実験結果について説明する
に、先ず電極対数N f 800対、前記交叉長Wをす
べ夕波々長λで規準化しtlJ (alの等価回路を仮
定してアドミタンス・チャートを用いて検討した結果第
2図(b)〜(clを得た。
To explain the results of experiments conducted using a resonator provided with interdigital transducer electrodes as described above, first, the number of electrode pairs N f is 800, and the crossover length W is all normalized by the wavelength λ. As a result of an investigation using an admittance chart assuming an equivalent circuit of , Figures 2(b) to (cl) were obtained.

本チャートから明らかな如く電極膜厚h/λがはソ2襲
以下の場合、本すべ9波共振器の特性はチャート上誘導
性領域が存在せずハートレー又はコルピッツ型水晶発#
i!@路に挿入しても発振し得ないことが判明した。
As is clear from this chart, when the electrode film thickness h/λ is less than 2 waves, the characteristics of this nine-wave resonator are as follows: there is no inductive region on the chart, and the characteristic is that of a Hartley or Colpitts crystal.
i! It was found that it could not oscillate even if inserted into the @ path.

さてそこで各種電極農厚會有するすべり波共振器につい
てそのQと副共振レベルを調べた結果を第3EK示す。
Now, the results of investigating the Q and sub-resonance levels of shear wave resonators owned by various electrode agricultural welfare associations are shown in the third EK.

本図に於いて電極膜厚h/λが増大するに従いQ及び副
共振レベルも増大し、h/λが幕チ近傍に於いてQit
飽和し、副共振レベルは急増する如く見える。
In this figure, as the electrode film thickness h/λ increases, the Q and sub-resonance levels also increase, and when h/λ is near the curtain tip, Qit
It appears to be saturated and the sub-resonance level to increase rapidly.

一方、電極膜厚h/λを固定した上で電極対数N1変化
させた場合、Q、m1ll共振レベル及びrがいかに変
化するかを調べた結果を第4図に示す。
On the other hand, when the electrode film thickness h/λ is fixed and the number of electrode pairs N1 is varied, the results of investigating how Q, m1ll resonance level, and r change are shown in FIG. 4.

本図から明らかな如く電極対数Nが多い程Q従って共振
器としての望ましい構成としては、要求される仕様にも
よるが一般的には水晶基板を使用する限り電極対数Nが
8oo±200 。
As is clear from this figure, the larger the number of electrode pairs N, the higher the Q.Therefore, as a desirable configuration for a resonator, it depends on the required specifications, but in general, as long as a crystal substrate is used, the number of electrode pairs N is 8oo±200.

電極膜厚h/λは0.025要至0.03@度であるこ
とが判る。
It can be seen that the electrode film thickness h/λ is between 0.025 and 0.03 degrees.

メ 畢に副共振レベルは電極対数Nに対しては電極膜厚h/
λの減少に従ってわずかに平行移動的に減少し一方r1
1電極膜厚h/λの減少に従ってわずかに平行移動的に
増大する傾向が見られたが図面の繁雑管避ける為省略し
た。
Mainly, the sub-resonance level is determined by the electrode film thickness h/for the number of electrode pairs N.
decreases slightly in translation as λ decreases, while r1
A slight tendency to increase in translation was observed as the thickness h/λ of one electrode decreased, but this is omitted to avoid clutter in the drawing.

同、更に前記交叉長W/λについて調べた結果を第5図
に示す。本図から明らかな如く交叉長W/λにも最適値
がある如く見え、その範囲刀 社概ね8#至150間に存し、交叉長W/λを変化させ
るととによって得られるQ又はrの変化は電極膜厚h/
λ或は電極対数Nを変化することによる共振器特性の変
化に比べればわずかでありその重IHIは二次的である
といえる。
In addition, FIG. 5 shows the results of an investigation regarding the crossover length W/λ. As is clear from this figure, there appears to be an optimum value for the cross length W/λ, and the range is generally between 8# and 150, and the Q or r obtained by varying the cross length W/λ. The change in electrode film thickness h/
This is small compared to the change in the resonator characteristics caused by changing λ or the number of electrode pairs N, and the IHI can be said to be secondary.

以上説明した実験の結果は共振器を空気中で共振させた
ものであるが弾性表面波共振器にあっては真空中に於い
て共振す、る共振器のQは空気中のそれに比べて15及
至30チ改善されることが知られている。この知見をす
べり波共振器に援用した結果弾性表面波共振器の場合程
の効果はなかったが約51i程度のQの向上がみられた
The results of the experiment explained above were obtained by making the resonator resonate in air, but surface acoustic wave resonators resonate in vacuum, and the Q of the resonator is 15 compared to that in air. It is known that it improves by 30 inches. As a result of applying this knowledge to a shear wave resonator, an improvement in Q of approximately 51i was observed, although the effect was not as great as in the case of a surface acoustic wave resonator.

以上の実験結果からすベク波共振器に於いても共振器の
特性を左右する最も重要な構成要素はその電極膜厚h/
λであり、他の要素、例えば電極対数Nは電極膜厚h/
λとは殆んど無調係Kr求は副共振のレベルから一定の
値に#I着せざるを得す、又前記交叉長W/λも共振器
特性に影◆會与えるその最適値が存在する七tがその効
果は二次的なものであることが明らかとなった。
From the above experimental results, the most important component that influences the characteristics of the Bek wave resonator is the electrode film thickness h/
λ, and other elements, such as the number of electrode pairs N, are the electrode film thickness h/
Since λ is almost an atonal coefficient, Kr must be set at a constant value from the sub-resonance level, and the crossover length W/λ also affects the resonator characteristics. However, it became clear that the effect was secondary.

以上本発明の共11ii@に−する実験の結果について
説明し九が、電極材料として人!以外O例えd Au 
−A g * Cr 5Z、ij N i等について言
及していなかったのでこれらについて簡単K1m明する
The above describes the results of experiments conducted in accordance with the present invention. Other than O analogy d Au
-A g * Cr 5Z, ij N i, etc. were not mentioned, so I will briefly explain them.

前述の電極の負貴効果が振動エネルギ閉じ込め効果を強
調するものであるとすれはAJよp轄るかにtm度の大
きな金属材料によりて電極を構成し、そO膜厚をAIの
密度との割合いに比例して薄くしても同様の効果があり
そうに思われたがAu、Or及びNiKついて実験し九
結果は全く予想に反すbものであってQは上昇せずスプ
リアスも多くなるという結果を得た。
If the above-mentioned negative effect of the electrode emphasizes the vibration energy trapping effect, the electrode should be made of a metal material with a much larger tm than AJ, and the O film thickness should be the same as the density of AI. It seemed that a similar effect would be obtained even if the thickness was made thinner in proportion to the ratio of The result was that there were more.

この理由は目下のところ不明であるが、弾性表面波共振
器の場合にも同様の結果がより顕著に現出していること
からして、水晶基板直下音伝搬するすべり波も水晶基板
と電極との境界近傍に於いて両者の青畳インピーダンス
の差に起因する摂動の影響管受けると同時に前記両イン
ピーダンスO差が大きすぎることがすべり波の伝搬及び
振動エネルギの閉じ込め効果t−悪化させる方向に働い
てやるものと考えざるを得ない。
The reason for this is currently unknown, but given that similar results are more pronounced in the case of surface acoustic wave resonators, the shear waves that propagate directly beneath the crystal substrate also appear between the crystal substrate and the electrodes. In the vicinity of the boundary between the two, the influence of perturbation due to the difference in the impedance between the two is affected, and at the same time, the difference between the two impedances O is too large, which works in the direction of worsening the propagation of shear waves and the confinement effect of vibration energy. I have no choice but to think of it as something to do.

従って現状に於いては基板の水晶と音響インピーダンス
が近似する人lを電極材料として用いるのが114嵐い
Therefore, at present, it is preferable to use quartz crystal, which has an acoustic impedance similar to that of the substrate crystal, as the electrode material.

本発明は以上説明した如く構成するので極めて温度特性
嵐好にしてスプリアスが殆んどなく表面汚染及びエージ
ングに対し鈍感でありしかもIGHz@IIまでの高周
波を基本波にて発振する共振Sを安価に得ることが可能
と々る為、近年益に使用周波数帯が高くなっている電子
機器の要求に容易に応することができ、しかもこれら機
器の小型化、高安定化に著しい効果を発揮するものであ
る。
Since the present invention is constructed as described above, it has extremely good temperature characteristics, has almost no spurious waves, is insensitive to surface contamination and aging, and can inexpensively generate resonance S that oscillates as a fundamental wave at a high frequency up to IGHz@II. This makes it possible to easily meet the demands of electronic devices whose frequency bands have been increasing in recent years, and it is also extremely effective in making these devices more compact and highly stable. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のすぺ9波共撫器の電極構成を示す図、
第2図(a)は第1図のすペシ波共撫器の岬価回路、同
一(b) i至(e)は夫々電極膜厚をすべり波々長0
0.91,1.41G、2.111及び−1t4の場合
のアト5タンスeチヤートの図、@armはすぺ9波共
振器の電極指対数を固定した場合、電極膜厚の変化に対
するQ及び―J共振レベルの変動O11験結果を示す図
、第4回状各電極膜厚に対し電極指対赦管変化し良場合
のQ、r及び副共振レベルの変動の実験結果を示す図、
纂5図は電極指交叉長春変化に対するQ及びrの変動を
示す実験結果の図である。 1・・・・・・水晶基板、 4.5・・・・・・インタ
ディジタル・トランスジ、−サ電極 特許出願人  東洋過信機株式会社 手続補正書 昭和tり年 / 月、2F、日 特許庁 長官    殿 1、事件の表示 昭和夕/年  社Jf   願第1J/73り 号2、
茫&Bの名称  1−1・・ソ5L長rh、各3、補正
をする者 事件との関係゛祈訂出願人 5、補正により増加する発明の数    ri’L6、
補正の対象  I−崩
FIG. 1 is a diagram showing the electrode configuration of the super 9-wave resonator of the present invention,
Figure 2 (a) is the cape value circuit of the speciwave resonator in Figure 1, and (b) i to (e) are the same as those shown in Figure 1.
Diagram of at5 tans e chart for 0.91, 1.41G, 2.111 and -1t4, @arm is the Q for change in electrode film thickness when the number of electrode finger pairs of the nine-wave resonator is fixed. and - A diagram showing the experimental results of variation O11 in the J resonance level, a diagram showing the experimental results of the variation in Q, r and sub-resonance level when the electrode finger vs. tube changes well for each electrode film thickness in the fourth round,
Figure 5 is a diagram of experimental results showing changes in Q and r with respect to changes in electrode finger cross-over. 1...Crystal substrate, 4.5...Interdigital transformer, -Selector patent applicant Toyo Tsushinki Co., Ltd. Procedural Amendments Showa 1/2019, 2F, Japan Patent Office Director-General 1, Display of the incident Showa evening/year Sha Jf Application No. 1 J/73 No. 2,
Name of I & B 1-1...S5L length rh, each 3, person making the amendment Relationship with the case ゛Revision applicant 5, number of inventions increased by the amendment ri'L6,
Target of correction I-Destruction

Claims (3)

【特許請求の範囲】[Claims] (1)  すべや波會伝撤せしめる水晶基板の主lN面
上に多対のインタディジタル−トランスジ島−サ電極t
1!にけて皺電極に印加され大電気エネルギをすべり波
に変換するすべ〉波共振Sに於いて、前記水晶基板ta
転Yカット、カット・アン乃 1ルー43”4kM−5’2°、すべ)波伝像方向會z
′軸方向とすると共に、前記水晶基板上に設ける多対イ
ンタディジタル・トランスジ瓢−サ電極tAJKて構成
しかつそO膜厚を伝搬するすべり波々長のLoI11以
上とすることによってすべり波の振動エネルギの前記電
極直下へO閉じ込め効率を向上したこと10黴とするす
べ9披共振器。
(1) Multiple pairs of interdigital transducer electrodes are placed on the main IN surface of the crystal substrate to completely eliminate wave transmission.
1! In the smooth wave resonance S that is applied to the wrinkled electrode and converts large electrical energy into a shear wave, the crystal substrate ta
Rotation Y cut, cut anno 1 roux 43"4km-5'2°, all) wave propagation direction z
The vibration of the shear wave can be suppressed by setting the direction of the shear wave in the direction of the ' axis, and by making the multi-pair interdigital transistor electrode tAJK provided on the crystal substrate, and making the thickness of the O film greater than LoI 11 of the propagating shear wave length. A total of 9 resonators with improved O confinement efficiency directly below the electrode.
(2)前記インタディジタル舎トランスジa−す電極の
電極対数を800±209とすることにより共振器の容
量比と副共振レベルを低レベルに保ちつつ高いQt得る
ことを4111kとする特許請求の範囲1記載のすペシ
波共振器。
(2) The claim of 4111k is that by setting the number of electrode pairs of the interdigital transformer a to 800±209, a high Qt can be obtained while keeping the capacitance ratio of the resonator and the sub-resonance level at a low level. 1. The speciwave resonator described in 1.
(3)  前記インタディジタル・トランスジ、−を電
極の電極指交叉−1kt前記電極によって励起されβ るすべり波身長の8:に−至15倍とするととくよシ共
振器の容量比を低レベルに保ちつつ高いQを得ること管
4I徴とすゐ特許請求の範囲1又は2記載のすぺ9波共
振器。
(3) In the interdigital transformer, when - is set to 8: to -15 times the length of the shear wave excited by the electrodes at -1 kt, the capacitance ratio of the resonator is kept at a low level. A nine-wave resonator according to claim 1 or 2, wherein a high Q is obtained.
JP13173981A 1981-08-21 1981-08-21 Slip wave resonator Granted JPS5833309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13173981A JPS5833309A (en) 1981-08-21 1981-08-21 Slip wave resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13173981A JPS5833309A (en) 1981-08-21 1981-08-21 Slip wave resonator

Publications (2)

Publication Number Publication Date
JPS5833309A true JPS5833309A (en) 1983-02-26
JPH0134411B2 JPH0134411B2 (en) 1989-07-19

Family

ID=15065054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13173981A Granted JPS5833309A (en) 1981-08-21 1981-08-21 Slip wave resonator

Country Status (1)

Country Link
JP (1) JPS5833309A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340509A (en) * 1989-07-06 1991-02-21 Murata Mfg Co Ltd Bulk wave device
WO2005099089A1 (en) 2004-04-01 2005-10-20 Toyo Communication Equipment Co., Ltd. Surface acoustic device
EP1675260A2 (en) * 2004-12-03 2006-06-28 Epson Toyocom Corporation Surface acoustic wave device
WO2007004661A1 (en) * 2005-06-30 2007-01-11 Epson Toyocom Corporation Surface acoustic wave device
EP1679794A3 (en) * 2005-01-06 2007-07-04 Epson Toyocom Corporation Surface acoustic wave device
US7843112B2 (en) 2005-09-30 2010-11-30 Seiko Epson Corporation Surface acoustic wave device, module device, oscillation circuit, and method for manufacturing surface acoustic wave device
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049288A (en) * 2005-08-08 2007-02-22 Seiko Epson Corp Multiple-stage connection longitudinally coupled multiple mode surface acoustic wave filter
JP4582150B2 (en) * 2008-01-11 2010-11-17 エプソントヨコム株式会社 Surface acoustic wave device and module device or oscillation circuit using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435657A (en) * 1977-08-26 1979-03-15 Hitachi Ltd Surface slip wave resonator filter
JPS55105426A (en) * 1979-02-06 1980-08-13 Fujitsu Ltd Elastic surface wave device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435657A (en) * 1977-08-26 1979-03-15 Hitachi Ltd Surface slip wave resonator filter
JPS55105426A (en) * 1979-02-06 1980-08-13 Fujitsu Ltd Elastic surface wave device

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340509A (en) * 1989-07-06 1991-02-21 Murata Mfg Co Ltd Bulk wave device
EP1732216A4 (en) * 2004-04-01 2008-07-30 Epson Toyocom Corp Surface acoustic device
WO2005099089A1 (en) 2004-04-01 2005-10-20 Toyo Communication Equipment Co., Ltd. Surface acoustic device
EP1732216A1 (en) * 2004-04-01 2006-12-13 Toyo Communication Equipment Co., Ltd. Surface acoustic device
US7589451B2 (en) 2004-04-01 2009-09-15 Epson Toyocom Corporation Surface acoustic wave device
EP1926210A3 (en) * 2004-12-03 2013-04-17 Seiko Epson Corporation Surface acoustic wave device
EP1675260A3 (en) * 2004-12-03 2007-08-15 Epson Toyocom Corporation Surface acoustic wave device
US7382217B2 (en) 2004-12-03 2008-06-03 Epson Toyocom Corporation Surface acoustic wave device
EP1675260A2 (en) * 2004-12-03 2006-06-28 Epson Toyocom Corporation Surface acoustic wave device
EP1679794A3 (en) * 2005-01-06 2007-07-04 Epson Toyocom Corporation Surface acoustic wave device
US7463119B2 (en) 2005-01-06 2008-12-09 Epson Toyocom Corporation Surface acoustic wave device
WO2007004661A1 (en) * 2005-06-30 2007-01-11 Epson Toyocom Corporation Surface acoustic wave device
US8018122B2 (en) 2005-09-30 2011-09-13 Epson Toyocom Corporation Surface acoustic wave device, module device, oscillation circuit, and method for manufacturing surface acoustic wave device
US7843112B2 (en) 2005-09-30 2010-11-30 Seiko Epson Corporation Surface acoustic wave device, module device, oscillation circuit, and method for manufacturing surface acoustic wave device
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus

Also Published As

Publication number Publication date
JPH0134411B2 (en) 1989-07-19

Similar Documents

Publication Publication Date Title
JPS5833309A (en) Slip wave resonator
JPWO2018097016A1 (en) Elastic wave device
JPH10233645A (en) Surface acoustic wave device
WO1996010293A1 (en) Saw device
KR100232753B1 (en) Love-wave device including a thin film of ta or w
JP4109877B2 (en) Surface acoustic wave functional element
JP2003124780A (en) Surface acoustic wave device
JPH08288788A (en) Surface acoustic wave element
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JP5563378B2 (en) Elastic wave element
JPS63135010A (en) Surface acoustic wave resonator
JP4059147B2 (en) Surface acoustic wave resonator
JPWO2008114715A1 (en) Lamb wave type elastic wave device
JP2001267880A (en) Saw resonator
US3401283A (en) Piezoelectric resonator
JP3255502B2 (en) Highly stable surface acoustic wave device
JP4465464B2 (en) Lamb wave type elastic wave device
JP3341699B2 (en) Edge reflection type surface acoustic wave device
JP2012049817A (en) Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
Zaitsev et al. Composite lateral electric field excited piezoelectric resonator
JPH0124366B2 (en)
TWI747636B (en) Acoustic wave device
RU2643501C1 (en) Resonator on surface acoustic waves
JP2011171887A (en) Lamb wave resonator and oscillator
JPS62200814A (en) Surface acoustic wave resonator