JPS5827685A - Sterilized water-making unit - Google Patents

Sterilized water-making unit

Info

Publication number
JPS5827685A
JPS5827685A JP12629081A JP12629081A JPS5827685A JP S5827685 A JPS5827685 A JP S5827685A JP 12629081 A JP12629081 A JP 12629081A JP 12629081 A JP12629081 A JP 12629081A JP S5827685 A JPS5827685 A JP S5827685A
Authority
JP
Japan
Prior art keywords
hollow
water
housing
hollow fiber
hollow fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12629081A
Other languages
Japanese (ja)
Inventor
Atsushi Kawai
厚 河合
Michio Inoue
井上 通生
Hisao Tanaka
久雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP12629081A priority Critical patent/JPS5827685A/en
Publication of JPS5827685A publication Critical patent/JPS5827685A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To remove bacteria and pyrogen from water to be treated, by accommodating hollow fiber filtration membranes in a housing divided into a plurality of chambers by one or more hollow fiber-supporting partiton bodies to constitute a filter. CONSTITUTION:Hollow fibers 3 are bundled and fixed in a housing 1 by a partition body 2 dividing the interior of the housing 1 into two chambers A and B,so that all of the hollow opened parts of the hollow fibers 3 are bottled up. Water to be treated flowing into the housing 1 through its water inlet 4 is temporarily stored in the chamber A inside the housing, once filtered at the hollow fiber wall membrane parts in the chamber A, let flow through the hollow parts of the hollow fibers to those of the hollow fibers in the chamber B and then from the interiors of the hollow fibers toward the hollow fiber wall membrane parts, filtered,and discharged as objective sterilized water from the part of a purified water outlet 5 in the chamber B.

Description

【発明の詳細な説明】 本発明は医療用、医薬品工業用、研究用等に使用される
無4薗水製造システムに関するものでその目的とすると
ころは1保守の極めて容易なユニットを提供することに
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waterless water production system used for medical purposes, pharmaceutical industry, research, etc., and its purpose is to provide a unit that is extremely easy to maintain. It is in.

従来、無菌水の製造には蒸留法、煮沸減菌法、紫外線殺
菌法などがあるが、エネルギー費、設備費が高い1ある
いは滅菌が不十分であり、発熱性物質(パイロジエン)
の除去が出来ないなどの欠点があった0最近は逆浸透膜
を用いる方法が採用され始めているが設備費が高く、騒
音の大きい欠点もある。また何れの方法においても、最
大の欠点は一旦滅菌された水が・貯留槽)配管中で細菌
に再汚染され1あるいは蛇口から逆汚染されることであ
って往々にして1処理前の原水より細菌数が増加するよ
うな場合も見られ秀oこのため、逆汚染・再汚染防止の
対策として何種類かの方法を組み合わせたり・また−複
雑で高価な逆汚染防止用の蛇口を用いたすせざるを得な
い状況にある@ 本発明者らはこのような従来法の欠点を解決し一装置が
簡単で保守が極めて容易であり丸しかも無菌水としての
信頼性の高いシステムの開発につき種々研究した結果、
本発明に到達した。
Conventionally, methods for producing sterile water include distillation, boiling sterilization, and ultraviolet sterilization, but these methods require high energy and equipment costs1, are insufficiently sterilized, and contain pyrogens (pyrogens).
Recently, methods using reverse osmosis membranes have begun to be adopted, but they have drawbacks such as high equipment costs and large noise. In addition, the biggest drawback of either method is that once sterilized water is recontaminated with bacteria in the pipes (in the storage tank) or back contaminated from the faucet, it is often worse than the raw water before the first treatment. In some cases, the number of bacteria increases. For this reason, it is necessary to combine several methods to prevent back contamination and recontamination, or to use complicated and expensive faucets to prevent back contamination. The present inventors are in a situation where they have no choice but to solve these drawbacks of the conventional method, and have conducted various studies to develop a system that is simple, extremely easy to maintain, round, and highly reliable as sterile water. As a result,
We have arrived at the present invention.

即ち、本発明は1少なくとも被処理水の入口と、処理水
の出口を有する1中空糸状f過膜を(1)  ハウジン
グ内部は、該中空糸を支持する1以上の仕切体によって
複数の室に分割されており (コ) 該中空糸の中空開口部が閉塞されている状態又
は中空糸の中空開口部が被処理水および処理水に接触し
ない状態でハウジング内に配置され、 (3)濾過膜は被処理水を少なくとも一回以上F遇する
ように配置され、 (4I)かっ該f過器の処理水出口が蛇口と直結してい
ることを特鍛とする無菌水製造ユニットである。
That is, the present invention provides (1) a hollow fiber membrane having at least an inlet for water to be treated and an outlet for treated water; (c) the hollow fibers are arranged in the housing in a state where the hollow openings are closed or in a state where the hollow openings of the hollow fibers do not contact the water to be treated and the treated water; (3) the filtration membrane; (4I) This is a sterile water production unit which is arranged so that the water to be treated is filtered at least once, and whose special feature is that the treated water outlet of the filter is directly connected to the faucet.

本発明の第1の要件は1中空糸状分離膜(以下中空糸と
略す)をその中空開口部(7本の中空糸には必ずコケの
開口部を両端に有する)を閉塞した状態で用いるかある
いは、中空開口部が被処理水および処理水と接触しない
状態で用いることにある。このような構成にすることに
より、被処理水中に含まれる細菌やパイロジエンは中空
糸膜の中空部分へ入り得ないし、又処理水側からの逆汚
染にも耐えられる〇 このような構造により確実性の高い無菌水製造を達成出
来る◎また中空糸膜の壁膜を一回以上r遇することによ
ってさらに処理水の無菌性、パイ胃ジエン除去を完全な
ものとすることが出来る〇 このような構成をもつハウジング内の中空糸配置の好ま
しい具体例は中空開口部が完全に閉塞された配置でその
1つを第1図に示した。
The first requirement of the present invention is whether a hollow fiber separation membrane (hereinafter abbreviated as hollow fiber) is used with its hollow openings (the seven hollow fibers always have moss openings at both ends) closed. Alternatively, the hollow opening may be used in a state where it does not come into contact with the water to be treated or the treated water. With this structure, bacteria and pyrogen contained in the water to be treated cannot enter the hollow part of the hollow fiber membrane, and it can also withstand back contamination from the treated water side. This structure ensures reliability. A highly sterile water production can be achieved ◎Also, by treating the wall of the hollow fiber membrane one or more times, the sterility of the treated water and the removal of diene can be further improved.〇Such a configuration A preferred embodiment of a hollow fiber arrangement in a housing with a completely closed hollow opening is shown in FIG.

中空糸(J)は束ねて固定され、且つハウジング(1)
内を一室体)の)に分割する仕切体(コ)によって、ハ
ウジング内に固定されており、且つ中空糸の中空開口部
がすべて閉塞されているものである。
The hollow fibers (J) are bundled and fixed, and the housing (1)
It is fixed inside the housing by a partition body (C) that divides the inside into one-chamber body (), and all the hollow openings of the hollow fibers are closed.

該中空糸の中空開口部を塞閉する手段としては中空糸の
先端部分を溶剤で溶解することによって閉塞する方法、
あるいは接着剤を用いて接着することによって閉塞する
方法1あるいは熱溶融する中空糸の場合には融着によっ
て閉塞する方法等が適宜用いられる0また仕切体(コ)
の中に埋め込む方法でも良い。
The means for closing the hollow opening of the hollow fiber includes a method of closing the tip portion of the hollow fiber by dissolving it with a solvent;
Alternatively, method 1 of closing by adhering with adhesive or method of closing by fusion in the case of heat-melting hollow fibers may be used as appropriate.
It is also possible to embed it inside.

また、該中空糸を束ねる手段としては、例えばポリウレ
タン系樹脂1シリコン系樹脂等を用いて、接着固化して
束ねることが出来る。また(1)のハウジングは耐圧性
のプラスチックや金属等からなる剛体が使用され、ハウ
ジング内を一室(4)CB)に分画するための仕切体−
)を有する構造であれば良くこの仕切体もプラスチック
や金属等を使用することが出来る。そしてこの仕切体は
ハウジングを一室に分割すると共にf過材としての中空
糸の束(3)をその中空部分を閉塞しない状態で仕切体
を通過せしめてハウジング内の(4)■)−室に存在せ
しめた状態で固定する役割を果すのである◎ 本発明で用いるフィルターモジュールは上述の如く構造
となっているため、例えばハウジング(1)の被処理水
入口(4I)から流入した水は一旦、過程で再びf遇さ
れて■)室内の処理水出口(1)の部分から目的とする
無菌水が得られるのである〇すなわち、二段濾過が行な
われるために精密濾過装置としての信頼性が高いのであ
る0例えば(4)室内に存在する該中空糸の多孔質壁膜
部に若し予期しない欠陥部が存在し目的物の捕捉が不十
分であってもの)室内に存在する該中空糸の多孔質壁膜
部において捕捉することが可能であり、信頼性の高い精
密濾過装置と言えるのである。第1図では囚田)コ室の
場合であるが、仕切体を複数用いて複数の部屋に分割し
ても良い〇また、中空糸の開口部が被処理水、処理水に
接触しない構造も好ましいものである0具体例として第
一図のようなものが用いられる。すなわち中空糸束(3
)は(A)03)λ室の間の空間(C)へ向って開孔[
(4)を有する。この場合も第1図の構造と同様1被r
過水は(4)室において中空糸壁の外側から内側へ、■
)室において内側から外側へ透過し、二段濾過が行なわ
れる。第1図のモジュールでは中空開口部がないため中
空糸膜に存在するピンホールの検査が困難であるが1第
一図のモジュールではk)室、■)室を別個に製造し1
ピンホールをそれぞれ検査して、両モジュールを接合出
来るので装置の安全性はより高くなる。
Further, as a means for bundling the hollow fibers, for example, a polyurethane resin, a silicone resin, etc. can be used, and the hollow fibers can be bound by adhesion and solidification. In addition, the housing (1) is made of a rigid body made of pressure-resistant plastic or metal, and a partition is used to divide the inside of the housing into one room (4) CB).
) The partition body can also be made of plastic, metal, or the like. This partition divides the housing into one chamber, and allows the bundle of hollow fibers (3) as a filter material to pass through the partition without blocking the hollow portion of the hollow fiber. ◎ Since the filter module used in the present invention has the structure as described above, for example, the water that flows in from the water inlet (4I) of the housing (1) is once , the target sterile water is obtained from the treated water outlet (1) in the room. In other words, the reliability of the precision filtration device is low due to the two-stage filtration. For example, (4) Even if there is an unexpected defect in the porous wall membrane of the hollow fiber existing in the room and the target object is insufficiently captured). It can be captured in the porous wall membrane of the membrane, making it a highly reliable precision filtration device. Although Figure 1 shows the case of the Tokuta co-room, it may be divided into multiple rooms using multiple partitions.Also, a structure in which the openings of the hollow fibers do not come into contact with the water to be treated or the treated water is also possible. As a preferred example, the one shown in Figure 1 is used. In other words, the hollow fiber bundle (3
) is opened toward the space (C) between (A) 03) λ chambers [
(4). In this case as well, as in the structure shown in Figure 1,
Excess water flows from the outside to the inside of the hollow fiber wall in chamber (4), ■
) A two-stage filtration is carried out by permeating from the inside to the outside in the chamber. In the module shown in Figure 1, it is difficult to inspect the pinholes that exist in the hollow fiber membrane because there is no hollow opening.
Since the pinholes can be inspected individually and both modules can be joined together, the safety of the device is increased.

第1図、第2図では入口1出口がそれぞれ1つしかない
が、(4)室側にパージ用の出口を設けたり、(C)室
に逆洗用の出入口を設けても良い0次に本発明の第一の
要件は、濾過装置の処理水の出口が蛇口と直結している
ことである0このような構成をとることによって、濾過
装置と蛇口間での細菌発生を効果的に防ぐことが可能と
なる。第3図は本発明の一具体例で、第7図で説明した
濾過装置が導管(γ)を介して蛇口<1>に直結する。
In Figures 1 and 2, there is only one inlet and one outlet, but (4) a purge outlet may be provided on the chamber side, or (C) a backwashing inlet may be provided in the chamber. The first requirement of the present invention is that the outlet of the treated water of the filtration device is directly connected to the faucet.By adopting such a configuration, the generation of bacteria between the filtration device and the faucet can be effectively prevented. It is possible to prevent this. FIG. 3 shows a specific example of the present invention, in which the filtration device described in FIG. 7 is directly connected to the faucet <1> via a conduit (γ).

■)室においては中空糸の開口部が閉塞されているため
、装置の休転中に蛇口からの細菌の逆侵入による中空糸
内部の汚染がおこらない。また■)室と蛇口の距離は可
及的小としてこの間における細菌による再汚染を防止す
る。
(2) Since the openings of the hollow fibers are closed in the chamber, contamination inside the hollow fibers does not occur due to reverse entry of bacteria from the faucet while the device is inactive. Also, ■) Keep the distance between the room and the faucet as small as possible to prevent re-contamination by bacteria.

フィルターモジュールと蛇口間の細菌汚染を防ぐため、
フィルターモジュー/!/■)室と蛇口は直結し、一体
化せしめたものを用いるが、蛇口およびフィルターモジ
ュールと蛇口をつなぐ導管はフィルターモジュールと一
体として取り外し使い捨てとしてもよいし、導管および
/又は蛇口は再使用出来るようにしフィルターモジュー
ルのみ使い捨てとしてもよいO 本発明のユニットに用いる除菌フィルターP材は、除菌
性能を有し且つ・透水性能の高いものであることが必要
である0これは1除11フイルターモジユールと蛇口を
直結して用いるた−め透水性が低いと過大なr過面積を
必要とするためである0したがって、フィルターとして
は限外濾過膜の中で比較的透水性の高いもの乃至精−密
濾過膜が適当である6ただし精密濾過W4(メンブレン
フィルター〕は、除菌性があり且つ透水性が高いが発熱
性物質(パイロジエン)を除資することが出来ないので
パイロジエンフリー水が要求される場合には好ましくな
い。
To prevent bacterial contamination between the filter module and the faucet,
Filter module/! /■) The room and faucet are directly connected and integrated, but the conduit connecting the faucet and filter module to the faucet may be removed as a single unit with the filter module and made disposable, or the conduit and/or faucet can be reused. Only the filter module may be disposable.The sterilizing filter P material used in the unit of the present invention must have sterilizing performance and high water permeability. This is because the module and the faucet are directly connected, so if the water permeability is low, an excessively large filtration area is required. Therefore, among the ultrafiltration membranes, the filter should be one with relatively high water permeability. Precise filtration membrane is suitable.6However, precision filtration W4 (membrane filter) has sterilizing properties and high water permeability, but cannot remove pyrogenic substances (pyrogene), so pyrogen-free water is recommended. Not preferred if required.

繊維長方向に配列したミクロフィブリルと該ミクロフィ
ブリルに対してほぼ直角に連結した結節部より形成され
る多数の短冊状微小空孔が中空糸内壁面より外壁面へ相
互につながったミクロ積層構造を有するぎりオレフィン
糸多孔質中空糸は、透水性が高いにもかかわらずパイロ
ジエンを除失することが可能なため特に望ましいフィル
ターf材である0 本発明の無菌水製造ユニットによれば、除菌フィルター
CB)室出口で確実に無菌水又はパイロジエン7り一水
が得られ−且つCl5)1!出口から蛇口の間での細菌
による再汚染が防止出来る。蛇口から細菌の侵入があっ
たとしても細菌は中空糸内部に到達することはなく、わ
ずかな放流によって完全に洗い流される0このため従来
の手術室手洗水などの問題点は完全に解決されるのであ
る。第6図は本発明以外の無菌水製造ユニットであるが
、中空糸開口部分が処理水と接触し、かつ一段濾過で行
なわれるため、比較例で示すごとく本発明ユニットにく
らべ性能が劣るものである。
A microlaminated structure in which a large number of strip-shaped micropores formed by microfibrils arranged in the fiber length direction and nodules connected at almost right angles to the microfibrils are interconnected from the inner wall surface of the hollow fiber to the outer wall surface. The olefin fiber porous hollow fiber is a particularly desirable filter material because it is capable of removing pyrogen even though it has high water permeability.According to the sterile water production unit of the present invention, CB) Sterile water or pyrodiene water is reliably obtained at the chamber outlet - and Cl5)1! Re-contamination by bacteria between the outlet and the faucet can be prevented. Even if bacteria enter from the faucet, they will not reach the inside of the hollow fibers and will be completely washed away with just a small amount of water. Therefore, the problems with conventional operating room hand washing water will be completely solved. be. Figure 6 shows a sterile water production unit other than the present invention, but since the hollow fiber openings are in contact with the treated water and the single-stage filtration is performed, the performance is inferior to the present invention unit as shown in the comparative example. be.

第4図は本発明の無菌水製造ユニットを用いた無菌水製
造システムの7例を示す0水道の蛇口(9)からの水道
水は/部、加熱器(//)をそなえた熱湯貯蔵タンク(
lのに入る。(io)からの温水はミキシングバルブ(
lコ)で冷水と混合され適温(JO〜44 oC)に調
節された後、送液〆ンプ(13)により圧力計(lりを
介してf過装置(1)に送られ適温の処理水が蛇口(f
)より得られる。
FIG. 4 shows seven examples of a sterile water production system using the sterile water production unit of the present invention. 0 Tap water from a tap (9) is / part, and a boiling water storage tank equipped with a heater (//) (
Enter the l. (io) The hot water from the mixing valve (
After being mixed with cold water and adjusted to an appropriate temperature (JO ~ 44 oC), the water is sent to the filtration device (1) via a pressure gauge (13) and treated water at an appropriate temperature. is the faucet (f
) can be obtained from

本発明の無菌水製造ユニットの他の特徴はP材の巨富り
による流量の低下(恒圧時)あるいは圧力の上昇(恒量
時)が極めて少なく、長期間にわたって安定した運転状
態が得られることである。
Another feature of the sterile water production unit of the present invention is that there is extremely little decrease in flow rate (at constant pressure) or increase in pressure (at constant weight) due to large amounts of P material, and stable operating conditions can be obtained over a long period of time. It is.

これは本発明で用いている二段f過方式のモジュールに
よる効果で第3図に本発明の場合の/例ヲ従来のフィル
タ−モジュールと比較して示すとうりである0第j図に
おいて縦軸は有効f過面積当りの流量(1/hr/rr
l )を示し横軸は通水時間(hr)を示しく&)は本
発明の無菌水製造ユニットを用いた場合の濾過特性を示
しくb)は比較例としての他の装置を使用した場合の濾
過特性を示したものである0 また、本発明の無菌水製造ユニットを用いると大量の細
菌を含んだ原水を用いてもr過水に細菌がリークするこ
とがなく、また、長期間の使用後もパイロジエンのリー
クするおそれも少ない◎ 本発明の無菌水製造ユニットを用いる場合、蛇口からの
細菌の逆汚染は上述のごとく使用始l; めだ少量の放流を行なうことにより完全に防止できるが
必要があれば殺菌性蛇口その地道汚染防止用の蛇口を用
いることも出来る0殺菌性蛇口としてはヨー素を徐放す
るプラスチック製蛇口、内面を銀メッキした蛇口などが
有効である。
This is an effect of the two-stage f-pass type module used in the present invention, and as shown in Figure 3, an example of the present invention is compared with a conventional filter module. The axis is the flow rate per effective f area (1/hr/rr
The horizontal axis shows the water flow time (hr), &) shows the filtration characteristics when using the sterile water production unit of the present invention, and b) shows the case when another device was used as a comparative example. Furthermore, when the sterile water production unit of the present invention is used, even if raw water containing a large amount of bacteria is used, bacteria will not leak into the filtrate water, and it will last for a long time. There is little risk of pyrogen leaking even after use. When using the sterile water production unit of the present invention, bacterial back-contamination from the faucet can be completely prevented by discharging a small amount at the beginning of use as described above. If necessary, a sterilizing faucet or a faucet to prevent contamination can be used. Effective sterilizing faucets include plastic faucets that release iodine slowly and faucets with silver-plated interior surfaces.

次に実施例によって本発明を更に詳細に説明する。なお
本実施での細菌およびパイロジエンの測定は以下に述べ
る方法によった0 水中の細菌測定法 滅菌べ) IJ−皿中に普通寒天培地を入れ1オートク
レーブ中でlコOCで蒸気滅菌後1この寒天培地上に検
水/ wrll を加え、37Cの幹卵器中でコ亭時間
培養した後、細菌の集墜 落数(aolon震)を計測した。
Next, the present invention will be explained in more detail with reference to Examples. Bacteria and pyrodiene were measured in the following manner using the methods described below. Sample water was added onto the agar medium, and after culturing in a 37C stem egg container for an hour, the number of bacteria collected and fallen (aolon tremor) was measured.

水中のパイロジエン検出法 パイロジエンの検出法はLimvln* 1ysat・
t・at  (カブトガニ血球溶解ゲル化試験)にした
がった・ 検出試薬は帝国臓器製薬KK製のプレゲル試薬(商品名
)を用いた0検出原理はカブトガニの血リンパ液中の血
球が極微量のパイロジエンと反応しゲル化することを利
用したものである0プレゲルは凍結乾燥された上記の血
球成分がアンプル中に密封された試薬であり、このアン
プル中に検波を添加し、37Cで1時間幹卵器中で培養
した後、3分間室温に保ち、アンプルを4Ijoに傾け
てゲル化の程度を判定する方法にしたがった。判定基準
は次の通りである。
Detection method of pyrogen in water The detection method of pyrogen is Limvln*1ysat・
t・at (limeshoe crab hemolymph cell lysis gelation test) ・The detection reagent used was a pregel reagent (trade name) manufactured by Teikoku Kinki Seiyaku KK. 0 pregel, which utilizes reaction and gelation, is a reagent in which the above-mentioned freeze-dried blood cell components are sealed in an ampoule. After incubation in a medium, the ampoule was kept at room temperature for 3 minutes, and the degree of gelation was determined by tilting the ampoule at 4Ijo. The judgment criteria are as follows.

(++) +固いゲルを形成し、アンプルを傾むけても
、ゲルの形が崩れない。
(++) + Forms a hard gel that does not lose its shape even if the ampoule is tilted.

(+)寡ゲルを形成しているがアンプルを傾けしい増大 (−)!液状のままで変化なし なお、本性によるパイロジエンの検出限界はlOμ9 
/m lである。
(+) Forms a small amount of gel, but increases the tendency to tilt the ampoule (-)! Although it remains liquid and does not change, the detection limit of pyrodiene due to its nature is lOμ9.
/ml.

実施例 l カル胃エルパ社製水銀ボpシメーターコーl型を用いて
測定した微小空孔の平均孔径が023μ、空孔率が6o
マo1%〜膜厚60μ、中空開口部の孔径コgOμの〆
リエチレンからなる多孔質中空糸の中空開口部を熱融着
により閉塞した。次にこの中空糸を束ね中空糸束のほぼ
中央部をポリウレタン樹脂を用いて接着し、第1vlJ
に示す如きハウジング内を囚の)−室に分割する仕切体
にとりつけたフィルターモジュールに第3図のごとく導
管および蛇口を直結した。なお液体入口側の(4)室内
に存在する該中空糸の膜面積はlコ一であり出口側多室
内の該中空糸の膜面積はl−とした。この無菌水製造ユ
ニットを井戸水の導管に圧力調整器を介して接続し背圧
よ! I19/cdで1ヨコ時間の通水を1ケ月継続し
た0蛇口より30秒間放流後、採水検査した結果および
途中経過を第7表に併せて示すO第   l   表 第1表に示す通り6ケ月間消毒など全く行なわなかった
にもかかわらず常に無菌のパイロジエン7り一水が得ら
れることがわかった。
Example 1 The average pore diameter of the micropores measured using a mercury bosimeter Cole type I manufactured by Cal Gastric Elpa Co., Ltd. was 023μ, and the porosity was 6o.
The hollow openings of porous hollow fibers made of polyethylene and having a film thickness of 1% to 60μ and a pore size of the hollow openings of gOμ were closed by thermal fusion. Next, the hollow fibers are bundled and the approximately central part of the hollow fiber bundle is glued using polyurethane resin, and the first vlJ
A conduit and a faucet were directly connected to a filter module attached to a partition that divided the interior of the housing into compartments as shown in FIG. 3. The membrane area of the hollow fibers present in the chamber (4) on the liquid inlet side was 1, and the membrane area of the hollow fibers in the multiple chambers on the outlet side was 1-. Connect this sterile water production unit to the well water conduit via a pressure regulator and create back pressure! Table 7 shows the results and intermediate progress of water sampling after water was discharged for 30 seconds from the 0 faucet where water was passed for 1 horizontal hour at I19/cd for 1 month. As shown in Table 1.6 It was found that sterile pyrodiene water was always obtained even though no disinfection was performed for several months.

比較例 l 実施例1と同様の中空糸モジュールを用い実施例/と同
様の条件で井戸水を濾過した後、容量1004のタンク
に貯留後1蛇口に導ひいたO細菌およびパイロジエンの
測定結果を表コに示す。
Comparative Example l Well water was filtered using the same hollow fiber module as in Example 1 under the same conditions as in Example/, and after being stored in a tank with a capacity of 1004 mm, the measurement results of O bacteria and pyrodiene were introduced into one faucet. Shown here.

第   −表 1ケ月後にはすでに蛇口からの再汚染によりf過水から
は細菌が検出され、貯留槽における汚染が明らかとなっ
た。
Table 1: After one month, bacteria were already detected in the overflow water due to recontamination from the faucet, and contamination in the storage tank became clear.

比較例 コ 第4図に示すようなフィルターモジュールに蛇口を直結
した無菌水製造ユニットを用い実施例1と同様のテスト
を実施した。/ケガ後において放流時間を変えて蛇口か
ら採水した結果を表3に示す。本発明の装置にくらべ細
菌数が0となるまでに長い放流時間を必要とすることが
わかる。
Comparative Example A test similar to that in Example 1 was conducted using a sterile water production unit in which a faucet was directly connected to a filter module as shown in FIG. / Table 3 shows the results of water samples taken from the faucet at different release times after the injury. It can be seen that compared to the device of the present invention, a longer discharge time is required until the number of bacteria becomes 0.

第  3  表Table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第一図は本発明のユニットに用いる濾過装置、
第3図は本発明の無菌水製造ユニットの具体例、第参図
は本発明のユニットを用いた無菌水製造システムの具体
例1第Sv!Jは無菌水製造ユニットの通水時間と流量
の関係を示す図であり、第4図は本発明以外の無菌水製
造ユニットを表す〇 ハ・・ハウジング(又は濾過装置) l・・・蛇 ロコ
・・・仕切体      9・・・水道蛇口3・・・中
空状濾過膜   10・・・熱湯貯蔵タンク弘・・・被
処理水人口   //・・・加熱器j・・・処理水出口
    lコ・・・ミキシングバルブt・・・中空糸開
口部   13・・・送液lンプ7・・・導 管   
   lダ・・・圧力計+2面 一+−3図         待6図 持閉昭5L27685(6) オ4−図 通オ時面(h、−) +5 図
FIG. 1 shows a filtration device used in the unit of the present invention,
FIG. 3 is a specific example of the sterile water production unit of the present invention, and FIG. 3 is a specific example 1 of the sterile water production system using the unit of the present invention. J is a diagram showing the relationship between water flow time and flow rate of a sterile water production unit, and Fig. 4 shows a sterile water production unit other than the present invention. ... Partition body 9 ... Water faucet 3 ... Hollow filtration membrane 10 ... Hot water storage tank Hiroshi ... Treated water population // ... Heater j ... Treated water outlet l ...Mixing valve t...Hollow fiber opening 13...Liquid feeding pump 7...Conduit
l Da... Pressure gauge + 2 side 1 + - 3 figure Wait 6 figure holding/closing Showa 5L27685 (6)

Claims (1)

【特許請求の範囲】 l) 少なくとも被処理水の入口と1処理水の出口を有
する1中空糸状F*膜を収納したハウジングからなるP
過器に於て、 (/)  ハウジング内部は1該中空糸を支持する1以
上の仕切体によって複数の童に分割されており (2)該中空糸の中空開口部が閉塞されている状態又は
中空糸の中空開口部が被処理水および処理水に接触しな
い状態でハウジング内に配置され、 CJ)  濾過膜は被処理水を少なくとも一回以上r通
するように配置され ←)かつIII濾過器の処理水出口が蛇口と直結してい
ることを特徴とする無菌水製造具ニッ)0 コン 中空開口部が閉塞された中空糸状FA膜はハウジ
ング内を複数室に分割する仕切体によってハウジング内
に固定されており1該中空糸はその中空部分が閉塞され
ない状態で仕切体を通過して複数直向へ存在するように
配置された特許請求の範囲第1項記載の無菌水製造ユニ
ット。 J)仕切体によって内部がJl!に分割されたハウジン
グの111(4)、@)に中空糸状濾過膜が収納されて
おり、該中空糸の両端は仕切体を−その中空部が閉塞さ
れない状態で貫通支持され、中空糸開口部が他のl室(
C)に面するように配置された特許請求の範囲第7項記
載の無菌水製造ユニット。
[Claims] l) P consisting of a housing containing one hollow fiber F* membrane having at least an inlet for treated water and one outlet for treated water.
In the filter, (1) the inside of the housing is divided into a plurality of partitions by one or more partitions that support the hollow fibers, (2) the hollow openings of the hollow fibers are closed, or The hollow openings of the hollow fibers are arranged in the housing so as not to come into contact with the water to be treated and the treated water, CJ) The filtration membrane is arranged so that the water to be treated passes through it at least once ←) and the filter is A sterile water production device characterized by having a treated water outlet directly connected to a faucet.A hollow fiber-like FA membrane with a closed hollow opening is inserted into the housing by a partition that divides the housing into multiple chambers. 2. The sterile water production unit according to claim 1, wherein the hollow fibers are fixed and arranged so that the hollow fibers pass through the partition and exist in a plurality of perpendicular directions with their hollow portions not being closed. J) The inside is Jl by the partition body! A hollow fiber filtration membrane is housed in the housing divided into 111(4), @), and both ends of the hollow fiber are supported through the partition with the hollow part thereof not being closed, and the hollow fiber opening is is the other l room (
The sterile water production unit according to claim 7, which is arranged so as to face C).
JP12629081A 1981-08-11 1981-08-11 Sterilized water-making unit Pending JPS5827685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12629081A JPS5827685A (en) 1981-08-11 1981-08-11 Sterilized water-making unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12629081A JPS5827685A (en) 1981-08-11 1981-08-11 Sterilized water-making unit

Publications (1)

Publication Number Publication Date
JPS5827685A true JPS5827685A (en) 1983-02-18

Family

ID=14931541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12629081A Pending JPS5827685A (en) 1981-08-11 1981-08-11 Sterilized water-making unit

Country Status (1)

Country Link
JP (1) JPS5827685A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110390A (en) * 1983-11-21 1985-06-15 Kuraray Co Ltd Aseptic water preparing apparatus
JPH05337342A (en) * 1992-03-03 1993-12-21 Pall Corp Preparation of hollow fiber separatory device
JP2002143652A (en) * 2000-11-14 2002-05-21 Nok Corp Filtration equipment
JP2009514665A (en) * 2005-11-03 2009-04-09 ネフロス・インコーポレーテッド Redundant ultrafiltration device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110390A (en) * 1983-11-21 1985-06-15 Kuraray Co Ltd Aseptic water preparing apparatus
JPH049117B2 (en) * 1983-11-21 1992-02-19
JPH05337342A (en) * 1992-03-03 1993-12-21 Pall Corp Preparation of hollow fiber separatory device
JP2002143652A (en) * 2000-11-14 2002-05-21 Nok Corp Filtration equipment
JP2009514665A (en) * 2005-11-03 2009-04-09 ネフロス・インコーポレーテッド Redundant ultrafiltration device

Similar Documents

Publication Publication Date Title
KR870001735B1 (en) Purification method of water
EP2957306B1 (en) Blood purification column
US6902671B2 (en) Chemical process system with multi-functional barrier filter
ES2246497T3 (en) PROCEDURE FOR THE REGENERATION OF A DIALIZER AND REGENERATING DEVICE.
JPH0543440B2 (en)
JPS5827685A (en) Sterilized water-making unit
JPH049117B2 (en)
Walsh et al. Filtration sterilization
Ronco et al. On line filtration of dialysate: structural and functional features of an asymmetric polysulfone hollow fiber ultrafilter (Diaclean®)
PL188971B1 (en) Method of and apparatus for performing a assay
JP4245597B2 (en) Blood purifier
US5110476A (en) Hollow fiber membrane system for removal of viruses and bacteria
Denyer et al. Sterilization: filtration sterilization
JPS6397203A (en) Cartridge for filtration
EP0673672A2 (en) Apparatus for processing liquids
US20170266362A1 (en) System for removal of pro-inflammatory mediators as well as granulocytes and monocytes from blood
JPH10151196A (en) Blood purifier and manufacture thereof
JPS6125381B2 (en)
JPS5922558A (en) Prevention of pyrogen pollution of ultrafiltration module for separating body liquid
WO2023140148A1 (en) Method for separating and purifying extracellular vesicles
JPH11169690A (en) Hemocathersis membrane
JPH04348757A (en) Method and device for treating dialyzate
WO2018126333A1 (en) Integrated blood purifier
Denyer et al. 12.4 Filtration sterilization
JPS6327044B2 (en)