JPS5822375A - Superhard coating metal material and preparation thereof - Google Patents

Superhard coating metal material and preparation thereof

Info

Publication number
JPS5822375A
JPS5822375A JP11867481A JP11867481A JPS5822375A JP S5822375 A JPS5822375 A JP S5822375A JP 11867481 A JP11867481 A JP 11867481A JP 11867481 A JP11867481 A JP 11867481A JP S5822375 A JPS5822375 A JP S5822375A
Authority
JP
Japan
Prior art keywords
carbide
base material
intermediate layer
coating
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11867481A
Other languages
Japanese (ja)
Inventor
Kenichi Akutagawa
芥川 憲一
Toshikuni Miyazaki
宮崎 利邦
Katsuhiko Watanabe
克彦 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP11867481A priority Critical patent/JPS5822375A/en
Publication of JPS5822375A publication Critical patent/JPS5822375A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Mechanical Sealing (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the titled material having high adherent property and not generating crack or peeling, in depositing a carbide coating on the surface of a base material based on C containing iron by chemical vapor deposition, by preliminarily forming an intermediate layer preventing the decarburization of the base material. CONSTITUTION:For example, when the titled material is used in a fixing ring of a mechanical seal, an intermediate layer 11 comprising Ni or Co is formed on a base material 10 made of cast iron processed into a predetermined shape by electrolytic plating. In the next process, to the surface of the intermediate layer 11 on the base material 10, a superhard coating 12 comprising carbide such as titanium carbide is formed by a chemical vapor deposition method. In this case, the base material 10 is not decarburized because the layer 11 is present and the formation of a decarburized layer is prevented. Therefore, the coating 12 is formed on the base material 10 densely and uniformly as well as adherent force thereof can be made high and crack or peeling of the coating can be prevented in a cooling process after the coating 12 is formed. In addition, the intermediate layer 12 can be formed from titanium nitride according to chemical vapor deposition.

Description

【発明の詳細な説明】 本発明は表面に超硬質の被膜を形成した金属材料および
その製造方法Kllする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal material having an ultra-hard coating formed on its surface and a method for manufacturing the same.

メカニカルシールなどのごとき摺動材料、あるいは切削
工具等にあっては耐摩耗性が強く要求される丸め、超硬
質会金中セラック材料等が広く利用されている。しかし
慶から耐摩耗性に関与するのは材料における表wO機械
的性質であるから、材料全体を耐摩耗性和しなくても、
表面だけを耐摩耗性に強化すればその機能を充尼する。
For sliding materials such as mechanical seals, cutting tools, etc., rounded, ultra-hard metal, shellac materials, etc., which require strong wear resistance, are widely used. However, from Kei's point of view, it is the mechanical properties of the material that are involved in wear resistance, so even if you do not add up the wear resistance of the entire material,
This function can be fulfilled by strengthening only the surface to make it more wear resistant.

このため比較的、軟質の材料、の表面に超硬質の被膜を
形成し九摺動部#などが開発されている。
For this reason, nine sliding parts #, etc., have been developed in which an ultra-hard coating is formed on the surface of a relatively soft material.

従来において鋳、鉄などの表INK超硬被膜を形成する
方法の一つとして化学蒸着法(以下CVD法と称す)が
開発されている。このCVD法は、鋳鉄などの基材の表
面に、炭化チタン(TIC)。
Conventionally, a chemical vapor deposition method (hereinafter referred to as CVD method) has been developed as one of the methods for forming an INK carbide coating on surfaces such as cast and iron. This CVD method uses titanium carbide (TIC) on the surface of a base material such as cast iron.

炭化ケイ素(Sic)などの耐摩耗性に優れた被膜を、
下記(1)式あるいは(2)式に示す化学反応によって
コーティングする手段である。
A coating with excellent wear resistance such as silicon carbide (Sic),
This is a means of coating by a chemical reaction shown in the following formula (1) or (2).

+11  ’rtcz4 + 2H2→Ti + 4H
C1T五十CH4→TiC+ 2Hz (21CHs81CLj+ Hz→S魚C+ 3HCt
+ H上記CVD法は高純度な炭化物硬質被膜を複雑な
形状の基材に対しても緻密かつ均一にコーティングでき
るという利点があシ、実用化が進んでいる。
+11 'rtcz4 + 2H2→Ti + 4H
C1T50CH4→TiC+ 2Hz (21CHs81CLj+ Hz→S Fish C+ 3HCt
+H The CVD method described above has the advantage of being able to densely and uniformly coat even complex-shaped substrates with a highly pure carbide hard film, and its practical use is progressing.

しかしながらこのようなCVD法において、基材として
炭素を含む鉄系材料もしくは鉄合金材料を用い、賦基材
の表面Ki[*に炭化チタン中炭化ケイ素に代表される
炭化物被膜をコーティングしようとする場合、基材表面
の炭素成分の一部が化学蒸着の過程で脱縦されてしまっ
て脱炭層を生じてしまう問題がある。このような脱炭層
の発生は所望の炭化物被膜の緻密かつ均−表コーティン
グを阻害し、被膜の基材に対する密着性を弱くし、強度
、靭性が低下してしまう欠点を生じ、また、基材と被膜
材料との熱膨張係数が異なるために被膜形成後の冷却過
程において被膜の表面に亀裂を生じさせた〕、一部が基
材から剥離されてし重うなどの原因となっていた。
However, in such a CVD method, when an iron-based material or an iron alloy material containing carbon is used as a base material and a carbide film typified by silicon carbide in titanium carbide is to be coated on the surface Ki[* of the base material] However, there is a problem in that a part of the carbon component on the surface of the base material is vertically removed during the chemical vapor deposition process, resulting in a decarburized layer. The occurrence of such a decarburized layer impedes the desired dense and uniform coating of the carbide film, weakens the adhesion of the film to the base material, and causes drawbacks such as a decrease in strength and toughness. Due to the difference in thermal expansion coefficient between the coating material and the coating material, cracks were generated on the surface of the coating during the cooling process after the coating was formed], and a portion of the coating was peeled off from the base material, causing weight.

本発明はこのような事情にもとづきなされたもので、そ
の目的とするところは、基材の脱炭を防止して超硬被膜
が基材に緻密かつ均一にコーティングされ、接着性も高
くなって亀裂や剥離を生じることがない超硬被膜金属材
料およびその製造方法を提供しようとする一部である。
The present invention was developed based on the above circumstances, and its purpose is to prevent decarburization of the base material, coat the base material with a carbide film densely and uniformly, and improve adhesiveness. This is part of an attempt to provide a carbide-coated metal material that does not cause cracks or peeling, and a method for manufacturing the same.

すなわち本発明の1つは、基材と炭化物からなる超硬被
膜との間に基材の脱炭を防止する中間層を形成したこと
を特徴とする超硬被膜金属材料であ〕、また本発vi4
E)4に01つは、中間層として窒化チタンを使用し、
該窒化チタンの中間層は化学蒸着法によって形成し、ζ
O中間層の表面に炭化物超硬被膜を化I#蒸着#によっ
て形成するようにしたことを特徴とする超硬被膜金属材
料の製造方法である。
That is, one aspect of the present invention is a carbide coated metal material characterized by forming an intermediate layer between a base material and a carbide coat made of carbide to prevent decarburization of the base material. Release vi4
E) 01 uses titanium nitride as the intermediate layer,
The titanium nitride intermediate layer is formed by chemical vapor deposition, and
This is a method for producing a carbide coated metal material, characterized in that a carbide carbide coat is formed on the surface of an O intermediate layer by chemical vapor deposition.

以下本発明の一実施例を第1図ないし114図にもとづ
き説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 114.

鮪1図は本発明に係る超硬被膜金属材料をメカニカルシ
ールの固定環に使用した例を示し、lはケーシング、2
は回転軸で上記ケーシング1の開口Jを貫通されている
。ケーシング1の内部には上記開口aK臨んで固定@4
が配置されてお夛、この固定1i4はOリング5を介し
てケーシング1の内面と封密を保っている。固定環4に
は回転iigが密接されている。この回転lICはたと
えば成形カー−yなどの軟質材からな夛、固定i14と
その密着面で摺動回転されるよう罠なっている0回転環
σはホル/−1を介して回転軸2と一体的に回転さ、・
れるようになっておル、ばねaKよって固定環6FC押
し付けられている。なお回転iagは回転軸2との間K
OリングIを介してシール性を保っている。
Figure 1 shows an example in which the carbide-coated metal material according to the present invention is used in a fixed ring of a mechanical seal, where l is a casing, and 2 is a casing.
is a rotating shaft that passes through the opening J of the casing 1. Inside the casing 1, the above opening aK faces and is fixed @4
is arranged, and this fixing 1i4 maintains a seal with the inner surface of the casing 1 via an O-ring 5. A rotating iig is closely connected to the fixed ring 4. This rotating IC is made of a soft material such as a molded car, for example, and the zero rotating ring σ, which is trapped so as to be slid and rotated by the fixed i14 and its contact surface, is connected to the rotating shaft 2 through the hole /-1. Rotates as one,・
The fixed ring 6FC is pressed by the spring aK. Note that the rotation iag is between K and the rotation axis 2.
Sealing performance is maintained through O-ring I.

したがって回転軸20回転に伴って回転*gは一体的に
回転され、ヒの回転mgと固定環4の会合面が相対的に
摺動回転されるが、この会合面は互に密着しているので
液体または気体の漏洩を防止しているものである。
Therefore, as the rotating shaft rotates 20 times, the rotation *g is rotated integrally, and the rotation mg of H and the meeting surface of the fixed ring 4 are relatively slid and rotated, but these meeting surfaces are in close contact with each other. This prevents liquid or gas leakage.

しかして上記固定H14には本発明の超硬被膜金属材料
が使用されてシシ、たとえば鋳鉄からなる基材10の表
面に中間層11が形成されているとともKこの中間層1
1の表面に超硬被膜12が形成されている。中間層11
はニッケルもしくはコバルトをメッキによって形成した
ものであシ、層厚は5〜50μ程度である。また超硬被
@11は炭化チタンまた#i廣化ケイ素をCVD法によ
って形成したものであシ、その膜厚は仕置であるがたと
えば10〜50#程度が好ましい。
For the fixing H14, the cemented carbide coated metal material of the present invention is used, and an intermediate layer 11 is formed on the surface of a base material 10 made of, for example, cast iron.
A cemented carbide coating 12 is formed on the surface of 1. middle layer 11
is formed by plating nickel or cobalt, and the layer thickness is approximately 5 to 50 μm. Further, the carbide coating 11 is formed of titanium carbide or #i silicon oxide by the CVD method, and its film thickness is limited, but is preferably about 10 to 50 #.

このような固定3j4、換型すれば超硬被膜金属材料を
製造する方法について説明する。
A method of manufacturing a cemented carbide coated metal material by fixing 3j4 and changing the shape will be described.

薦2図は中間層11としてニッケルもしくはコバルトメ
ッキ層を形成し、かつ超硬被膜12として炭化ケイ素を
コーティングする例におけるcvn装置の概略的構成を
示す。2#は水素Iンペであ〕、配管21の途中に流量
制御弁Jjaおよび流量計Jjaを有して気化装置24
に接続されている。tたこの水素がンペXaは他の配管
25を接続してあ〕、この配管25の途中には流量制御
弁xxbおよび流量計xsbを備えている。上記気化装
置24は加熱手段付温度制御装fzgを有している。気
化装置24にはメチルトリク−ルシラン(CH381C
j3)が貯えられている。気化装置24から導出された
配管21は上記水素がンペ20から直接導びかれた配管
25と合流されている。オた28はアルf7ま九はヘリ
ウムなどの不活性fX−ンペであ夛、配管2#の途中に
流量制御弁22@および流量針23・を備えている。こ
の配管2#は上記各配管15および2rとともに合流配
管10に接続されている。合流配管7oは反応装置JJ
K導入されている0反応装置J1は耐熱性に優れ九磁器
等からなる円筒状の反応容器s2の両端をシールしてあ
〉、その外部には加熱手段付温変制御装置J1(有して
いる0反応装置J1は配管J4を介して、化学反応によ
って発生したガスを吸収するためのトラップ装置xsy
c接続されていゐ。トラップ装置111flCは外部放
出配管3εが接続されている。
Figure 2 shows a schematic configuration of a CVN device in which a nickel or cobalt plating layer is formed as the intermediate layer 11 and silicon carbide is coated as the carbide coating 12. 2# is a hydrogen I pump], which has a flow control valve Jja and a flow meter Jja in the middle of the piping 21 to connect the vaporizer 24.
It is connected to the. The hydrogen pump Xa of the octopus is connected to another pipe 25], and a flow control valve xxb and a flow meter xsb are provided in the middle of this pipe 25. The vaporizer 24 has a temperature control device fzg with heating means. The vaporizer 24 contains methyltricholsilane (CH381C
j3) is stored. A pipe 21 led out from the vaporizer 24 is joined to a pipe 25 into which the hydrogen is led directly from the pump 20. The valve 28 is made of an inert fX-temperature such as helium, and is provided with a flow control valve 22 and a flow needle 23 in the middle of the pipe 2#. This pipe 2# is connected to the confluence pipe 10 together with each of the above-mentioned pipes 15 and 2r. The confluence pipe 7o is the reactor JJ
The O-reactor J1 that has been introduced has a cylindrical reaction vessel S2 with excellent heat resistance and is made of porcelain or the like with both ends sealed, and a temperature change control device J1 with a heating means (with The reactor J1 is equipped with a trap device xsy for absorbing gas generated by a chemical reaction via a pipe J4.
c is connected. The trap device 111flC is connected to an external discharge pipe 3ε.

このような構成のCVD装置を用いて超硬被膜金属材料
を製造する方法を述べる。
A method for producing a superhard coated metal material using a CVD apparatus having such a configuration will be described.

まず、所定の形状に加工し九鋳鉄などからなる基材10
に、、=−メチルまたは:IAルトからなる中間層11
を形成する。この場合、ニッケルまたはコ/肴ルト層は
公知の電気分解メッキ法によって形成し、その層厚は九
とえば15声程度でよい。
First, a base material 10 made of cast iron or the like is processed into a predetermined shape.
Intermediate layer 11 consisting of , , =-methyl or :IA ruto
form. In this case, the nickel or copper layer is formed by a known electrolytic plating method, and the layer thickness may be approximately 9, for example, 15 tones.

このような中間層11を予めメッキによって形成した基
材10を、反応装置11の容器J2内に収容する。そし
てまず不活性ガスがンぺ28から反応装置J1内に1ア
ル!ンt+aヘリウムなどの不活性ガスを供給し、この
不活性fスW、l!i気中において基材1−を所定の温
度(たとえば1200℃1度)tで加熱する。このこと
によル表面の不純物や不純ガスを放出させて中間層11
の表面を浄化する。
The base material 10 on which such an intermediate layer 11 has been formed in advance by plating is housed in the container J2 of the reaction device 11. First, inert gas is poured into reactor J1 from pump 28! An inert gas such as helium is supplied to the inert gas W, l! i Heating the base material 1- in air at a predetermined temperature (for example, 1200° C. 1 degree) t. As a result, impurities and impurity gas on the surface of the layer are released, and the intermediate layer 11
Clean the surface.

一方、気化装置24のメチルト蔓・りpルシランを所定
温度(たとえば20〜3(1)K加熱してメチルトリク
費ルシランの蒸気圧を一定の値(りとえば180−−)
とし、これに水素−ンペ20から一定の流速(たとえば
0.847m1m)の水素を供給する。
On the other hand, the methyl trisilane in the vaporizer 24 is heated to a predetermined temperature (for example, 20 to 3(1) K), and the vapor pressure of the methyl trisilane is raised to a constant value (for example, 180--).
To this, hydrogen is supplied from the hydrogen pump 20 at a constant flow rate (for example, 0.847 ml/m).

このような気化装置24は、上記浄化処理の終了した反
応装置J1の容器5xPc配管2rを介して導通し、同
時に配管xtspよび29も導通させ、メチルトリクロ
ルシランの蒸気−水素および不活性ガスを容l5JjK
供給する。このようにして容器32内において前述した
(2)式の化学反応を約1時間行わせることによ)、中
間層11の表面に炭化ケイ素の超硬被膜12を形成する
ことができる。
Such a vaporizer 24 is connected to the vessel 5xPc pipe 2r of the reactor J1, which has completed the purification process, and at the same time, the pipes xtsp and 29 are also connected, so that the vapor of methyltrichlorosilane - hydrogen and inert gas can be stored. l5JjK
supply In this way, by allowing the chemical reaction of formula (2) described above to occur in the container 32 for about one hour), the superhard coating 12 of silicon carbide can be formed on the surface of the intermediate layer 11.

上記被膜12の形成後は、配管xr、zsを閉じて容器
S2内に不活+jkfスだけを供給し、数年活性ガスの
雰囲気中で反応装置J1を徐冷する。冷却後、製品をI
ILn出し、必要に応じてつtbメカニカルシールの国
定1[としての機能を発揮させる九めに1被@ZXの摺
動される表面を研摩する。この研摩によ)、たとえば表
面の面粗度0.05声Ra e IIうねル0.3声1
1mK仕上げる。
After the coating 12 is formed, the pipes xr and zs are closed, and only the inert +jkf gas is supplied into the container S2, and the reactor J1 is slowly cooled in an active gas atmosphere for several years. After cooling, the product is
Take out the ILn and polish the sliding surface of the @ZX as necessary to make it function as the national standard 1 of the mechanical seal. By this polishing), for example, the surface roughness is 0.05, Ra e II ridges are 0.3, 1
Finish 1mK.

上記のごとく製造された超硬被膜金属材料は、その断画
組織をX線マイク四アナライプによって線分析してみる
と第3図Oごとき模式図となった。すなわち、鋳鉄(r
・)からなる基材10の表面に、約15μの厚みを有す
るニッケルメッキの中間層11が形成されてお)、この
中間層110表面KIN厚約sO声の炭化ケイ素の被膜
12が形成されていることが認められた。そしてこのも
のkは基材10の表面に脱炭層の生成が全く認められな
いものであった。
When the cross-sectional structure of the carbide-coated metal material produced as described above was subjected to line analysis using an X-ray microphone quadrimeter, a schematic diagram as shown in FIG. 3 O was obtained. That is, cast iron (r
A nickel-plated intermediate layer 11 having a thickness of about 15 μm is formed on the surface of a base material 10 consisting of . It was recognized that there was. In this case, no decarburized layer was observed on the surface of the base material 10.

このような超硬被膜金属材料は、化学蒸着法によって超
硬被膜12を形成する場合に、基材10の表面が中間層
11によって予め被われているから、脱炭されず、つt
〕脱羨層の生成が防止される。したがって被1[12が
基材10に対し緻密かつ均一に形成され、かつ被膜12
の基材101IC対する接合力も大きくなる。また、被
膜xl(D形成11に誉ける冷却される過程で、被膜1
2の亀裂中剥離の発生がない。
When forming the carbide coating 12 by chemical vapor deposition, such a carbide coating metal material is not decarburized because the surface of the base material 10 is covered with the intermediate layer 11 in advance.
] Generation of a de-envy layer is prevented. Therefore, the coating 1[12 is formed densely and uniformly on the base material 10, and
The bonding force to the base material 101IC also increases. In addition, during the cooling process of the coating xl (D formation 11), the coating 1
2. No peeling occurred during cracks.

また、このような超硬被膜金属材料は、18g1図のメ
カニカルシールにおける固定環4として使用し大場合に
は、回転環5との密着性がよくてオイル洩れやガス洩れ
を効果的に防止し、さらに被膜12の摩擦係数が小さく
、耐摩耗性においてきわめて優れている。このため耐久
性能が向上する。
In addition, when such a carbide-coated metal material is used as the fixed ring 4 in the mechanical seal shown in Fig. 18g1, it has good adhesion with the rotating ring 5 and effectively prevents oil and gas leaks. Moreover, the coating 12 has a small coefficient of friction and is extremely excellent in wear resistance. This improves durability.

菖4図においては上記実施例に係る本発明の固定環4と
、従来公知の材料によって製造した他の固定環との摩耗
特性について実験した結果を示した。すなわち、使用し
た試料は、表面処理のない鋳鉄、t−メット、アルンナ
、全体を炭化ケイ素焼結体としたもの、および本発明に
係る炭化ケイ素の超硬被膜を形成したものである0回転
Illとして成形カー−ンJ10ものを用い、回転数2
00Or’、p、wa、面圧力10 kP/cnhcよ
って各々回転摺動10時間vk#cおける摺動面の摩耗
量を測定したものである。この第4図からも判るよう゛
に本発明の超硬被膜金属材料は、耐摩耗性に優れ、耐久
特性が向上することが理解できる。
Fig. 4 shows the results of an experiment regarding the wear characteristics of the fixed ring 4 of the present invention according to the above embodiment and another fixed ring manufactured from a conventionally known material. That is, the samples used were cast iron without surface treatment, T-Met, Arunna, a silicon carbide sintered body as a whole, and a 0-turn Ill with a silicon carbide carbide coating according to the present invention. A molding carn J10 was used as the molding carn, and the number of revolutions was 2.
00Or', p, wa, surface pressure of 10 kP/cnhc, and the amount of wear on the sliding surface after 10 hours of rotation and sliding vk#c was measured. As can be seen from FIG. 4, it can be seen that the cemented carbide coated metal material of the present invention has excellent wear resistance and improved durability characteristics.

上記実施例において社中間層11としてニッケルもしく
は=パル)Oメッキ層を用いた例を詳述じたが、中間層
11として窒化チタンを用いてもよく、この窒化チタン
を用いる場合についての製造方法を第5図にもとづき説
明する。
In the above embodiment, an example in which a nickel or =PAL) O plating layer was used as the intermediate layer 11 was described in detail, but titanium nitride may also be used as the intermediate layer 11, and a manufacturing method for the case where titanium nitride is used. will be explained based on FIG.

第5図は窒化チタンをcvn#&によって基材表面に形
成する手段を、第2図の装置に追加したものであシ、追
加した部分を説明すると、50は四塩化チタン(TiC
4)を気化させる気化装置であシ、加熱手段付温度制御
装置51を有している。気化装置5”□Oは、途中に流
量制御弁2241および流量計JJdを有する配管52
を通じて水素がンペ20に連結されてシシ、かつ他の配
管53を介して合流配管xoK@@されている。
Fig. 5 shows a device in which a means for forming titanium nitride on the surface of the base material by cvn#& has been added to the apparatus shown in Fig. 2.
4), and has a temperature control device 51 with heating means. The vaporizer 5”□O has a pipe 52 having a flow control valve 2241 and a flow meter JJd in the middle.
Hydrogen is connected to the pump 20 through the pipe 53, and is connected to the confluence pipe xoK@@ via another pipe 53.

また54は窒素Iンペであル、配管15を介して合流配
管111に@絖されている。この配管55にも流量制御
弁22・および流量計2S・が設けられている。
Further, 54 is a nitrogen inlet, which is connected to the confluence pipe 111 via the pipe 15. This piping 55 is also provided with a flow control valve 22 and a flow meter 2S.

このような装置を用いて超硬被膜金属材料を製造する手
順を説明する。
A procedure for manufacturing a cemented carbide coated metal material using such an apparatus will be explained.

所定形状に加工した基材10を反応装置110容BaX
内に収容する。そして不活性ガスがンぺ28から反応装
置の容器S2内に不活性ガスを供給し、この不活性ガス
雰H気中において基材10を加熱し、脱ガス処理を行う
The base material 10 processed into a predetermined shape is placed in a reactor 110 volume BaX.
to be contained within. Then, an inert gas is supplied from the inert gas pump 28 into the container S2 of the reaction apparatus, and the base material 10 is heated in this inert gas atmosphere H to perform a degassing treatment.

一方、四塩化チタンを収容した気化装置50内に水素ボ
ンぺ20から水素を導入して四塩化チタンを気化させる
。上記気化装置10の四塩化チタン蒸気と、水素がンぺ
20からの水素と、ii1素ゲンペ54からの窒素を反
応装置の容器12内“に供給する。この場合四塩化チタ
ンと窒素との供給比率を適幽に選定(たとえばN2/T
 I CL4=6〜10)l、、かつ基材10を100
0℃m&の温度に加熱し、水嵩供、給も適#!AlIC
制御する。
On the other hand, hydrogen is introduced from the hydrogen tank 20 into the vaporizer 50 containing titanium tetrachloride to vaporize the titanium tetrachloride. Titanium tetrachloride vapor from the vaporizer 10, hydrogen from the hydrogen tank 20, and nitrogen from the ii1 element tank 54 are supplied into the reactor vessel 12. In this case, titanium tetrachloride and nitrogen are supplied. Select the ratio appropriately (for example, N2/T
I CL4 = 6 to 10) l, and base material 10 to 100
Heating to a temperature of 0°C m & water volume and supply are also suitable #! AlIC
Control.

これによって (3)2〒ICL4+’N2+4M宜→2T息N+8H
CAの化学反応を生じ、窒化チタン(TiN)が基材1
0の表面に形成される。
As a result, (3) 2〒ICL4+'N2+4M yi → 2T breath N+8H
A chemical reaction of CA occurs, and titanium nitride (TiN) becomes the base material 1.
Formed on the surface of 0.

引き続き反応装置J1へのfス供給を切シ換えて、かつ
温度を制御して第3図における炭化ケイ素析出の化学蒸
着法によル、上記窒化チタンの表面に炭化ケイ素被膜を
形成する。
Subsequently, the f-sulfur supply to the reactor J1 is switched and the temperature is controlled to form a silicon carbide film on the surface of the titanium nitride by the chemical vapor deposition method of depositing silicon carbide as shown in FIG.

このようにして製造された超硬被膜金属材料は、中間層
IIとして窒化チタンの被膜が構成されてbるが、この
ものは中間層11としてニッケルメッキもしくは=パル
トメツキを使用したものと、機械的性質において差異が
なく、耐摩耗性に優れている。
The cemented carbide coated metal material manufactured in this way has a titanium nitride coating as the intermediate layer II, but this material is different from the one using nickel plating or part plating as the intermediate layer 11, and the one using nickel plating or part plating as the intermediate layer 11. There is no difference in properties, and it has excellent wear resistance.

そして上記の製造方法によると、菓3図に示された被膜
形成のための化学蒸着装置に1窒化チタンの中間層を形
成するための装置を付加するだけで、中間層と被膜とを
連続して成形することができるから、製造装置が簡単で
あるばか)でなく、中間層を形成した基材1#を反応装
tllから移し変える必要がなく、よって製造手間を格
段に省略することができる。特に反応装置31の移し変
えを行う場合、中間層11の表面に不純物、不純ガスが
付着するので被膜12を形成するに先立って再び脱ガス
等の浄化を必要とするととになるが、中間層11の形成
後引き続き同一反応装置31によシ被膜12を形成する
とこのような面倒な手間を要さないなどの利点がある。
According to the above manufacturing method, by simply adding a device for forming an intermediate layer of titanium nitride to the chemical vapor deposition device for forming the film shown in Fig. 3, the intermediate layer and the film can be continuously formed. Since the manufacturing equipment is simple, there is no need to transfer the base material 1# on which the intermediate layer is formed from the reaction chamber Tll, and therefore the manufacturing labor can be significantly reduced. . In particular, when the reactor 31 is transferred, impurities and impurity gas adhere to the surface of the intermediate layer 11, which requires purification such as degassing again before forming the coating 12. If the coating film 12 is subsequently formed in the same reaction device 31 after the formation of the coating film 11, there is an advantage that such troublesome effort is not required.

なお本発明に係る第1番目の発明は各実施例に制約され
るものではない。すなわち中間層11としては実施例に
おいてニッケルメッキ、コバルトメッキ鳴しくけ窒化チ
タンが例示されているが、この中間層11は要するに超
硬被膜12が化学蒸着される際に基材10の脱炭を防止
するものであればよい、したがって中間層11としては
被@I JC)化学蒸着過SCおける反応温度以上の耐
熱性をもち、かり脱炭を防止すべく基材ieo表面を被
うものであればよい。そして機械的性質の点で中間層1
1は基材10および被膜120両者に対する接合力を有
し、ある程度以上の靭性をもち、かつ基材10および被
j[1205m張係数の中間位O熱膨張率をもっている
どとが望ましい、このようなことから、中間層11とし
ては前述し九ニッケル、コバルト、窒化チタンのはかに
九とえば窒化ニオブ(NbN)等も使用可能である。
Note that the first aspect of the present invention is not limited to each embodiment. That is, as for the intermediate layer 11, nickel plating, cobalt plating, and titanium nitride are exemplified in the embodiments, but in short, this intermediate layer 11 is used to decarburize the base material 10 when the carbide coating 12 is chemically vapor deposited. Therefore, as the intermediate layer 11, any material can be used as long as it has heat resistance higher than the reaction temperature in chemical vapor deposition (SC) and covers the surface of the base material to prevent decarburization. Bye. and the intermediate layer 1 in terms of mechanical properties.
1 has a bonding force to both the base material 10 and the coating 120, has a certain degree of toughness, and has a coefficient of thermal expansion between the tensile coefficient of the base material 10 and the coating 1205. Therefore, as the intermediate layer 11, materials such as nickel, cobalt, and titanium nitride, such as niobium nitride (NbN), can also be used.

また、超硬被膜12は炭化チタンもしくは炭化ケイ素の
みに制約されるものではなく、その他炭化ホウ素(11
4C)などを含む炭化物であっても実施可能である。
Further, the carbide coating 12 is not limited to titanium carbide or silicon carbide, but may also be made of boron carbide (11
It is also possible to use carbides containing 4C) and the like.

さらKN化ケイ素の化学蒸着法は前述した篤(2)式を
採用することKilらず、たとえば81Cj+CHn+
Hz→81 C+ 4 HCj + 11!などの反応
式を利用するものであってもよい。
Furthermore, the chemical vapor deposition method of silicon KNide does not require the adoption of the above-mentioned equation (2); for example, 81Cj+CHn+
Hz→81 C+ 4 HCj + 11! It is also possible to use a reaction formula such as

そしてまた、第2図および菖5図に各々示された反応装
置JJKついては、外部から容器32内を加熱するもの
KFi限らず、内熱方式を採用することも可能であ〕、
容器J24ペルシアタイブで構成するとともできる。
Furthermore, regarding the reactor JJK shown in FIG. 2 and FIG.
The container can be constructed of J24 Persian type.

以上詳述し九通夛、本発明の嬉1の発明は、炭素を含有
する鉄を主体とし丸材料からなる基材の表面に、耐熱性
を有し皺基材の脱炭を防止する中間層を形成し、この中
間層の表面に炭化物の超硬被膜を化学蒸着して形成した
ものである。したがってこのものは中間層が基材の脱炭
を阻止するので超硬被膜の付着力が向上するとともに数
置かつ均一な被膜が形成される。しかも超硬被膜の亀裂
中剥離が少く、耐摩耗性を維持して耐久性に優れ丸もの
となる。tた基材として鉄屯しくけ鉄合金を採用するの
で、基材形状を任意に加工することができて複雑な形状
の製品も容易に得られるとともに、基材が機械的強度の
大部分を負担するので衝撃等にも耐え得るものとなる。
As described in detail above, the first aspect of the present invention is to provide an intermediate layer having heat resistance and preventing decarburization of the wrinkled base material on the surface of a base material mainly made of iron containing carbon and made of a round material. A superhard carbide coating is formed on the surface of this intermediate layer by chemical vapor deposition. Therefore, since the intermediate layer prevents decarburization of the base material, the adhesion of the carbide coating is improved and a uniform coating is formed in several places. Moreover, the carbide coating has little peeling during cracks, maintains wear resistance, and has excellent durability and is round. Since a steel alloy is used as the base material, the shape of the base material can be processed arbitrarily, making it easy to obtain products with complex shapes, and the base material provides most of the mechanical strength. Since it bears a heavy burden, it can withstand shocks and the like.

また第2の発明は、基材の表面に化学蒸着法によって中
間層を形成し、しかるのちこの中間層表面に化学蒸着法
によって超硬被膜を形成する方法であるから、上暉第1
の発明に係る超硬被膜金属材料の製造が同一反応装置を
使用して連続して行え、よってその手間がきわめて簡単
になり、工程4削減できる利点がある。
The second invention is a method of forming an intermediate layer on the surface of a base material by chemical vapor deposition, and then forming a carbide coating on the surface of this intermediate layer by chemical vapor deposition.
The production of the cemented carbide coated metal material according to the invention can be carried out continuously using the same reaction apparatus, which has the advantage of greatly simplifying the labor and eliminating four steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示し、第1図
はメカニカルシールの構成図、#I2図は固定環として
使用する超硬被膜金属材料の製造方法に使用する装置の
概略的構成図、第3図は上記装置を用いて製造した製品
のX線分析図、第4図は上記製品と従来品との耐摩耗性
を示す特性図である。またWXs図は他の実施例に係る
製造方法に使用するための装置を示す概略的構成図であ
る。 10・・・基材、11・・・中間層、12・・・超硬被
膜。 出願人代理人  弁理士 鈴 江 武 彦矛3図 一!IP4図 矛5図
Figures 1 to 4 show an embodiment of the present invention, Figure 1 is a configuration diagram of a mechanical seal, and Figure #I2 is a schematic diagram of an apparatus used in the method for manufacturing a cemented carbide coated metal material used as a fixed ring. FIG. 3 is an X-ray analysis diagram of a product manufactured using the above apparatus, and FIG. 4 is a characteristic diagram showing the wear resistance of the above product and a conventional product. Further, the WXs diagram is a schematic configuration diagram showing an apparatus for use in a manufacturing method according to another embodiment. DESCRIPTION OF SYMBOLS 10... Base material, 11... Intermediate layer, 12... Carbide coating. Applicant's agent Patent attorney Takeshi Suzue Hikoyoko 3 Figure 1! IP4 illustration 5 illustration

Claims (1)

【特許請求の範囲】 Cυ 炭素を含有する鉄を主体とし大材料からなる基材
0!1面に、耐熱性を有しかつ#基材の脱炭を防止する
中間層を形成し、この中間層の表面に化学蒸着された炭
化物からなる超硬被膜を形成したことを特徴とする超硬
被膜金属材料・(2)  上記1iiWl被Iliは膨
化チタンもしくは炭化ケイ素であることを特徴とする特
許請求のaS館(1)項記載0超硬被属金属材$i!。 (31上記中間層はニッケルもしくはコ/ぐルトのメッ
キ層であることを特徴とする特許請求のS囲第(1)項
もしくは第(2)項記載の超硬被膜金属材料。 (4)上記中間層は窒化チタンである仁とを特徴とする
特許請求の範囲第(1)項もしくは第(2)項記載の超
硬被膜金属材料。 (5)炭素を含有する鉄を主体とした材料からなる基材
の表面(窒化チタンからなる中間層を化学蒸着法により
形成し、仁の中間層の表w−炭化物から慶る超硬被膜を
化学蒸着法によシ形成することを特徴とする111tI
被膜金属材料の製造方法。
[Scope of Claims] Cυ An intermediate layer having heat resistance and preventing decarburization of the base material is formed on 0!1 side of a base material made of a large material mainly composed of iron containing carbon, and this intermediate layer is A cemented carbide coated metallic material characterized in that a carbide coating made of chemically vapor-deposited carbide is formed on the surface of the layer.(2) A patent claim characterized in that the above 1iiWl coating Ili is expanded titanium or silicon carbide. Paragraph (1) of aS Building 0 Carbide metal material $i! . (31) The cemented carbide coated metal material according to Clause (1) or (2) of Subsection S of the patent claim, characterized in that the intermediate layer is a nickel or co/gold plated layer. (4) The above-mentioned The cemented carbide coated metal material according to claim 1 or 2, wherein the intermediate layer is made of titanium nitride. (5) Made of a material mainly composed of iron containing carbon. The surface of the base material (111tI, characterized in that an intermediate layer made of titanium nitride is formed by a chemical vapor deposition method, and a carbide coating made of carbide is formed by a chemical vapor deposition method on the surface of the intermediate layer)
Method for producing coated metal material.
JP11867481A 1981-07-29 1981-07-29 Superhard coating metal material and preparation thereof Pending JPS5822375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11867481A JPS5822375A (en) 1981-07-29 1981-07-29 Superhard coating metal material and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11867481A JPS5822375A (en) 1981-07-29 1981-07-29 Superhard coating metal material and preparation thereof

Publications (1)

Publication Number Publication Date
JPS5822375A true JPS5822375A (en) 1983-02-09

Family

ID=14742393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11867481A Pending JPS5822375A (en) 1981-07-29 1981-07-29 Superhard coating metal material and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5822375A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177179A (en) * 1984-02-23 1985-09-11 Toshiba Corp Black ornamental article
US4775635A (en) * 1985-04-12 1988-10-04 E. I. Du Pont De Nemours And Company Rapid assay processor
US4806313A (en) * 1985-04-12 1989-02-21 E. I. Du Pont De Nemours And Company Rapid assay processor
US4869929A (en) * 1987-11-10 1989-09-26 Air Products And Chemicals, Inc. Process for preparing sic protective films on metallic or metal impregnated substrates
US4885043A (en) * 1987-03-23 1989-12-05 International Business Machines Corporation Method for selective decarburization of iron based material
JPH0319715A (en) * 1989-06-09 1991-01-28 Kiyoshi Inoue Rotating grooving tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177179A (en) * 1984-02-23 1985-09-11 Toshiba Corp Black ornamental article
JPH029671B2 (en) * 1984-02-23 1990-03-02 Tokyo Shibaura Electric Co
US4775635A (en) * 1985-04-12 1988-10-04 E. I. Du Pont De Nemours And Company Rapid assay processor
US4806313A (en) * 1985-04-12 1989-02-21 E. I. Du Pont De Nemours And Company Rapid assay processor
US4885043A (en) * 1987-03-23 1989-12-05 International Business Machines Corporation Method for selective decarburization of iron based material
US4869929A (en) * 1987-11-10 1989-09-26 Air Products And Chemicals, Inc. Process for preparing sic protective films on metallic or metal impregnated substrates
JPH0319715A (en) * 1989-06-09 1991-01-28 Kiyoshi Inoue Rotating grooving tool

Similar Documents

Publication Publication Date Title
JPH0566358B2 (en)
US3784402A (en) Chemical vapor deposition coatings on titanium
US3787223A (en) Chemical vapor deposition coatings on titanium
US3771976A (en) Metal carbonitride-coated article and method of producing same
JPH032374A (en) Depositing method for ceramic type coating on metal substrate and member having coating obtained by said method
US4569862A (en) Method of forming a nitride layer
JP2501062B2 (en) Nitriding method of nickel alloy
CN109972100A (en) A kind of preparation method of tubulose chromium target
US3807008A (en) Chemical vapor deposition coatings on titanium
JPS5822375A (en) Superhard coating metal material and preparation thereof
JPS6056061A (en) Wear resistant parts
JPH02298271A (en) Method for one-process deposition in ceramic coating
US5254369A (en) Method of forming a silicon diffusion and/or overlay coating on the surface of a metallic substrate by chemical vapor deposition
JP3081765B2 (en) Carbon member and method of manufacturing the same
JPH01247576A (en) Heat-treated chemical vapor deposition substrate and heat-treatment method
JP3081764B2 (en) Carbon member having composite coating and method of manufacturing the same
JPS62290871A (en) Wear-resistant article having tungsten carbide layer and its production
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
CN113621937A (en) Method for preparing ceramic multilayer film on metal surface by chemical heat treatment
CA2066100A1 (en) Method of forming a silicon diffusion and/or overlay coating on the surface of a metallic substrate by chemical vapor deposition
JPH04161308A (en) Simple mold for molding and its manufacture
JPH02149673A (en) Member coated with rigid carbon film
JPH0971855A (en) Carbohardened table ware and production thereof
JPS6137230B2 (en)
JPS61153279A (en) Production of material coated with hard boron nitride