JPS5821960Y2 - Supercooling control valve - Google Patents

Supercooling control valve

Info

Publication number
JPS5821960Y2
JPS5821960Y2 JP4822280U JP4822280U JPS5821960Y2 JP S5821960 Y2 JPS5821960 Y2 JP S5821960Y2 JP 4822280 U JP4822280 U JP 4822280U JP 4822280 U JP4822280 U JP 4822280U JP S5821960 Y2 JPS5821960 Y2 JP S5821960Y2
Authority
JP
Japan
Prior art keywords
refrigerant
supercooling
pressure
valve
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4822280U
Other languages
Japanese (ja)
Other versions
JPS56151568U (en
Inventor
小宮靖雄
Original Assignee
株式会社 鷲宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 鷲宮製作所 filed Critical 株式会社 鷲宮製作所
Priority to JP4822280U priority Critical patent/JPS5821960Y2/en
Publication of JPS56151568U publication Critical patent/JPS56151568U/ja
Application granted granted Critical
Publication of JPS5821960Y2 publication Critical patent/JPS5821960Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【考案の詳細な説明】 この考案は冷凍系統の凝縮器出口側冷媒の過冷却度を制
御して蒸発器に適正量の冷媒を供給する過冷却制御弁に
関する。
[Detailed Description of the Invention] This invention relates to a subcooling control valve that controls the degree of subcooling of refrigerant on the outlet side of a condenser in a refrigeration system and supplies an appropriate amount of refrigerant to an evaporator.

用する産業分野は一般の冷凍冷房装置で、夏冬等周囲温
度の変動巾の多い条件下で継続して用いられる。
The industrial field in which it is used is general refrigeration and cooling equipment, which is continuously used under conditions where the ambient temperature fluctuates widely, such as in summer and winter.

例えば空冷式パッケージエアコン、チーラー等に適用さ
れる。
For example, it is applied to air-cooled package air conditioners, chillers, etc.

過冷却制御弁は冷凍サイクルの凝縮器出口側の冷媒過冷
却度を検知し、設定過冷却度と比較して適正量の冷媒を
蒸発器に供給すると共に、絞り孔で高圧冷媒を断熱膨張
させ減圧する作用を行う弁であり、弁本体頭部のパワー
エレメント室のダイアフラム上室に凝縮器出口側の温度
を検知する感温部の封入冷媒圧力P′ を導入し、凝縮
器出口圧力(−次側圧力)Plをダイアフラム下室に導
入し、さらに二次側室に設けた過冷却度設定ばねの設定
張力P3をダイアフラムに作用させており、ダイアフラ
ム有効面積Aに作用する圧力差P′P1と、ばね張力P
3を対抗させ弁を開閉するよようにしている。
The supercooling control valve detects the degree of supercooling of the refrigerant on the condenser outlet side of the refrigeration cycle, and compares it with the set degree of supercooling to supply an appropriate amount of refrigerant to the evaporator, and adiabatically expands the high-pressure refrigerant through the throttle hole. This is a valve that acts to reduce pressure, and the refrigerant pressure P' of the temperature sensing part that detects the temperature on the condenser outlet side is introduced into the chamber above the diaphragm of the power element chamber at the head of the valve body, and the condenser outlet pressure (- Next side pressure) Pl is introduced into the diaphragm lower chamber, and the set tension P3 of the supercooling degree setting spring provided in the secondary side chamber is applied to the diaphragm, and the pressure difference P'P1 acting on the diaphragm effective area A and , spring tension P
3 to open and close the valve.

したがってこの構造の弁においては、感温部の封入冷媒
は装置冷媒に対し、同一温度に対応する相邑圧力が装置
冷媒より高い冷媒が用いられる。
Therefore, in a valve having this structure, the refrigerant sealed in the temperature sensing section is a refrigerant that has a higher relative pressure than the device refrigerant at the same temperature.

その例として米国特許公報第3367130号に装置冷
媒R−22に対し、感温部封入冷媒をR−143a又は
R−502を封入したものが示されている。
As an example, US Pat. No. 3,367,130 discloses a device in which R-143a or R-502 is encapsulated as a temperature-sensing refrigerant in place of the device refrigerant R-22.

とのR−143aとR−22の凝縮圧力、温度特性曲線
(P−T曲線)を対比した第2図の線図で説明すると、
曲線イはR−22のP−T曲線を示し、曲線口′はR−
143aのP−T曲線を示し、曲線口はR−143aの
P// T曲線の圧力値P′からばねの設定張力P3
を控除したP’−p3で示される弁開点特性曲線を示し
たものである。
To explain with the diagram in Figure 2, which compares the condensing pressure and temperature characteristic curves (PT curves) of R-143a and R-22,
Curve A shows the P-T curve of R-22, and curve opening ' shows R-22's P-T curve.
The P-T curve of R-143a is shown, and the curve opening is the set tension P3 of the spring from the pressure value P' of the P//T curve of R-143a.
This figure shows a valve opening point characteristic curve expressed as P'-p3 after subtracting P'-p3.

イと口を比較すると、凝縮圧力の高い範囲も、また凝縮
圧力の低い範囲でも同一圧力に対する温度差(過冷却度
)はぼy等しく、同一過冷却度で弁は作動する。
Comparing A and A, the temperature difference (degree of supercooling) for the same pressure is almost the same in the range of high condensing pressure and the range of low condensing pressure, and the valve operates at the same degree of supercooling.

これは装置の運転状態における装置冷媒R−22のP−
T曲線の勾配(dp/dt)と封入冷媒R−143aの
P’ −T曲線の勾配(dp/dt)がほぼ同じである
ことによる。
This is the P-
This is because the slope of the T curve (dp/dt) and the slope of the P'-T curve (dp/dt) of the sealed refrigerant R-143a are almost the same.

第3図はR−502とR−22のP−T曲線を対比した
線図で、イはR−22のP−T曲線ハ′はR−502の
P−T曲線、ハは弁開点特性曲線を示したもので、イと
八を比較すると、凝縮圧力の高い範囲では過冷却度は小
さく、凝縮圧力の低い範囲では過冷却度が大きくなって
いる。
Figure 3 is a diagram comparing the PT curves of R-502 and R-22, where A is the PT curve of R-22, C' is the PT curve of R-502, and C is the valve opening point. Comparing the characteristic curves A and 8, the degree of supercooling is small in the range of high condensing pressure, and the degree of supercooling is large in the range of low condensing pressure.

これは装置冷媒のP−T曲線の勾配dp/dtに対し、
封入冷媒のP’−T曲線の勾配dp/dtが小さい(d
p/ 〉dp′/dt)の結果である。
This is based on the slope dp/dt of the PT curve of the device refrigerant.
The slope dp/dt of the P'-T curve of the sealed refrigerant is small (d
p/〉dp'/dt).

t これらの過冷却制御弁を水冷式冷凍冷房装置に使用する
場合には、凝縮圧力は年間を通じほとんど変化しないの
で、過冷却度も変化がなく安定した流量の制御が出来た
が、最近の冷凍冷房装置においてはほとんどが空冷式と
なり、この空冷式冷凍冷房装置においては、凝縮圧力が
周囲外気温度の変動によって著しく変化し、夏季は冬季
に比し凝縮圧力が数倍に達することがあり、同一過冷却
度に対する流量は、夏は冬に比し過大となり、逆に周囲
温度が低く凝縮圧力の低下する冬は流量が少なく冷却能
力が低下する結果となり、周囲温度の変動による流量変
化を補償しなければならないという問題が生じた。
t When these supercooling control valves are used in water-cooled refrigeration equipment, the condensing pressure hardly changes throughout the year, so the degree of supercooling does not change and a stable flow rate can be controlled. Most air-conditioning systems are air-cooled, and in these air-cooled refrigeration systems, the condensing pressure changes significantly depending on fluctuations in the surrounding outside air temperature, and the condensing pressure in summer can reach several times that in winter, and the The flow rate relative to the degree of supercooling is excessive in summer compared to winter, and conversely, in winter when the ambient temperature is low and condensing pressure is low, the flow rate is low and the cooling capacity is reduced. The problem arose that it had to be done.

以上の説明から明らかなように、装置冷媒のP−T曲線
dp//dtに対し、封入冷媒のP’−T曲線の勾配d
V <dp;/dtとすることにより周囲t 温度の変動による凝縮圧力の変化に伴う流量変化を補償
することができることが理解される。
As is clear from the above explanation, the slope d of the P′-T curve of the sealed refrigerant is
It is understood that by setting V<dp;/dt, it is possible to compensate for changes in flow rate due to changes in condensing pressure due to changes in ambient t temperature.

そこで本考案は装置冷媒前記R−22のP −T曲線の
勾配dp/ に対し感温部封入冷媒のP′−T曲線の勾
配dpン、tがdp/、tくdpンdtの特性を有する
ようにすることを技術的課題とするものである。
Therefore, the present invention has developed the characteristics of the slope dp/ of the P'-T curve of the refrigerant enclosed in the temperature sensitive section, t is dp/, and t dp/dt with respect to the slope dp/ of the P-T curve of the device refrigerant R-22. The technical challenge is to make this possible.

上記の技術的課題を解決するために、本考案の講じた技
術的手段は下記の通りである。
In order to solve the above technical problems, the technical measures taken by the present invention are as follows.

過冷却制御弁の感温部封入冷媒をモノプロモトフルオロ
メタン(R−13B1)とする。
The refrigerant enclosed in the temperature sensing part of the supercooling control valve is monopromotofluoromethane (R-13B1).

上記技術的手段は次のように作用する。The above technical means works as follows.

第4図ばR−13B1とR−22のP −T曲線並びに
弁開点特性曲線を示したもので、曲線イはR−22のP
−T曲線、曲線二′はR−13B1のP−T曲線、曲線
二は弁開点特性曲線を示したものである。
Figure 4 shows the P-T curve and valve opening point characteristic curve of R-13B1 and R-22. Curve A shows the P-T curve of R-22.
-T curve, curve 2' shows the PT curve of R-13B1, and curve 2 shows the valve opening point characteristic curve.

ダイアフラム上室に感温部の封入冷媒圧力P′を導入し
、凝縮器出口圧力P1をダイアフラム下室に導入し、ダ
イアフラム有効面積Aに作用する圧力差(P’P1)と
、二次側室に設けた過冷却度設定ばねの設定張力P3を
対抗させ弁を開閉制御するが、第4図で示すようにdp
、;/dt>dp/dtの関係から凝縮圧力の低い場合
には小さな過冷却度で弁が開き始め、凝縮圧力が高い場
合には大さな過冷却度で弁を開き始める様に機能し、装
置の運転状態にあ・いて凝縮圧力が高い圧力範囲では過
冷却度が大きくならないと弁は開き始めないが、弁開度
は小さくとも弁前後の冷媒圧力差が大きいので、流量は
確保出来、低い圧力範囲では過冷却度が小さくて弁は開
き始めるので、高い圧力範囲の弁開き始めの過冷却度に
相当する低い圧力範囲の過冷却度では弁開度は十分大き
く、弁前後の冷媒圧力差が小□くても流量が確保出来る
ので、結果として凝縮圧力が周囲温度の変動によって変
化しても、所定の流量が得られる様作用する。
The sealed refrigerant pressure P' of the temperature sensing part is introduced into the upper chamber of the diaphragm, the condenser outlet pressure P1 is introduced into the lower chamber of the diaphragm, and the pressure difference (P'P1) acting on the diaphragm effective area A and the secondary side chamber are The opening and closing of the valve is controlled by opposing the set tension P3 of the provided supercooling degree setting spring, but as shown in Fig. 4, dp
, ;/dt > dp/dt When the condensing pressure is low, the valve starts to open at a small degree of supercooling, and when the condensing pressure is high, the valve starts to open at a large degree of supercooling. In the operating state of the equipment and in the pressure range where the condensing pressure is high, the valve will not begin to open unless the degree of supercooling becomes large, but even if the valve opening is small, the difference in refrigerant pressure before and after the valve is large, so the flow rate cannot be secured. In the low pressure range, the degree of supercooling is small and the valve begins to open, so in the degree of supercooling in the low pressure range, which corresponds to the degree of supercooling at the beginning of the valve opening in the high pressure range, the degree of valve opening is sufficiently large, and the refrigerant before and after the valve is Since a flow rate can be ensured even if the pressure difference is small, a predetermined flow rate can be obtained even if the condensing pressure changes due to fluctuations in ambient temperature.

本考案は下記の特有の効果を生ずる。The present invention produces the following unique effects.

弁開閉動作に際してのハンチング現象が減少する。Hunting phenomenon during valve opening/closing operation is reduced.

これは装置冷媒のP−T曲線の勾配dp/dtに対し、
制御弁感温部封入冷媒の勾配dp;/dtが大きいこと
から温度に対する冷媒圧力が装置冷媒の圧力に対し、感
温部封入冷媒圧力が従来の感温部封入冷媒圧力に比し高
く、感温部封入冷媒圧力と装置冷媒圧力の差にダイアフ
ラムの有効面積を掛けた(P’−P)A荷重に対抗する
過冷却度設定用ばねの設定張力P3が大きくなるため弁
開閉動作が安定することになる。
This is based on the slope dp/dt of the PT curve of the device refrigerant.
Since the gradient dp;/dt of the refrigerant sealed in the temperature sensing part of the control valve is large, the refrigerant pressure with respect to temperature is higher than the pressure of the device refrigerant, and the pressure of the refrigerant sealed in the temperature sensing part is higher than that of the conventional temperature sensing part. The valve opening/closing operation is stabilized because the set tension P3 of the supercooling degree setting spring that counters the (P'-P)A load, which is the difference between the hot part sealed refrigerant pressure and the device refrigerant pressure multiplied by the effective area of the diaphragm, becomes larger. It turns out.

以下本考案の技術的手段の一具体例を示すため図示の実
施例について説明する。
The illustrated embodiment will be described below to show a specific example of the technical means of the present invention.

第1図は過冷却制御弁の→qの断面図を示したもので、
冷凍系統の凝縮器と蒸発器の間に設けられ、凝縮器出口
側配管温度を検知する感温筒1の封入ガス圧力P′はダ
イアフラム6の上面に導入され、ダイアプラム下面には
装置冷媒の凝縮圧力Pと尚金1.連結棒9.土ばね受1
3を介して、調整ばね18の弾力P3が作用している。
Figure 1 shows a cross-sectional view of the supercooling control valve from →q.
The sealed gas pressure P' of the temperature sensing cylinder 1, which is installed between the condenser and the evaporator of the refrigeration system and detects the temperature of the condenser outlet side piping, is introduced into the upper surface of the diaphragm 6, and the condensation of the device refrigerant is introduced into the lower surface of the diaphragm. Pressure P and gold 1. Connecting rod9. Earth spring holder 1
3, the elastic force P3 of the adjustment spring 18 acts.

上ばね受にはニードル弁10の開度を調整するビス15
が、ニードル弁の下方に一体的に延設されたロンドに接
離自在に設けられニードル弁上方にはニードル弁を閉止
方向に付勢する小ばね11が設けられており、調整ばね
18は下ばね受14の螺合を調節し、所定の過冷却度に
相当する弾力P3に設定する。
There is a screw 15 on the upper spring holder that adjusts the opening degree of the needle valve 10.
However, a small spring 11 is provided above the needle valve so as to be able to come into contact with and separate from the iron that extends integrally below the needle valve. The screw engagement of the spring receiver 14 is adjusted to set the elasticity P3 corresponding to a predetermined degree of supercooling.

装置冷媒の所定された過冷却度に於けるダイアフラム土
面のガス圧力P′に対し、冷媒の凝縮圧力P1 とばね
18の弾力P3との合成力が平衡したとき、ニードル弁
が丁度弁孔を閉止するように調整ビス15でニードル弁
の位置を調節するものである。
When the combined force of the condensation pressure P1 of the refrigerant and the elasticity P3 of the spring 18 is balanced against the gas pressure P' at the surface of the diaphragm at a predetermined degree of supercooling of the device refrigerant, the needle valve just closes the valve hole. The position of the needle valve is adjusted using an adjustment screw 15 so that it is closed.

したがって装置冷媒の過冷却度が設定値より大きくなる
とP′ は減圧して弁10は開き、過冷却度が設定値よ
り減少すると弁は閉方向に作用し、過冷却度を設定値に
保持する如く作用する。
Therefore, when the degree of supercooling of the apparatus refrigerant becomes greater than the set value, P' is reduced in pressure and the valve 10 opens, and when the degree of supercooling decreases below the set value, the valve acts in the closing direction to maintain the degree of supercooling at the set value. It works like this.

第4図に於て、曲線イと二を組合せて見ると装置冷媒R
−22の55℃に於ける飽和圧力21警GがR−13B
147.5℃の飽和圧力と一致し、R−22の過冷却度
7゜5 degで弁開き始めとなり。
In Figure 4, when looking at curves A and 2 in combination, the device refrigerant R
-22 saturation pressure 21 alarm G at 55℃ is R-13B
This corresponds to the saturation pressure of 147.5°C, and the valve begins to open when the degree of supercooling of R-22 is 7°5°.

R−22が30℃の温度に於ては過冷却度3 degで
弁開き始め点となることを示している。
This shows that when R-22 is at a temperature of 30°C, the valve starts to open at a degree of supercooling of 3 degrees.

したかって感温筒1に封入するガスとしてR−13B1
を選択すれば装置冷媒R−22に対し高温域では弁開に
至る過冷却度は犬で低温域では小さい特性を示し、低温
に於て装置冷媒の高低圧力差が小さくなっても小さい過
冷却度で弁開となるので所要の冷媒流量が得られ、過温
域に於ては過冷却度が大にならないと弁が開かないが小
さい弁開度の場合でも冷媒高低圧力差が大きいので、所
定の流量が得られ、温度の高低にか\わらずほぼ一定の
冷媒流量を供給することができる長所を有することにな
る。
Therefore, R-13B1 is used as the gas sealed in the thermosensor tube 1.
If you select R-22, the degree of supercooling that causes the valve to open in the high temperature range will be small in the low temperature range, and even if the pressure difference between the high and low pressures of the device refrigerant becomes small at low temperatures, the degree of supercooling that will cause the valve to open will be small. The required refrigerant flow rate can be obtained because the valve opens at a certain degree, and in the supertemperature range, the valve will not open unless the degree of supercooling becomes large, but even when the valve opening is small, the difference in refrigerant high and low pressures is large. This has the advantage that a predetermined flow rate can be obtained and a substantially constant flow rate of refrigerant can be supplied regardless of whether the temperature is high or low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は過冷却制御弁の一例の断面図、、第2図ばR−
143aとR−22のP−T曲線を対比した線図。 第3図はR−502とR−22のP−T曲線を対比した
線図、第4図1I″1R−13B1とR−22のP−T
曲線を対比した線図。 を示したものである。 1・・・・・・感温筒、2・・・・・・キャピラリー管
、4・・・・・・上蓋、5・・・・・・下蓋、6・・・
・・・ダイアフラム、7・・・・・・邑金、8・・・・
・弁本体、9・・・・・・連結棒、10・・・・・・ニ
ードル弁、13・・・・・・上ばね受、14・・・・・
・下ばね受、15・・・・・・調整ビス、11・・・・
・・小ばね、18・・・・・・調整ばね。
Figure 1 is a cross-sectional view of an example of a supercooling control valve, Figure 2 is an R-
A diagram comparing the PT curves of 143a and R-22. Figure 3 is a diagram comparing the P-T curves of R-502 and R-22, and Figure 4 is a diagram comparing the P-T curves of R-502 and R-22.
A line diagram that contrasts curves. This is what is shown. 1... Temperature sensing tube, 2... Capillary tube, 4... Upper lid, 5... Lower lid, 6...
...Diaphragm, 7...Okine, 8...
・Valve body, 9...Connecting rod, 10...Needle valve, 13...Upper spring holder, 14...
・Lower spring holder, 15...adjustment screw, 11...
...Small spring, 18...Adjustment spring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 装置冷媒をモノクロルジフルオルメタン(R−22)と
した冷凍系統の過冷却制御弁の感温部封入冷媒をモノプ
ロモトリフルオロメタン(R−13B )とした過冷却
制御弁。
A supercooling control valve for a refrigeration system in which monochlorodifluoromethane (R-22) is used as the device refrigerant, and monopromotrifluoromethane (R-13B) is used as the refrigerant sealed in the temperature sensing part of the supercooling control valve.
JP4822280U 1980-04-11 1980-04-11 Supercooling control valve Expired JPS5821960Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4822280U JPS5821960Y2 (en) 1980-04-11 1980-04-11 Supercooling control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4822280U JPS5821960Y2 (en) 1980-04-11 1980-04-11 Supercooling control valve

Publications (2)

Publication Number Publication Date
JPS56151568U JPS56151568U (en) 1981-11-13
JPS5821960Y2 true JPS5821960Y2 (en) 1983-05-10

Family

ID=29643215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4822280U Expired JPS5821960Y2 (en) 1980-04-11 1980-04-11 Supercooling control valve

Country Status (1)

Country Link
JP (1) JPS5821960Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032159A (en) * 2008-07-30 2010-02-12 Denso Corp Refrigerating cycle device

Also Published As

Publication number Publication date
JPS56151568U (en) 1981-11-13

Similar Documents

Publication Publication Date Title
US3659783A (en) Temperature regulated flow control element for automotive air-conditioners
US3482415A (en) Expansion valve for heat pump
JPS61105066A (en) Expansion valve
US3667247A (en) Refrigeration system with evaporator outlet control valve
CA1333222C (en) Quench expansion valve refrigeration circuit
US3435626A (en) Pressure control apparatus for refrigeration system
US3817053A (en) Refrigerating system including flow control valve
US3785554A (en) Temperature responsive throttling valve
US2475556A (en) Refrigeration system, including valve controls
US3691783A (en) Refrigerant evaporator temperature control
JPS5821960Y2 (en) Supercooling control valve
US3803864A (en) Air conditioning control system
JPH02263071A (en) Using method for expansion valve device and assembly of vaporizer and flow rate control means
JPH0215789B2 (en)
US5931377A (en) Air conditioning system for a vehicle incorporating therein a block type expansion valve
US2701688A (en) Thermostatically operated valve having pressure limiting means
US3786650A (en) Air conditioning control system
JP2001153499A (en) Control valve for refrigerating cycle
US2778196A (en) Automatic control apparatus for refrigeration system
JPS5829827Y2 (en) Temperature control device for refrigeration equipment
JPH0356867Y2 (en)
JPS6132311Y2 (en)
JPS6330931Y2 (en)
GB1164863A (en) Refrigeration control apparatus.
JPS6215739Y2 (en)