JPS58211543A - Control system of air-fuel ratio of internal-combustion engine - Google Patents

Control system of air-fuel ratio of internal-combustion engine

Info

Publication number
JPS58211543A
JPS58211543A JP9432082A JP9432082A JPS58211543A JP S58211543 A JPS58211543 A JP S58211543A JP 9432082 A JP9432082 A JP 9432082A JP 9432082 A JP9432082 A JP 9432082A JP S58211543 A JPS58211543 A JP S58211543A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
engine
fuel
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9432082A
Other languages
Japanese (ja)
Inventor
Yutaka Sawada
裕 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9432082A priority Critical patent/JPS58211543A/en
Publication of JPS58211543A publication Critical patent/JPS58211543A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/149Replacing of the control value by an other parameter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent a misfire positively by setting a diluted air-fuel ratio on the basis of the load of the engine and correcting said ratio in response to the number of revolutions of the engine in the system in which the air-fuel ratio is changed over to a theoretical air-fuel ratio or the dilution air-fuel ratio in response to the state of operation of the engine and controlled. CONSTITUTION:When the engine is operated, the fundamental quantity of fuel injected is calculated on the basis of the quantity of air sucked from an airflow meter 15 in a controller 50. Whether or not the quantity of injection extends over an air-fuel ratio feedback control region is decided on the basis of data such as the temperature of cooling water from a water-temperature sensor 59, and whether or not the quantity of injection satisfies a condition of which the air-fuel ratio can be controlled by the dillution air-fuel ratio is decided when the quantity of injection extends over said region. A fuel injection valve 20 is controlled on the basis of an output from an O2 sensor 60 so that the air-fuel ratio is used as the theoretical air-fuel ratio when the quantity of injectin does not satisfy said condition. When the quantity of injection satisfies said condition, on the other hand, the value of the diluted air-fuel ratio is set on the basis of load value obtained from outputs from the airflow meter 15 and a revolution-number sensor 29, and the air-fuel ratio is controlled according to the value.

Description

【発明の詳細な説明】 本発明は内燃機関の空燃比制御力式、特に機関の運転状
態に応じて理論空燃比又は希薄空燃比のいずれかの空燃
比に切り換えて制御を行う空燃比制御方式の改良に係る
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control system for an internal combustion engine, particularly an air-fuel ratio control system that controls the air-fuel ratio by switching to either the stoichiometric air-fuel ratio or the lean air-fuel ratio depending on the operating state of the engine. This is related to the improvement of.

近年、■ネルギー事情の悪化、人気汚染を防ぐだめの排
ガス規制の強化に伴って内燃機関の熱効率をより向1.
シ、また排ガスをよりクリーンにする6式、Hifff
が研究、開光され、山場に捉供され(いる。
In recent years, with the deterioration of the energy situation and the tightening of exhaust gas regulations to prevent popular pollution, the thermal efficiency of internal combustion engines has been improved.
Hiff, a 6-type model that makes exhaust gas cleaner
are studied, illuminated, and captured and offered in mountainous areas.

fれらの つに空燃比(Δ′1)、叩j゛)、機関に送
られる混r1気中の空気と燃料の重−比を制御し、IJ
I HX中のh吉成分乏、」、り低く抑えるどl IJ
熱効宰を^める6式が知られている。。
In addition, the air-fuel ratio (Δ'1), the weight ratio of air and fuel in the mixture sent to the engine is controlled, and the IJ
The deficiency of h-yellow components in IHX should be kept low.IJ
There are six known types of thermal effects. .

父、空燃比を1IIII!lするhJ(とじ(は、甲に
空燃比庖理論的に定まる理論空燃比にJ、って制御りる
のみて゛なく、機関の負部、同転数が所定の範囲にある
<rらば、理論空燃比よりし熱効率が良くしかしMl 
)fス申のイ(害成分の少ない希薄空燃比に切り換え(
空燃比を制御する方式が提案されでいる。
Dad, the air fuel ratio is 1III! The air-fuel ratio is not only controlled to the theoretically determined stoichiometric air-fuel ratio, but also when the negative part of the engine and the rotational speed are within a predetermined range. , the thermal efficiency is better than the stoichiometric air-fuel ratio, but Ml
) f) (Switch to a lean air-fuel ratio with fewer harmful components (
A method for controlling the air-fuel ratio has been proposed.

尚、この様な6式においては、希薄空燃比を機関が失火
しない範囲で、一義的な飴、例えば20として定めるか
、名しくは機関L′!65 (例えばQ/N)に対応し
C変化する稙に定められているに過ぎない。
In addition, in such a 6-type, the lean air-fuel ratio is set as a unique value, for example, 20, within a range that does not cause the engine to misfire, or is known as engine L'! 65 (for example, Q/N), it is simply defined as a key that changes by C.

しかしながら、機関を希薄空燃比で制御づる場合、その
失火域は、第1図、第2図に示すように機関fi問Q7
Nのみイcら4゛機関回転数Nによ−)てち変化するこ
とが知られており、機関#!J仙Q / N、回転数N
の相方によっC定まる失火域に合わせて空燃比を制tm
づる方がより熱効率を高め排ガス中の4:i芭“成分を
少なくすることが可能となる。
However, when the engine is controlled at a lean air-fuel ratio, the misfire range is as shown in Figures 1 and 2.
It is known that only N changes from 4 to 4 depending on engine speed N, and engine #! Jsen Q/N, rotation speed N
The air-fuel ratio is controlled according to the misfire range determined by the partner of
This makes it possible to increase thermal efficiency and reduce the amount of 4:i-basic components in the exhaust gas.

本発明は、このt様な知見に基づき完成されたしので、
イの目的とする希薄空燃比によって制御される機関の運
転領域において、当該希薄空燃比を失火しない範囲で機
関の運転状態に応じてより緻密にv制御することを目的
とする。
The present invention was completed based on this knowledge, and therefore,
In the operating range of the engine controlled by the lean air-fuel ratio, which is the objective of (a), the objective is to more precisely control the lean air-fuel ratio according to the operating state of the engine within a range that does not cause a misfire.

かかる目的は、排ガス中の残存酸素を検出して空燃比の
フf−ドパツク1IilliIlをhうとJ(に、内燃
機関の運転状態に応じて空燃比を理論空燃比又は希薄空
燃比のいずれかに切り換えて&11 till−Jる内
燃機関の空燃比制御方式において、前記希薄空燃比を機
関負荷に基づき設定すると共に、当該設定蛤を機関回転
数に応じて補正することを特徴とする内燃機関の空燃比
制御方式によって達成される。
This purpose is to detect the residual oxygen in the exhaust gas, adjust the air-fuel ratio, and adjust the air-fuel ratio to either the stoichiometric air-fuel ratio or the lean air-fuel ratio depending on the operating state of the internal combustion engine. In the air-fuel ratio control method for an internal combustion engine, the lean air-fuel ratio is set based on the engine load, and the set value is corrected according to the engine speed. This is achieved by a fuel ratio control method.

以下に本発明を、実施例を挙げて図面と共に説明する。The present invention will be described below with reference to examples and drawings.

第3図は本発明による空燃比制御11h式が適用された
機関(1ンジン)の 実施例を示づ概略構成図である。
FIG. 3 is a schematic configuration diagram showing an embodiment of an engine (one engine) to which the air-fuel ratio control method 11h according to the present invention is applied.

図において、1は一エンジンを丞しており、該1ンジン
1はシリンダブlコック2とシリンダヘッド3とを有し
て、13す、シリンダ10ツク2はでの内部に形成され
ICシリングボIにピストン4を受(プ入れてljす、
ぞのビス1〜ン4の上方に前記シリンダヘッドと共に燃
焼室5)を形成している1゜ シリンダヘッド3には吸気ボート6と排気ポート7とが
形成されており、これらボートは各々吸気バルブ8と排
気バルブ9にJ、り開閉されるようになっている。まI
、ニジリンダヘッド3には点火プラグ19が取り付()
られている。点火プラグ19には点火」イル26にて発
生する電流がディストリビ1−タ27を紅で供給され、
燃焼室5内にて放電による火花を発/1するようになっ
ている。
In the figure, reference numeral 1 represents one engine, and the engine 1 has a cylinder cock 2 and a cylinder head 3. Receive piston 4,
An intake boat 6 and an exhaust port 7 are formed in the 1° cylinder head 3, which forms a combustion chamber 5) with the cylinder head above the screws 1 to 4, and each boat is connected to an intake valve. 8 and exhaust valve 9 are opened and closed. Ma I
, the spark plug 19 is attached to the cylinder head 3 ()
It is being The spark plug 19 is supplied with the current generated in the ignition coil 26 through the distributor 27.
Sparks are generated by electric discharge in the combustion chamber 5.

吸気ボート6には吸気マニホールド11、サージタンク
12、スロットルボデー13、吸気チl−プ14、゛■
アフロメータ15.1.アクリーナ16が順に接続され
゛(いる。またJンジン吸気系にはそのスロットルボデ
ー13をバイパスして吸気チJ −’714とサージタ
ンク12とを接続する1戸バイパス通路30が設けられ
ており、この1−7バイパス通路30は電磁式のバイパ
ス流醋−制御弁31により間口1及びての開口度をll
1Illされるようになっている。
The intake boat 6 includes an intake manifold 11, a surge tank 12, a throttle body 13, an intake tip 14,
Afrometer 15.1. The Acleaner 16 is connected in sequence. Also, the J engine intake system is provided with a single bypass passage 30 that bypasses the throttle body 13 and connects the intake channel J-'714 and the surge tank 12. This 1-7 bypass passage 30 is controlled by an electromagnetic bypass flow control valve 31 to control the opening degree of the frontage 1 and all sides.
1Ill is now available.

また、排気ポート7には排気マニホールド17、排気管
18が順に接続されている。
Further, an exhaust manifold 17 and an exhaust pipe 18 are connected to the exhaust port 7 in this order.

吸気マニホールド11の各吸気ボートに対する接続端近
くには燃料噴射弁20が取り付けられ°(いる。燃料噴
射弁20には燃料タンク21に貯容されているガソリン
の如き液体”燃°料が燃料ポンプ22により燃料供給管
23を経て供給されるようになっ(いる。
A fuel injection valve 20 is installed near the connection end of the intake manifold 11 to each intake boat. The fuel is now supplied through the fuel supply pipe 23.

スロワ1へルボデ−13には吸入空気量をll1Ill
るスロワ1−ルバルブ24が設けられており、このス1
1ツ°トルバルブ24はアクセルペダル25の踏み込み
に応じて駆動され、同←バルブ24のfilllはスロ
ットルセンサ70によって検出されるよう □になって
いる。
The amount of intake air is ll1Ill for the throat 1 and the body 13.
A throttle valve 24 is provided, which
The first torque valve 24 is driven in response to depression of the accelerator pedal 25, and the fill of the valve 24 is □ so that it is detected by the throttle sensor 70.

■アフ[]メータ15はエンジン吸気系を流れる空気の
流−を検出し、イれら応じた信号を制御装置50へ出h
tJるようになっている。
■The AF meter 15 detects the flow of air flowing through the engine intake system and outputs a corresponding signal to the control device 50.
It's like tJ.

ディストリビ、」−タ27にはクランク軸の回転が伝え
られるシt・ノド28の11転数及び回転位相、換61
れば1ンジン同転数Nとクフンク角を検出する回転数セ
ンサ29が組み込まれ(おり、これがR4,tjる(c
1号は制御装置550に人1〕されるようになっている
。抽気ガスiガlk’i環([GR)通路34は排気分
岐管35とサージタンク12とを接続しj’ 、r −
iイ制御形式の11気カス11循環弁32は電気パルス
に応動してEGR通路面積を変化させる。イして排気ガ
ス+Ij ti環弁32は制御I′&宵50により制御
される。
Distributor 27 is provided with 11 rotations and rotational phase of shaft 28 to which the rotation of the crankshaft is transmitted.
If so, a rotation speed sensor 29 for detecting the engine rotation speed N and the kufunk angle is incorporated (and this is R4, tj (c
No. 1 is controlled by the control device 550. The bleed gas i-galk'i ring ([GR) passage 34 connects the exhaust branch pipe 35 and the surge tank 12, and
The control type 11 air circulation valve 32 changes the EGR passage area in response to electric pulses. Then, the exhaust gas +Ijti ring valve 32 is controlled by the control I'& 50.

制m装置50はンイクLi コンビ1−夕であってよく
、での 例が第4図に示され(いる。このマイクロコン
ビコータは、中央処y!f!、1ニット(CPtJ )
 51と、後記空燃比l制御等のプログラムや、】ンジ
ン&II IIIに必要なデータが格納されるリードオ
ンメモリ52と、ランダムアクセスメモリ53と、通電
停止l後もバッテリーバックアップによっ(記憶を保持
するもう一つのランダムアクセスメtす54と、マルチ
プレクサを4jするA/D変換器55と、バッファを有
するl710装置56とを有し、これらは−1七ンバメ
57によりηいに接続されている。このマイ゛りC1」
ノビ1−タ(,1第3図に示されている如くバラjり電
源48が供給づる電流を与えられ、これにより作動する
ようになっ(いる。
The control device 50 may be a microcombi coater, an example of which is shown in FIG.
51, a read-on memory 52 in which programs such as the air-fuel ratio control described later and data necessary for the Engine & II/III are stored, a random access memory 53, and a battery backup (memory is retained even after power is stopped). 54, an A/D converter 55 for providing a multiplexer, and an I710 device 56 having a buffer, which are connected to each other by a -17 link 57. .This little C1
The starter is supplied with a current supplied by a separate power supply 48 as shown in FIG. 3, and becomes operative.

A/D変換器55は、エアフ【コメータ15が発生4る
吸入空気JiQ信号と、吸気温センサ58が発生(る吸
気温a信号と、水温レンサ59が発1.[づるエンジン
冷却水温−r w信号とを人力され、ぞれらデータをA
7・′1〕変換じてCP tJ 51の指示に従い所定
の時期にCP Ll 51及びランダムアクセスメモリ
53あるいは54へ出力4るよ−)になっている。また
r10H置56は回転数センサ29が発生ずるfンジン
回転数信号3クランク角イ6シ3と02センサ60が発
生する空燃比信号等が入ツノされ、それらのデータをC
PU51の指示に従い所定のIllにCPU51及びラ
ンダムアクセスメモリ53あるいは54△出力づるよう
になっている。
The A/D converter 55 receives an intake air JiQ signal generated by the airfometer 15, an intake air temperature a signal generated by the intake air temperature sensor 58, and an engine cooling water temperature -r signal generated by the water temperature sensor 59. w signal and manually, each data is A
7.'1] is converted and output to the CP Ll 51 and the random access memory 53 or 54 at a predetermined time according to the instruction of the CP tJ 51. In addition, the r10H position 56 receives the engine rotational speed signal 3 generated by the rotational speed sensor 29, the air-fuel ratio signal generated by the crank angle sensor 60, and the like.
According to instructions from the PU 51, the CPU 51 and the random access memory 53 or 54 Δ are output to a predetermined Ill.

(CPll 51は各ヒンリにより検出されたi″−タ
に基づいて燃料噴1i)j !13を計口し、それに基
づく信局をI 、% O装置56を杼て燃料噛銅吊20
へ出力4るようになっている。この場合の燃料供給量の
1IIjIIilさ[)7ノロメーター5)が検出づる
吸入空気量Qと回転数ヒンリ29が検出するエンジン回
転数Nとにより求められた基本噴射mTpを、吸気温る
ことにより行われる。
(The CPll 51 calculates the fuel injection 1i)j!13 based on the i''-ta detected by each hinge, and calculates the signal based on it.
The output is set to 4. In this case, the basic injection mTp obtained from the intake air amount Q detected by the fuel supply amount [)7 norometer 5) and the engine rotation speed N detected by the rotation speed control 29 is calculated by calculating the intake air temperature. It will be done.

またC P U 51は吸気温センサ58により検出さ
れた吸気温度と水温センサ59により検出された水温と
に応じてバイパス空気量信号をI10%&1156を軒
てバイパス流量制御弁31へ出力づるように41ってい
る。バイパス流部制胛弁31は110装置56より与え
られるバイパス空気鰻信号に応じてぞの開閉及びその間
[]瓜を1IIIIIIされる。
Further, the CPU 51 outputs a bypass air amount signal to the bypass flow rate control valve 31 via I10% & 1156 in accordance with the intake air temperature detected by the intake air temperature sensor 58 and the water temperature detected by the water temperature sensor 59. There are 41. The bypass flow control valve 31 is opened and closed in response to the bypass air signal provided by the 110 device 56, and is opened and closed during this period.

また、CPU51はこれが算出した基本燃料鰺Tpと回
転数センサ29により検出されたエンジン回転数N及び
クランク角と吸気温センサ58により検出さ、れた吸気
温度に基づき最適点火時期信号をリードAンメ七り52
より°鉄山し、これを1、/Q装置56より点火′コイ
ル26へ出力JるようになつCいる。
Further, the CPU 51 generates an optimum ignition timing signal based on the basic fuel Tp calculated by the CPU 51, the engine rotation speed N and crank angle detected by the rotation speed sensor 29, and the intake air temperature detected by the intake air temperature sensor 58. 7ri 52
This is then output from the /Q device 56 to the ignition coil 26.

次に第5図は本発明の第一実施例の空燃比&lj御方式
に適用される制御プログラムのフ0−チ1−−1−を表
わづ。以下このフローチャ−1−に沿つ(本実施例の動
作を説明する。
Next, FIG. 5 shows the control program applied to the air-fuel ratio &lj control method according to the first embodiment of the present invention. The operation of this embodiment will be described below along this flowchart 1-.

本プログラムは、エンジン1制御のメインプ【1グラム
の一部としL又は所定の燃料噴射制御処理に先立ち、サ
ブルーチンとして割り込み処理される。
This program is part of the main program for engine 1 control, and is interrupted as a subroutine prior to predetermined fuel injection control processing.

本プログラムの処理が開始されるど、ステップ101に
てI10装置5G、A/D変換器55舊を介して工)l
フ[」メータ15から吸入空気IQ、回転数センサ29
からエンジン回転数N、水温センサ59から土ンジン冷
fJl水温TWW必要ムデータが入力され、これらデー
タがランダムアクセスメモリ53内の所定エリアに記憶
され、次ステツーf 102の処理に移行する。
When the processing of this program starts, in step 101, the process is performed via the I10 device 5G and the A/D converter 55).
Intake air IQ from meter 15, rotation speed sensor 29
The engine rotational speed N, engine cooling fJl water temperature TWW necessary data are input from the water temperature sensor 59, these data are stored in a predetermined area in the random access memory 53, and the process moves to the next step f102.

ステップ102においては吸入空気IQに基づき空気過
剰率λ−1、叩らl!!論空論比燃比た場合の燃料の基
本噴制御Tpが算出されランダムアクセスメモリ53内
の所定のレジスタに記憶され、次のスジツブに示づ処理
に移る。
In step 102, the excess air ratio λ-1 is determined based on the intake air IQ. ! The basic fuel injection control Tp for the stoichiometric fuel ratio is calculated and stored in a predetermined register in the random access memory 53, and the process moves to the next step.

次のステップ’ 103においCは、前記ステップ10
1にて読み込まれた1ンジン冷却水温Tw等のデータに
Uづさ現合■ンジン1が空燃比をフィードバック(以下
単に17/Bと略4)制御づるに適した条n下にあるか
否かが判定され、適した条f’tT−にないと判定され
たむらばステップ104に示?#処理が行われる。
In the next step' 103, C performs the step 10
Based on the data such as engine cooling water temperature Tw read in step 1, check whether engine 1 is under conditions suitable for controlling the air-fuel ratio by feedback (hereinafter simply referred to as 17/B). is determined, and if the error is determined not to be in a suitable article f'tT-, then it is shown in step 104? # Processing is performed.

ステップ104においては、上記ステップ102で算出
した基本噴射量Tpに「/BtIII御をしない場合の
補正係数Ko(通常の運転状態では1とされる。〉を乗
じ実噴射IN ’T’ A LJを求めた後本プLlグ
ラムの処理を終了する。
In step 104, the basic injection amount Tp calculated in step 102 is multiplied by the correction coefficient Ko for when BtIII control is not performed (set to 1 in normal operating conditions) to obtain the actual injection IN 'T' A LJ. After the calculation, the processing of this program ends.

一方、ステップ103において、エン、ジン1がF /
 B I制御を行うに適した条件下にあると判定された
場合はステップ105に移行し空燃比を希薄空燃比(リ
ーン空燃比〉で制御[lすることのできる条伺が満足さ
れているか否かが判定され、判定結末がrNOJとなれ
ば〉デツプ106の処理に移行する。
On the other hand, in step 103, the engine, engine 1, is F/
If it is determined that the conditions are suitable for performing B I control, the process moves to step 105 and it is determined whether the conditions for controlling the air-fuel ratio at a lean air-fuel ratio (lean air-fuel ratio) are satisfied. If the result of the determination is rNOJ, the process moves to step 106.

ステップ106においては、空燃比をリーンtl:状態
で制@する条件が満足されていないことから、空燃比を
理論空燃比に維持するための補正係数、f111#5F
/B111lll係数FAF&前記スデップ101で読
み込まれた02センリ60の出力に基づき演算し、次ス
テツプ107に移行する。
In step 106, since the conditions for controlling the air-fuel ratio in the lean tl: state are not satisfied, a correction coefficient f111#5F is applied to maintain the air-fuel ratio at the stoichiometric air-fuel ratio.
/B111llll coefficient FAF & is calculated based on the output of the 02 sensor 60 read in step 101, and the process moves to the next step 107.

ステップ107において、前ステップ106 (・締出
されたF/8制御係数FA[をランダムアクセスメtす
53内の所定のレジスタに記憶された基本噴射ITI)
に乗じて実噴射I1. T A Uを求めた後、本プロ
グラムを柊?4る。
In step 107, the previous step 106 (-Basic injection ITI stored in a predetermined register in random access method 53 for the locked out F/8 control coefficient FA)
Actual injection I1. After asking for TAU, do you want to use this program? 4 Ru.

一方、ステップ105においてリーン空燃比で制御(・
きる条件が満足されていると判定された場合はステップ
108に示を処理に移FJする。
On the other hand, in step 105, the lean air-fuel ratio is controlled (・
If it is determined that the conditions that allow the processing to be performed are satisfied, the process proceeds to step 108.

ステップ108においては第6図に示す如き開数tと、
ステップ101で読み込まれてランダムアクセスメモリ
53内の所定のエリアに記憶されている吸入空気IQと
エンジン回転数Nとから締出されたエンジン負荷を示す
値(以F甲にエンジン負荷と呼ぶ)Q、’Nによってリ
ーン空燃比l+1011の設定値KL1を締出づる。
In step 108, the open number t as shown in FIG.
A value (hereinafter referred to as engine load) Q indicating the engine load excluded from the intake air IQ and the engine rotation speed N read in step 101 and stored in a predetermined area in the random access memory 53. , 'N closes out the set value KL1 of the lean air-fuel ratio l+1011.

ここで第6図について説明する。第6図は縦軸に空燃比
(A 、/ F ) 、横軸に丁ンジン負MQ/N庖取
−)1.:ムので1ンジン負向Q/Nに応じて開数fの
如くリーン空燃比を定めている1、尚、図に13いてス
トイキは理論空燃比を示(紡であり開数fの高餉拘域に
おいて空燃比切換84のハンチングを防11づ6日的ぐ
ヒス7リシスを設(〕Cいる。
Now, FIG. 6 will be explained. In Figure 6, the vertical axis shows the air-fuel ratio (A, /F), and the horizontal axis shows the negative MQ/N ratio (1. : Therefore, the lean air-fuel ratio is determined as the numerical value f according to the negative Q/N of the engine1.In addition, the stoichiometric air-fuel ratio shown in 13 in the figure indicates the stoichiometric air-fuel ratio. To prevent hunting of the air-fuel ratio switch 84 in the restricted area, a hiss 7 lysis is installed to prevent hunting of the air-fuel ratio switch 84.

ybC、ステップ108で設定値K l−1を締出した
後、ス゛)ツブ′]09におい(」ンジン回転数Nと、
設定値補正係数変更の基準となるエンジン1iiJ転数
A(通常リーン空燃比RIjilt域の中間の回転数)
との比較判定を行い、I N > A 、1ならば判定
はrNOJとなりステップ110に示す処理に移行する
ybC, after locking out the set value Kl-1 in step 108, the engine rotation speed N and
Engine 1iiJ rotation speed A (normal rotation speed in the middle of the lean air-fuel ratio RIjilt range), which is the reference for changing the set value correction coefficient
If I N > A and 1, the determination is rNOJ and the process moves to step 110.

ステップ110では、前記ステップ108で求めた設定
46に11に、エンジン回転数Nの属する領域によって
定められた設定値補正係数KLBを乗じ積を最終設定値
に−Lとし、続いてステップ112に移行する。
In step 110, the setting 46 obtained in step 108 is multiplied by 11 by the setting value correction coefficient KLB determined by the region to which the engine speed N belongs, and the product is set to the final setting value -L, and then the process moves to step 112. do.

処理に移る。Move on to processing.

ス)ツブ111においては、スフツノ110同様K L
、 Bと比較して小さな設定値補正係数K L、 Aを
設定値K11に乗じ、積を最終設定16KLとし。
S) In Tsubu 111, K L is the same as in Suftsuno 110.
, B. Multiply the set value K11 by the set value correction coefficient KL,A, which is smaller than B, and make the product the final setting of 16KL.

続くステップ112の処理に移る。The process moves to the subsequent step 112.

ステップ112におい(は、レジスタ内のU本噴躬醋T
pに最終設定値KLを乗じ、積を実咄銅聞T’ A U
どしC本プログラムを終了イる。
In step 112, the U book in the register is
Multiply p by the final setting value KL and calculate the product by the actual value T' A U
Then exit this program.

この様に上述のプログラムに従−)″C制御されIこ結
末、リーン空燃比によンて制−される場合は、lンシン
回転数Nが△より大きい場合は第7図11:、1鎖線で
示す如き空燃比となり、一方エンジン回転数NがA以下
ならば同図実線で承り如き空燃比となる。
In this way, according to the above program, if the engine speed N is greater than △, then if the engine speed is controlled by the lean air-fuel ratio, then The air-fuel ratio will be as shown by the chain line, and if the engine speed N is below A, the air-fuel ratio will be as shown by the solid line in the figure.

即ち、従来一義的に定めるか、あるいは第1図で示づよ
うにエンジン回転数を一定とみなし、エンジン負荷Q/
Nの大きさに応じて変化する空燃比の失火域に基づき定
めていた空燃比を、本実施W4においては第2図に示す
如くJンジン回転WINの属づる領域<Aより大又はA
以))によっでリーン空燃比制御の設定値を補it J
る係数の人ささをKL、A、KLB(但しK 1. A
 、=: K L B >の二段階に代えCいる。
In other words, the engine load Q/
In this embodiment W4, the air-fuel ratio, which was determined based on the misfire range of the air-fuel ratio that changes depending on the magnitude of
Supplement the set value of lean air-fuel ratio control by
KL, A, KLB (however, K 1.A
, =: K L B >.

この結末、従来よりもより緻密にリーン空燃比4制御で
き、空燃比4失火けぬ範囲Cよりリーン(こりることが
可能となる。
As a result, it is possible to control the lean air-fuel ratio 4 more precisely than in the past, and it becomes possible to achieve leaner air-fuel ratio 4 than the range C where misfire does not occur.

尚、スjツ11]2で忰出されtご実噴@@T△11に
V″jさ、例えば図jJs L/ていないメインルーチ
ンにおいて11!!料噴射弁20の開ブ↑II! In
!lが定められ、開弁時間に比例した燃料、即ち所望の
空燃比を維持りるに必東とする燃料が吸気ボート6に噴
射される。
In addition, when the injection valve 20 is opened at 11]2 and the injection valve 20 is opened in the main routine, for example, the injection valve 20 is opened ↑II! In
! 1 is determined, and fuel proportional to the valve opening time, that is, the fuel required to maintain the desired air-fuel ratio, is injected into the intake boat 6.

以[述べた第1実施例においてはエンジン回転数Nに応
じて設定値補正係数としてKLA、KLBの二つを設け
ているが、更に緻密なリーン空燃比制御を行うために設
定値補正−係数をエンジン回転数によって定まる関゛数
としても良い。以下に説明Jる第2実施例は設定値補正
係数を1ンジン回転数Nによって変化する値としている
In the first embodiment described below, two set value correction coefficients, KLA and KLB, are provided according to the engine speed N, but in order to perform even more precise lean air-fuel ratio control, the set value correction coefficient is set. may be a function determined by the engine speed. In the second embodiment described below, the set value correction coefficient is a value that changes depending on the number of engine revolutions N.

第8図は本発明の第2実施例を丞づものて・、スIツブ
101から107に示″g処即は前述第1実施例と同様
であるので説明を略1゜ 今、ステップ103で1:/B条件を満足し、続くステ
ップ105でリーン空燃比制御を行うlζめの条件が満
足されていると判定されたならばスノップ201に示す
処理に移行4る。
FIG. 8 shows a second embodiment of the present invention. The steps shown in blocks 101 to 107 are the same as those of the first embodiment, so the description will be given for approximately 1 degree. If the 1:/B condition is satisfied and it is determined in the subsequent step 105 that the lζth condition for performing lean air-fuel ratio control is satisfied, the process moves to the process shown in the snop 201 (4).

ステップ201においては第1実施例同様第6図に示す
関数「に基づいτ現1ンジン負M Q 、−′Nに対応
するリーン空燃比1.IINの設定蛤K11を求め、次
スjツ1202の処理に移る。
In step 201, similar to the first embodiment, the lean air-fuel ratio 1.IIN setting value K11 corresponding to τ current engine negative MQ, -'N is determined based on the function shown in FIG. Move on to processing.

ステラ7202−(:は第9図に示づ如き関数Q1(N
)に従って現エンジン回転数Nに対応づる設定値補正係
数KLCを算出し前記ステップ201で求めた設定値K
L1に乗じ、柚を最終設定16K[、とする。
Stella 7202-(: is the function Q1(N
), the set value correction coefficient KLC corresponding to the current engine speed N is calculated, and the set value K obtained in step 201 is calculated.
Multiply by L1 and set Yuzu to the final setting of 16K.

続くステップ203においてレジスタ内に記憶されてい
る基本噴射ITpに前ステップ202で求めた最終設定
VUKIを乗じ実vI4射量TAUを求め本プログラム
の処理を終える。
In the following step 203, the basic injection ITp stored in the register is multiplied by the final setting VUKI obtained in the previous step 202 to obtain the actual vI4 injection amount TAU, and the processing of this program is completed.

尚、第9図で示す関数g、(N>は失火域の堤!+9庖
表わす曲線に近似する 次関数として表わされるが、史
に、緻密なリーン空燃比1.II御を行うために前述曲
線に更に近似4る2次関数02 (N)としくし良い。
Note that the function g (N>) shown in Fig. 9 is expressed as the following function approximating the curve representing the misfire region !+9; It may be written as a quadratic function 02 (N) that further approximates the curve.

以lのよ・)に設定艙補1「係数KICを失火fJta
を表ねづ曲線に近似した関数によって求めることにより
、失火(る限界近くにリーン空燃比を設定4ることが(
゛きる。
Set auxiliary 1 "coefficient KIC to misfire fJta"
By finding a function that approximates the expression curve, it is possible to set a lean air-fuel ratio near the limit of misfire (4).
I can do it.

次に第10図のに小寸〕ローJ1・−1〜は本発明の第
3実施例の制御プログシムを示づものである。
Next, FIG. 10 shows a control program of the third embodiment of the present invention.

本!111グラムに45いてし、スIツブ101ないし
107に示す処理は第1、第2実施例と同様であるので
説明を略す。
Book! 45 in 111 grams, and the processing shown in the tubes 101 to 107 is the same as in the first and second embodiments, so the explanation will be omitted.

今、ステップ103でF/8条件を満足し、続くステッ
プ105でリーン空燃比で制御を行うための条件が満た
されたならば、ステップ301に示す処理に移行する。
Now, if the F/8 condition is satisfied in step 103 and the condition for performing control with a lean air-fuel ratio is satisfied in the subsequent step 105, the process moves to step 301.

ステップ301では、第11図に示づ如さ、リードオン
メモリ52内に予め格納されているデータマツプに従っ
て、エンジン負?a Q / N、「ンジン回転数Nか
ら直接最終設定値に1−が検索(ソー1−)される。
In step 301, as shown in FIG. 11, is the engine negative or negative? aQ/N, 1- is searched (saw 1-) directly from the engine rotational speed N to the final set value.

続くステップ302においては、前スJツ1301にて
検索された最終設定値にレジスタ内の基本噴DI崩Tp
とが乗され、ぞの槓が大噴Q−11i!r八Uとされて
本プログラムの処理を、終える。
In the following step 302, the basic jet DI collapse Tp in the register is added to the final setting value retrieved in the previous step 1301.
And was put on top of it, and the turret was a big blowout Q-11i! The processing of this program ends with r8U.

ここで第11図について説明4れぽ、本図に小1データ
マツプはエンジン回転数Nと、丁ンジンロ仙Q/Nより
データが定まる二次元のゲータンップである。モのため
前述の実施例のよ)に設定llf+を求める必要がむく
、マツプの各データは設定値補正係数によって補正され
た最終段ffaに相当するデータとして記憶されている
Here, we will explain about FIG. 11. The data map shown in this figure is a two-dimensional gate map whose data is determined from the engine rotation speed N and the engine rotation speed Q/N. Therefore, it is necessary to obtain the setting llf+ as in the above-mentioned embodiment, and each data of the map is stored as data corresponding to the final stage ffa corrected by the setting value correction coefficient.

また、本実施例によれば第二実施例とほぼ同様にリーン
空燃比をより緻密に制御することが可能と゛なる。
Further, according to this embodiment, it becomes possible to more precisely control the lean air-fuel ratio, almost similarly to the second embodiment.

尚、以」、に述べた実施例においては、エンジン負何を
Q/Nで示す値として説明しているが、この他エンジン
負荷を示(値として前述の基本噴射MTp 、あるいは
体積効率ηV等を用いても良い。
In the embodiments described below, the engine load is explained as a value expressed as Q/N, but the engine load is also expressed as a value (such as the aforementioned basic injection MTp or volumetric efficiency ηV, etc.). You may also use

又、各実施例においては電子I11 mによる燃料噴射
方式のエンジンについて述べる(いるが、アク−1、+
 I−夕に電磁弁を用いデ1−− jイー比制御等(・
空燃比を制mvる気化器式のエンジンについてし、燃料
講一部を変更りるだLJ ′C−容易に本発明を適用て
゛きる。
In addition, in each embodiment, an engine using a fuel injection method using electronic I11 m will be described (although there are
Using a solenoid valve at I-Y, D1--JE ratio control, etc.
The present invention can be easily applied to a carburetor type engine that controls the air-fuel ratio by changing part of the fuel system.

以1 、J述したように本発明の内燃機関の空燃比&1
NIll方式は、排ガス中の残存酸素を検出しC空燃比
の7(−ドパツク制−を(−工うど共に、内燃機関の運
転状態に応し【空燃比を理論空燃比又は弄薄空燃比のい
・ノ“れかに切り換えて制御づる内燃機関の空燃比制御
方式において、前記希薄空燃比を機関負荷に基づき設定
すると共に、当該設定値を機関回転数に応じて補正する
ことを特徴としている。
1. As mentioned above, the air-fuel ratio &1 of the internal combustion engine of the present invention
The NIll method detects the residual oxygen in the exhaust gas and controls the air-fuel ratio to either the stoichiometric air-fuel ratio or the lean air-fuel ratio depending on the operating condition of the internal combustion engine. In the air-fuel ratio control method for an internal combustion engine, the lean air-fuel ratio is set based on the engine load, and the set value is corrected according to the engine speed. .

このため、本発明によれば、希薄空燃比によって機関を
運転する場合、従来よりもより失火域に近い希薄な空燃
比にて一関を運転することが可能となり、その分熱効率
が向上し、燃費が改良される。更に排ガス中の有害成分
も少なくなり、その分排ガス浄化装置の負担が軽減する
といった効果を得ることが可能となる。
Therefore, according to the present invention, when the engine is operated at a lean air-fuel ratio, it is possible to operate the engine at a lean air-fuel ratio closer to the misfire region than in the past, which improves thermal efficiency and improves fuel efficiency. is improved. Furthermore, the amount of harmful components in the exhaust gas is reduced, making it possible to achieve the effect of reducing the burden on the exhaust gas purification device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は機関負荷と空燃比の失火域の相関をしめ1説明
図、第2図は機関回転数と空燃比の失火域の相関を示づ
説明図、第3図は本発明の適用された実施例の内燃機関
及びその周辺装置を、?、ツ概略禍成図、第4図番よ制
御装w50を示すブロック図、第5図は本発明第1実施
例の空燃比aIIl闘ブ11グラムを示づフ[J−チャ
ート、第6図は8蒲空燃比ゐり御の設定給を定める関数
[を示1グラ−)、第7図は第1実施例の作用を説明す
るグラフ、第33図は第2実施例の空燃比υj111ブ
[Jグラムを示すフローチャー1・、第9図は第2実施
例にて設定値補if係数を定める関数Q+  (N)、
g2 (N)を示すグラフ、第10図は本発明第3実施
例の空燃比制御プログラムを示すフ[]−ヂト一ト、第
11図は第3実施例において用いられるデータマツプを
示す説明図である。 1・・・エンジン(内燃機関) 14・・・Iアフロメータ 20・・・燃料嗅躬弁 27・・・ディストリビュータ 29・・・回転数センサ 50・・・制m装置 51・・・CPU 52・・・リードオンメモリ 53・・・ランダムアクセスメモリ 55・・・A/DI換器 56・・・I10装冒 59・・・水温センサ 60・・・02センサ −227− 第6図 Q/N 第9図 第11図
Figure 1 is an explanatory diagram showing the correlation between engine load and air-fuel ratio misfire range, Figure 2 is an explanatory diagram showing the correlation between engine speed and air-fuel ratio misfire range, and Figure 3 is an explanatory diagram showing the correlation between misfire range of engine speed and air-fuel ratio. What about the internal combustion engine and its peripheral equipment? , Figure 4 is a block diagram showing the control system w50, Figure 5 is a diagram showing the air-fuel ratio aIIl/b11g of the first embodiment of the present invention, Figure 6 is is a function that determines the set feed for the 8 air-fuel ratio control [is shown in 1 graph), FIG. 7 is a graph explaining the operation of the first embodiment, and FIG. [Flowchart 1 showing J-gram, FIG. 9 shows the function Q+ (N) that determines the set value supplementary if coefficient in the second embodiment,
g2 (N), FIG. 10 is a graph showing the air-fuel ratio control program of the third embodiment of the present invention, and FIG. 11 is an explanatory diagram showing the data map used in the third embodiment. It is. 1... Engine (internal combustion engine) 14... I aphrometer 20... Fuel sniffer valve 27... Distributor 29... Rotation speed sensor 50... m control device 51... CPU 52. ...Read-on memory 53...Random access memory 55...A/DI converter 56...I10 installation 59...Water temperature sensor 60...02 sensor-227- Fig. 6 Q/N No. Figure 9 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 排ガス中の残り酸系を検出しC空燃比のノr −ドパツ
ク制御を())と・共に、内wA機関の運転状態に応じ
て空燃比を理論空燃比又は希薄空燃比のいずれかに切り
換えて制御する内燃機関の空燃比制御り式に45いて、
前記希薄空燃比4磯閏0タロJすづき設定すると共に、
当該設定値を機関回転数(こ応じて補任することを特徴
とける内燃機関のη′燃比制御方式。
Detects the residual acid system in the exhaust gas and performs normal control of the C air-fuel ratio ()), and switches the air-fuel ratio to either the stoichiometric air-fuel ratio or the lean air-fuel ratio depending on the operating condition of the inner wA engine. 45 in the air-fuel ratio control system of the internal combustion engine, which is controlled by
In addition to setting the lean air fuel ratio 4 Iso 0 Taro J Suzuki,
An η' fuel ratio control method for an internal combustion engine, characterized in that the set value is supplemented according to the engine speed.
JP9432082A 1982-06-02 1982-06-02 Control system of air-fuel ratio of internal-combustion engine Pending JPS58211543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9432082A JPS58211543A (en) 1982-06-02 1982-06-02 Control system of air-fuel ratio of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9432082A JPS58211543A (en) 1982-06-02 1982-06-02 Control system of air-fuel ratio of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS58211543A true JPS58211543A (en) 1983-12-09

Family

ID=14106981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9432082A Pending JPS58211543A (en) 1982-06-02 1982-06-02 Control system of air-fuel ratio of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58211543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178950A (en) * 1984-02-24 1985-09-12 Fujitsu Ten Ltd Electronic fuel injection controller
US4732130A (en) * 1985-12-19 1988-03-22 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling air-fuel ratio for internal combustion engine
WO1995018298A1 (en) * 1993-12-28 1995-07-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Device and method for controlling a lean burn engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178950A (en) * 1984-02-24 1985-09-12 Fujitsu Ten Ltd Electronic fuel injection controller
JPH0536614B2 (en) * 1984-02-24 1993-05-31 Fujitsu Ten Ltd
US4732130A (en) * 1985-12-19 1988-03-22 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling air-fuel ratio for internal combustion engine
WO1995018298A1 (en) * 1993-12-28 1995-07-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Device and method for controlling a lean burn engine
US5778856A (en) * 1993-12-28 1998-07-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device and control method for lean-burn engine
US5813386A (en) * 1993-12-28 1998-09-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control device and control method for lean-burn engine

Similar Documents

Publication Publication Date Title
US5074271A (en) Fuel injection rate control system for starting two-cycle engine
JPH10339215A (en) Egr control device of engine
JPS61101635A (en) Apparatus for controlling quantity of fuel supplied to internal-combustion engine
JPH0842380A (en) Fuel injection controller of internal combustion engine
JPS638296B2 (en)
JPS5929733A (en) Electronically controlled fuel injection method of internal-combustion engine
US4501249A (en) Fuel injection control apparatus for internal combustion engine
KR920003200B1 (en) Engine control device
JPS58150057A (en) Study control method of air-fuel ratio in internal-combustion engine
JPS58211543A (en) Control system of air-fuel ratio of internal-combustion engine
JP2008025511A (en) Air fuel ratio control device for internal combustion engine
JPH0423101B2 (en)
JP3757738B2 (en) Ignition timing control device for internal combustion engine
JPS6011648A (en) Method of determining abnormality in idel rotational speed control device
JPS63124842A (en) Electronic control fuel injection device
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JPH05321706A (en) Control device of two cycle engine
JP3272085B2 (en) Fuel injection device
JP3269414B2 (en) Intake air amount control device for internal combustion engine
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JPS5828560A (en) Method of controlling air fuel ratio of spark-ignited engine
JP2536241B2 (en) Air supply device for internal combustion engine
JPS63186943A (en) Air-fuel ratio control device for internal combustion engine
JPS58144640A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS58214648A (en) Control of air-fuel ratio of internal-combustion engine