JPS58209990A - Conversion of adenosine monophosphate to adenosine triphosphate - Google Patents

Conversion of adenosine monophosphate to adenosine triphosphate

Info

Publication number
JPS58209990A
JPS58209990A JP57090424A JP9042482A JPS58209990A JP S58209990 A JPS58209990 A JP S58209990A JP 57090424 A JP57090424 A JP 57090424A JP 9042482 A JP9042482 A JP 9042482A JP S58209990 A JPS58209990 A JP S58209990A
Authority
JP
Japan
Prior art keywords
atp
adenosine
enzyme
adenosine diphosphate
adp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57090424A
Other languages
Japanese (ja)
Inventor
Kazutomo Imahori
今堀 和友
Hitoshi Kondo
仁司 近藤
Hiroshi Nakajima
宏 中島
Tatsuo Iwasaki
岩崎 立夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Unitika Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Unitika Ltd
Priority to JP57090424A priority Critical patent/JPS58209990A/en
Priority to DE8383300361T priority patent/DE3368682D1/en
Priority to EP19830300361 priority patent/EP0084975B1/en
Priority to US06/461,308 priority patent/US4882276A/en
Priority to CA000420264A priority patent/CA1194825A/en
Priority to DK29683A priority patent/DK29683A/en
Publication of JPS58209990A publication Critical patent/JPS58209990A/en
Priority to US07/202,606 priority patent/US4960696A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/20Aspartic acid; Asparagine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/813Continuous fermentation

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To convert adenosine monophosphate (AMP) essentially completely to adenosine triphosphate (ATP), stably for a long period, by using an immobilized enzyme and adjusting the mixing ratio of AMP to ATP to a specific state. CONSTITUTION:An enzyme capable of converting AMP to adenosine diphosphate (ADP) such as adenylate kinase and an enzyme capable of converting ADP to ATP such as acetate kinase are prepared by microorganisms having an optimum proliferation temperature of 50-85 deg.C. Both enzymes are immobilized separately, and the immobilized enzymes are used in combination for the conversion of AMP via ADP to ATP. In the above conversion process, the concentration of ATP is adjusted to a level satisfying the formula [AMP in the formula is concentration (mM) of AMP, ATP is concentration (mM) of ATP, gamma is the ratio of the activity of the enzyme converting ADP to ATP to that of the enzyme converting AMP to ADP, and is >=1].

Description

【発明の詳細な説明】 本発明は、アデノシン−リン酸(以下AMPという)を
アデノシンニリン酸(以下ATPという)へ変換する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for converting adenosine-phosphate (hereinafter referred to as AMP) to adenosine diphosphate (hereinafter referred to as ATP).

生体内において、生命を維持するだめに数多くの生合成
反応が酵素を触媒として営まれている。
In living organisms, numerous biosynthetic reactions are carried out using enzymes as catalysts to maintain life.

それらのうち、特に重要な結合反応を行うに当ってはA
TPがエネルギー源又は補助因子として必要である。こ
の際、ATPはエネルギー源または補助因子として働い
たのち、アデノシンニリン酸(以下ADPという)又は
AMPに分解され、消費されてしまうことになる。一方
、最近、生体内の反応を工業的に工場内の反応器中で再
現しようとする試みが盛んに行われるようになってきて
いる。これは近代化学工業の見直しから生体内反応の省
エネルギー性、無公害性などが注目されるようになった
ものであり、特にファインケミカルの分野において必須
の技術になろうとしており、加水分解反応、異性化反応
などの技術分野においてはすでに実用化が成功している
。しかし、結合反応においては上述のようIcATPと
いう高価な物質をエネルギー源または補助因子として消
費するだめに少なくとも経済的には成り立ち得ないとい
う問題点が実用化を妨げている。すなわち、 ATPが
消費された産物であるADP、AMP、特に最低のエネ
ルギーレベルに消費されつくしたAMPをATPに再生
変換することがこの問題点を打開する重要な技術となる
のである。
Among them, A
TP is required as an energy source or cofactor. At this time, after ATP functions as an energy source or a cofactor, it is decomposed into adenosine diphosphate (hereinafter referred to as ADP) or AMP and is consumed. On the other hand, recently, many attempts have been made to industrially reproduce in-vivo reactions in reactors in factories. As a result of a review of the modern chemical industry, attention has been paid to the energy-saving and non-polluting properties of biological reactions, and this technology is becoming essential in the field of fine chemicals. It has already been successfully put into practical use in technical fields such as chemical reactions. However, in the binding reaction, as mentioned above, the problem that it is not economically viable because the expensive substance IcATP is consumed as an energy source or a cofactor has hindered its practical application. That is, an important technique for overcoming this problem is to regenerate and convert ADP and AMP, which are products of ATP consumption, especially AMP, which has been consumed at the lowest energy level, into ATP.

このような観点から、ATPの再生変換に関する研究が
種々行われている。たとえば、生体内では解糖系の反応
などによりATPの生産が行われているので、これを利
用した試みが知られている。
From this point of view, various studies have been conducted on the regenerative conversion of ATP. For example, ATP is produced in living organisms through reactions such as glycolysis, and attempts to utilize this production are known.

すなわち、微生物菌体を用いて消費されたATPの再生
補給を行うというものなどがある。しかし。
That is, there is a method in which consumed ATP is regenerated and replenished using microbial cells. but.

これは副反応の併発、変換効率の悪さなどの点で実用の
レベルには達していない。
This method has not reached a practical level due to side reactions and poor conversion efficiency.

一方、耐熱性の酵素ではないが、ATP変換酵素の利用
も試みられている。たとえば、ホワイトサイズらはアデ
ノシンを酵素的に変換して得たAMPを大大腸菌のアデ
ニル酸キナーゼおよび酢酸キナーゼでATPに変換して
いる(ジャーナル・オプ・アメリカン・ケミカル・ソサ
エティ、 io。
On the other hand, attempts have also been made to utilize ATP converting enzymes, although they are not thermostable enzymes. For example, Whitesides et al. converted AMP obtained by enzymatically converting adenosine to ATP using adenylate kinase and acetate kinase in Escherichia coli (Journal of the American Chemical Society, io).

巻、1号、304頁、 1978年)。さらに、ホワイ
トサイズらは大腸菌の上記両酵素をブロムシアンで固定
化し、AMPからATPへの連続変換を試みているが、
安定化剤非存在下では活性残存率は数パーセント以下に
すぎず、また長期安定性もすこぶる悪かつたことを報告
している(エンザイム・エンジニアリング、2巻、21
7頁、 1974年、イー・ケー・パイら編、プレナム
プレス)。しかも。
Vol. 1, p. 304, 1978). In addition, Whitesides et al. immobilized both of the above E. coli enzymes with bromic cyanide and attempted continuous conversion of AMP to ATP.
It has been reported that in the absence of a stabilizer, the residual activity was only a few percent or less, and the long-term stability was also extremely poor (Enzyme Engineering, Vol. 2, 21).
7 pages, 1974, edited by E. K. Pai et al., Plenum Press). Moreover.

固定化酵素を用い、安定化剤を添加しても1反応に長時
間を要し、変換効率もあまり高く々い上に。
Even if an immobilized enzyme is used and a stabilizer is added, one reaction takes a long time and the conversion efficiency is too high.

化学工業的なレベルでの長期間の運転には利用できない
ものである。
It cannot be used for long-term operation at the chemical industrial level.

本発明者らは、特に最低のエネルギーレベルに分解した
産物であるAMPをATPに変換再生することにつき鋭
意研究した結果、最適生育温度が50℃ないし85℃で
ある微生物の産生ずる変換酵素を使用すると、短時間、
高収率で長期間安定してAMPをATPに変換できるこ
とを見い出し。
As a result of intensive research into converting and regenerating AMP, which is a product decomposed to the lowest energy level, into ATP, the present inventors used a converting enzyme produced by a microorganism whose optimal growth temperature is 50°C to 85°C. Then, for a short time,
We discovered that AMP can be converted to ATP in high yield and stably over a long period of time.

先に特許出願した(特願昭57−10337号)。しか
しながら、この方法では、AMPとATPの濃度比を1
:1の付近で実施しており、そのため。
A patent application was previously filed (Japanese Patent Application No. 10337-1983). However, in this method, the concentration ratio of AMP and ATP is reduced to 1.
:1.

高価なATPを多数に使用しなければならず、化学工業
的レベルでのATPO連続変換は経済的に好ましくない
。しかも、ときにはATPへの変換率が変動する現象も
みられた。
A large amount of expensive ATP must be used, and continuous ATPO conversion at the chemical industrial level is economically unfavorable. Moreover, a phenomenon in which the conversion rate to ATP sometimes fluctuated was observed.

そこで本発明者らは、この点を改良するためKさらに鋭
意研究した結果、AMPとATPの混合比を特定の条件
に制御すると、安価で、かつ操作性良く長期間安定して
A M Pを実質−Fはとんど100% A T Pに
変換できることを見い出し1本発明を完成した。
In order to improve this point, the present inventors conducted further intensive research and found that by controlling the mixing ratio of AMP and ATP under specific conditions, AMP can be produced stably for a long period of time at low cost and with good operability. The present invention was completed based on the discovery that virtually -F can be converted into ATP almost 100%.

すなわち1本発明は最適生育温度が50’Cないし85
℃である微生物の産生ずるアデノシン−リン酸をアデノ
シンニリン酸に変換する酵素又はアデノシンニリン酸を
アデノシンニリン酸に変換する酵素を固定化し、得られ
たアデノシン−リン酸をアデノシンニリン酸に変換する
固定化酵素及びアデノシンニリン酸をアデノシンニリン
酸に変換する固定化酵素を組み合わせてアデノシン−リ
ン酸をアデノシンニリン酸に変換させるに際し、アデノ
シンニリン酸の濃度を下記(イ)式を満足する条件に制
御することを特徴とするアデノシン−リン酸のアデノシ
ンニリン酸への変換方法である。
That is, in the present invention, the optimum growth temperature is 50'C to 85'C.
Immobilization of an enzyme that converts adenosine-phosphate to adenosine diphosphate or an enzyme that converts adenosine diphosphate produced by a microorganism at ℃, and converts the obtained adenosine-phosphate to adenosine diphosphate. When converting adenosine-phosphate into adenosine diphosphate using a combination of an enzyme that converts adenosine diphosphate and an immobilized enzyme that converts adenosine diphosphate into adenosine diphosphate, the concentration of adenosine diphosphate is controlled to a condition that satisfies the following formula (a). This is a method for converting adenosine-phosphoric acid to adenosine diphosphoric acid.

(但し、AMPはアデノシン−リン酸の濃度(mM)。(However, AMP is the concentration of adenosine-phosphate (mM).

ATPはアデノシンニリン酸の濃度(mM )を表し。ATP represents the concentration (mM) of adenosine diphosphate.

γはアデノシンニリン酸をアデノシンニリン酸に変換す
る酵素の固定化酵素活性とアデノシン−リン酸をアデノ
シンニリン酸に変換する酵素の固定化酵素活性との比で
、1以上り正数を表わす。)本発明は、AMPをADP
に変換することと。
γ is the ratio of the immobilized enzyme activity of the enzyme that converts adenosine diphosphate to adenosine diphosphate and the immobilized enzyme activity of the enzyme that converts adenosine-phosphate to adenosine diphosphate, and represents a positive number greater than or equal to 1. ) The present invention converts AMP into ADP
and converting it into .

ここで生成したADPをATPに変換することから成り
、AMPをADPに変換する酵素としては。
It consists of converting the ADP produced here into ATP, and is an enzyme that converts AMP to ADP.

例えば、アデニル酸キナーゼが使用され、この際A M
 l)へのリン酸供与体としてATPが使用される。次
いでADPをATPに変換する酵素としては1例えば、
酢酸キナーゼ、カルバミン酸キナーゼ、クレアチンキナ
ーゼ、3−ホスホグリセリン酸キナーゼ、ピルビン酸キ
ナーゼ、ポリリン酸キナーゼなど多くのものが使用でき
るが、リン酸供与体の価格、ATPへの変換活性、酵素
の入手の容易さなどを勘案すると酢酸キナーゼを使用す
るのが最も有利であり、この際リン酸供与体としてはア
セチルリン酸が使用される。このように、アデニル酸キ
ナーゼと酢酸キナーゼを使用するに際して各酵素のリン
酸供与体としてはATPとアセチルリン酸を使用するこ
とになるが、リン酸供与体としてのATPは最終変換物
であるATPを循環使用することができるので、結局リ
ン酸供与体としてはアセチルリン酸だけを供給ずhばよ
いことになる。このようなシステム化により効率的な設
計がはかれるのもこれら両酵素の利点である。
For example, adenylate kinase is used, where A M
ATP is used as phosphate donor to l). Next, examples of enzymes that convert ADP to ATP include:
Many kinases such as acetate kinase, carbamate kinase, creatine kinase, 3-phosphoglycerate kinase, pyruvate kinase, and polyphosphate kinase can be used, but the price of the phosphate donor, the conversion activity to ATP, and the availability of the enzyme In view of ease, it is most advantageous to use acetate kinase, and in this case, acetyl phosphate is used as the phosphate donor. In this way, when using adenylate kinase and acetate kinase, ATP and acetyl phosphate are used as phosphate donors for each enzyme, but ATP as a phosphate donor is converted into ATP, which is the final converted product. Since acetyl phosphoric acid can be recycled and used, it is no longer necessary to supply only acetyl phosphoric acid as a phosphoric acid donor. Another advantage of both enzymes is that such systemization allows for efficient design.

以上のように、二種類の変換酵素を使用することにより
A、MPをATPに変換することが可能になるが、これ
ら酵素は最適生育温度が50℃ないし85℃である微生
物の産生ずる酵素であることが必要である。このような
微生物としては、バチルス・ステアロサーモフィルス、
バチルス・プレビス。
As mentioned above, it is possible to convert A and MP into ATP by using two types of converting enzymes, but these enzymes are enzymes produced by microorganisms whose optimal growth temperature is 50°C to 85°C. It is necessary that there be. Such microorganisms include Bacillus stearothermophilus,
Bacillus plebis.

バチルス・コアギユランス、バチルス・サーモプロテオ
リティクス、バチルス・アシドカルダリウスなどのバチ
ルス属の微生物、クロストリジウム属の微生物、サーモ
アクチノマイセス属の微生物。
Microorganisms of the genus Bacillus such as Bacillus coagulans, Bacillus thermoproteoliticus, and Bacillus acidocaldarius, microorganisms of the genus Clostridium, and microorganisms of the genus Thermoactinomyces.

アクロモバクタ−属の微生物、ストレプトマイセス属の
微生物、ミクロポリスボラ属の微生物、サーマス・アク
アティクス、サーマス・ザーモフィルス、サーマス・フ
ジブスなどのサーマス属の微生物、ザーモミクロビウム
属の微生物、カルブリア属の微生物などがあげられる。
Microorganisms of the genus Achromobacter, microorganisms of the genus Streptomyces, microorganisms of the genus Micropolisvora, microorganisms of the genus Thermus such as Thermus aquaticus, Thermus thermophilus, Thermus fujibus, microorganisms of the genus Thermomicrobium, microorganisms of the genus Calburia. microorganisms, etc.

また、これら微生物の遺伝子を導入した常温生育微生物
も含まれる。なお、これら微生物の中でもアデル酸キナ
ーゼ、酢酸キナーゼの両酵素の産生に特に適したものは
バチルス・ステアロサーモフィルスである。
It also includes microorganisms that grow at room temperature into which the genes of these microorganisms have been introduced. Among these microorganisms, Bacillus stearothermophilus is particularly suitable for producing both enzymes, adelate kinase and acetate kinase.

この微生物から得られる両酵素は精製が容易であり、比
活性が高い。
Both enzymes obtained from this microorganism are easy to purify and have high specific activities.

本発明において、上記酵素を固定化して使用する。その
ためには、酵素を適当な担体、たとえばセルロース、デ
キストラン、アガロースなどのような多糖類の誘導体、
ポリスチレン、エチレン−マレイン酸共重合体、架橋ポ
リアクリルアミドなどのようなどニルポリマーの誘導体
、L−アラニン−し−グルタミン酸共重合体、ポリアス
パラギン酸などのようなポリアミノ酸またはポリアミド
の誘導体、ガラス、アルミナ、ヒドロキシアパタイトな
どのような無機物の誘導体などに結合、包括あるいは吸
着せしめればよく、これをカラムなどの反応器に充填し
て使用すればよい。
In the present invention, the above-mentioned enzyme is used after being immobilized. For this purpose, the enzyme is transferred to a suitable carrier, such as a polysaccharide derivative such as cellulose, dextran, agarose, etc.
derivatives of polyamino acids or polyamides such as polystyrene, ethylene-maleic acid copolymers, cross-linked polyacrylamide, etc., derivatives of polyamino acids or polyamides such as L-alanine-glutamic acid copolymers, polyaspartic acid, etc., glass, alumina, It may be bonded to, entrapped in, or adsorbed to an inorganic derivative such as hydroxyapatite, and used by filling a reactor such as a column.

本発明の実施にあたって、AMPをATPに変換すると
きの温度としては、常温伺近ないし酵素産生微生物の最
適生育温度の5℃以下に設定するのが好ましい。まだ、
AMPをATPに変換するときのPHとしては、中性付
近、すなわち6.5〜11、好ましくは6.5〜9.0
.さらに好ましくは7〜8の範囲が使用される。緩衝液
としては、これらのP Hに適した通常のものを使用す
ることができる。たとえば7付近では、リン酸塩、イミ
ダゾール塩、トリス塩酸塩、コリジン塩、バルビタール
塩酸塩などをあげることができる。また、アデニル酸キ
ナーゼと酢酸キナーゼの反応をより効果的に進行させる
ために2種々の2価金属イオンを使用することができる
が、2価金属イオンとしては、たとえば、マグネシウム
イオン、マンガンイオンが特に推奨される。
In carrying out the present invention, the temperature at which AMP is converted to ATP is preferably set at around room temperature or below 5° C., which is the optimal growth temperature for enzyme-producing microorganisms. still,
The pH when converting AMP to ATP is near neutral, that is, 6.5 to 11, preferably 6.5 to 9.0.
.. More preferably, a range of 7 to 8 is used. As the buffer solution, common ones suitable for these pHs can be used. For example, around 7, phosphate, imidazole salt, tris hydrochloride, collidine salt, barbital hydrochloride, etc. can be mentioned. Furthermore, in order to promote the reaction between adenylate kinase and acetate kinase more effectively, two kinds of divalent metal ions can be used, and as divalent metal ions, for example, magnesium ions and manganese ions are particularly preferred. Recommended.

本発明でAMPをATPに変換するには1例えば、AM
Pを0.1μM〜4M、好ま1シクけ1μM〜2M、さ
らに好ましくは10μM〜500mM、アセチルリン酸
をo、iμR4〜500mM 、好捷しくは1μM〜4
o。
To convert AMP to ATP in the present invention, 1 For example, AM
P is 0.1 μM to 4 M, preferably 1 μM to 2 M, more preferably 10 μM to 500 mM, and acetyl phosphate is 0.1 μM to 4 M, preferably 1 μM to 4
o.

mM、さらに好ましくは10μM〜300nsM、およ
びATPを(イ)式を満足する眠を充填層型反応器の一
端から供給し9反応器内でAMP−+ADP−)ATP
の変換を行わしめることができる。そのときに反応器か
ら溶出した反応液を適当な分析システムで分析し、AM
P、ADP、ATPの各濃度およびATPへの変換率を
求めることができる。このとき、流速としては1反応器
の大きさにより異なるが、たとえば、0.3μt/時間
からlXl0t/時間の間の適当な流速を選定すること
ができる。また。
mM, more preferably 10 μM to 300 nsM, and ATP that satisfies formula (a) are supplied from one end of a packed bed reactor to produce AMP-+ADP-)ATP in the reactor.
It is possible to perform the conversion of At that time, the reaction liquid eluted from the reactor was analyzed using an appropriate analysis system, and the AM
Each concentration of P, ADP, and ATP and the conversion rate to ATP can be determined. At this time, the flow rate varies depending on the size of one reactor, but an appropriate flow rate can be selected, for example, between 0.3 μt/hour and 1×10t/hour. Also.

反応器へのAMP、ATPおよびアセチルリン酸の供給
装置としては、外部から制御信号によシ送液流量を変え
ることのできるものなら特に限定されないが、たとえば
、パルスモータ−で駆動される定量ポンプなどが利用で
きる(以下、これを可変量送液装置という)。さらに、
各基質溶液槽と可変量送液装置の間に自動調節弁を設け
、外部信号によシ自Rつ1調節弁の開閉を制御すること
により各基質溶液の流量や濃度を変えることができる。
The device for supplying AMP, ATP, and acetyl phosphoric acid to the reactor is not particularly limited as long as the flow rate can be changed by an external control signal, but for example, a metering pump driven by a pulse motor can be used. (hereinafter referred to as a variable amount liquid feeding device). moreover,
An automatic control valve is provided between each substrate solution tank and a variable amount liquid feeding device, and the flow rate and concentration of each substrate solution can be changed by controlling the opening and closing of each control valve using an external signal.

自動ル4節弁としては、たとえば、電磁弁を用いること
ができる。また1反応器は勿論室温で使用してもよいが
、温度を維持する手段を付加する方が好ましい。また9
反応器からの反応液の分析システムとしては、AMP、
ADP、ATPを検出する方法であれば特に限定されな
いが、たとえば。
For example, a solenoid valve can be used as the automatic four-section valve. Although one reactor may of course be used at room temperature, it is preferable to add means for maintaining the temperature. Also 9
As a system for analyzing the reaction liquid from the reactor, AMP,
For example, the method is not particularly limited as long as it detects ADP and ATP.

高速液体クロマトグラフ装置を用いるのが好ましい。Preferably, a high performance liquid chromatography device is used.

本発明で化学工業上、長期にわた多安定で経済的にAM
Pを実質上100チATPに変換するためには(イ)式
を満足するように制御することが必要で。
The present invention provides long-term multistable and economical AM in the chemical industry.
In order to substantially convert P into 100ch ATP, it is necessary to control so that equation (a) is satisfied.

特にATP濃度を(イ)式に加えて、 o、osx−、
−xγ2 AMP以下に制御することが好・ましい。 (イ)式を
満足するように制御するには、以下の方法を用いること
ができる。すなわち、(イ)式および演算に必要なデー
タを演算制御装置にあらかじめ入力し、これらと分析シ
ステムからの分析データから、AMPのATPへの変換
率を演算処理し、上記可変量送液装置および自動調節弁
の少なくとも1つに演算制御装置から信号を送信し、流
量あるいは濃度を変え、(イ)式を満足するように制御
すればよい。そのときの演算に必要なデータとは、AM
P、ATPの原料濃度及びアゾンシンニリン酸をアデノ
シン三す、ン酸に変換する酵素の固定化酵素活性と、ア
デノシン−リン酸をアデノシンニリン酸に変換する酵素
の固定化酵素活性の比であり9分析データとは9反応器
からの反応液中のAMP 、 ADP 、 ATPの各
濃度である。また、演算制御装置とは、演算機能と外部
装置へ制御信号を出せる機能を備えたもので、たとえば
、マイクロコンピー−ターが使用できる。さらに固定化
酵素活性とは固定化された酵素の活性を表わし1例えば
アデニル酸キナーゼの場合はAMP+ATP→2・AD
Pなる方向の活性を示し、酢酸キナーゼの場合はADP
+アセチ)vI)ン酸→ATP十酢酸なる方向の活性を
示す。
In particular, by adding the ATP concentration to equation (a), o, osx-,
-xγ2 It is preferable to control it to AMP or less. The following method can be used to control so that equation (a) is satisfied. That is, the formula (a) and the data necessary for the calculation are input into the calculation control device in advance, and from these and the analysis data from the analysis system, the conversion rate of AMP to ATP is calculated, and the above-mentioned variable amount liquid delivery device and A signal may be sent from the arithmetic control device to at least one of the automatic control valves to change the flow rate or concentration and control so as to satisfy equation (a). The data required for the calculation at that time is AM
This is the raw material concentration of P and ATP and the ratio of the immobilized enzyme activity of the enzyme that converts azone-cinniphosphate to adenosine tris-phosphate and the immobilized enzyme activity of the enzyme that converts adenosine-phosphate to adenosine diphosphate. The data are the concentrations of AMP, ADP, and ATP in the reaction solutions from 9 reactors. Further, the arithmetic control device is a device having a calculation function and a function of outputting a control signal to an external device, and for example, a microcomputer can be used. Furthermore, immobilized enzyme activity refers to the activity of an immobilized enzyme.1For example, in the case of adenylate kinase, AMP+ATP→2・AD
In the case of acetate kinase, it shows activity in the direction of ADP.
+acetyl) vI) acid → ATP decacetic acid.

この活性を測定するには、所定量の固定化酵素。To measure this activity, a predetermined amount of immobilized enzyme.

たとえば、活性の度合に応じて5〜10μLを、活性測
定用溶液に加え、遊離の酵素と同様にして分光光度計で
吸光度変化として追跡して測定した。
For example, depending on the degree of activity, 5 to 10 μL was added to the solution for measuring activity, and the absorbance change was followed and measured using a spectrophotometer in the same manner as for free enzyme.

酵素活性1単位とは、30℃でアデニル酸キナーゼの場
合、1分間に1マイクロモルのADPを生成する量を、
酢酸キナーゼの場合、1分間に1マイクロモルのATP
を生成する量である。
One unit of enzyme activity is the amount that produces 1 micromole of ADP per minute for adenylate kinase at 30°C.
For acetate kinase, 1 micromole of ATP per minute
is the amount produced.

本発明に用いられるATPとしては、上記反応による最
終変換物であるATPを循環使用しても勿論よい。この
場合には、結局、リン酸供与体としては、アセチルリン
酸だけを供給すればよいことになる。
Of course, as the ATP used in the present invention, ATP which is the final converted product of the above reaction may be recycled and used. In this case, only acetyl phosphoric acid needs to be supplied as the phosphoric acid donor.

本発明によれば、AMPからATPへの変換において、
従来与られた変換率の変動を克服でき。
According to the present invention, in converting AMP to ATP,
It can overcome the variation in conversion rate given in the past.

しかも長期間にわたり効率的、連続的ならびに経済的に
実質上100チの変換率でATPに変換できる。しかも
操作性がよいため、ATP変換率を長期にわたり安定に
維持できる。また9本発明でリン酸供与体としてのAT
Pは、充填層型反応器でAMPからATPに変換された
ものでもよいことは利点の1つである。さらに、出発原
料としては純粋なAMPである必要はなく、(イ)式を
満足するように制御すれば、AMPにADP、ATPの
加わりた混合物でもよく、この点も化学工業上採用する
場合、非常に有利な点である。
Moreover, it can be efficiently, continuously and economically converted to ATP over a long period of time at a conversion rate of substantially 100%. Moreover, since it is easy to operate, the ATP conversion rate can be maintained stably over a long period of time. Furthermore, in the present invention, AT as a phosphate donor
One advantage is that P may be converted from AMP to ATP in a packed bed reactor. Furthermore, the starting material does not need to be pure AMP, and may be a mixture of AMP with ADP and ATP as long as it is controlled so as to satisfy the formula (a). Also, when used in the chemical industry, This is a very advantageous point.

また、最初に述べたような生体内で行われている。結合
反応を筆体外の化学工業的な反応として行う、いわゆる
バイオリアクターの稼動が可能になる。たとえば、生体
内の最も重要な反応であるアミノ酸活性化酵素によるタ
ンパク質合成反応やペグチド合成反応などは、ATPを
エネルギー源として必要とし、その際、使用される高価
なATPはAMPに消費分解されるため、生体外でこの
反応を行う場合、AMPをATPに変換再生することが
実用上不可欠なことであった。本発明によれば、このよ
うな反応の実用化が可能になり、この価値は工業上計り
知れないものがある。
In addition, it is performed in vivo as mentioned at the beginning. It becomes possible to operate a so-called bioreactor that performs the binding reaction as an external chemical reaction. For example, protein synthesis reactions and pegtide synthesis reactions by amino acid activating enzymes, which are the most important reactions in living organisms, require ATP as an energy source, and the expensive ATP used at that time is consumed and decomposed into AMP. Therefore, when performing this reaction in vitro, it is practically essential to convert and regenerate AMP into ATP. According to the present invention, it is possible to put such a reaction into practical use, and its value is immeasurable in industry.

なお、上のように目的とする合成反応とATPの再生反
応とを組み合わせる場合、生成AMPを目的生成物、リ
ン酸供与体の反応生成物(たとえば酢酸など)などから
分離するシステムも必要になる。これはクロマトグラフ
ィーなどの技術により可能となり、目的とする反応系、
ATPの再生系、AMPの分離系の3者を組み合わせた
化学工業上の1つのシステムとして完成させることにな
る。
In addition, when combining the desired synthesis reaction with the ATP regeneration reaction as described above, a system is also required to separate the generated AMP from the desired product, the reaction product of the phosphate donor (for example, acetic acid, etc.) . This is made possible by techniques such as chromatography, and the desired reaction system,
It will be completed as a system for the chemical industry that combines three systems: an ATP regeneration system and an AMP separation system.

本発明は、このようにATPの再生利用に極めて有用に
適用できるものであるが、観点をかえて。
The present invention can be extremely usefully applied to the reuse of ATP in this way, but from a different perspective.

AMPを原料としたATPの生産法としてとらえること
もできる。すなわち、ATPは医薬品としても重要な物
質であり、工業的レベルで生産されている。しかし、現
行法の発酵法では副産物ができやすいとか、生産性が悪
いなどの問題があり。
It can also be viewed as a method for producing ATP using AMP as a raw material. That is, ATP is an important substance as a medicine and is produced at an industrial level. However, the current fermentation method has problems such as easy production of by-products and poor productivity.

ATPの価格も高いものにならざるをえなかった。The price of ATP also had to rise.

しかし9本発明によればこのような問題を一挙に排除で
き、高純度のATPが生産性よく供給できることも可能
である。本発明にはこのような目的も包含されている。
However, according to the present invention, these problems can be eliminated at once, and highly purified ATP can be supplied with good productivity. The present invention also includes such objects.

次に本発明を実施例によりさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1〜4.比較例1〜3 m 性化CH−セファロース4B(ファルマシア社製)
5yを洗浄膨潤後、バチルス・ステアロサーモフィルス
N CAl3O3株(最適生産温度60℃)より得られ
た酢酸キナーゼ2000単位を加えて反応させて固定化
酢酸キナーゼ1000単位を得た。この操作を酢酸キナ
ーゼのかわりにアデニル酸キナーゼの250単位を用い
て同様に行い100単位の固定化アデニル酸キナーゼを
得た。このときの酢酸キナーゼの同定化酵素活性とアデ
ニル酸キナーゼの固定化酵素活性の比は10であった。
Examples 1-4. Comparative Examples 1 to 3 m Characterized CH-Sepharose 4B (manufactured by Pharmacia)
After washing and swelling 5y, 2000 units of acetate kinase obtained from Bacillus stearothermophilus N CAl3O3 strain (optimum production temperature 60°C) was added and reacted to obtain 1000 units of immobilized acetate kinase. This operation was repeated using 250 units of adenylate kinase instead of acetate kinase to obtain 100 units of immobilized adenylate kinase. At this time, the ratio between the identified enzyme activity of acetate kinase and the immobilized enzyme activity of adenylate kinase was 10.

これら両固定化酵素を内径1.6crnで長さが10副
のガラス製カラムに充填し、 10??IM塩化マグネ
シウムを含む25mMイミダゾール塩酸緩衝液、 PH
7,5に溶解した各基質を150d/時間の流速でカラ
ムに供給した。このカラムに可変所送液装置、を磁弁及
びマイクロコンピュータ−を設置した。カラム内の温度
を30℃に保った。カラムより溶出された反応液中のA
MP、ADP、ATP濃度を高速液体クロマトグラ装置
で定量した。なお、AMP濃度を1.5mM 、アセチ
ルリン酸濃度を5mMに固定した。
Both of these immobilized enzymes were packed into a glass column with an inner diameter of 1.6 crn and a length of 10 columns. ? 25mM imidazole hydrochloride buffer containing IM magnesium chloride, PH
Each substrate dissolved in 7,5 was fed to the column at a flow rate of 150 d/hr. This column was equipped with a variable liquid feed device, a magnetic valve, and a microcomputer. The temperature inside the column was maintained at 30°C. A in the reaction solution eluted from the column
MP, ADP, and ATP concentrations were determined using a high performance liquid chromatography device. Note that the AMP concentration was fixed at 1.5 mM, and the acetyl phosphate concentration was fixed at 5 mM.

次にマイクロコンピュータ−で0.063 mM AT
P(ATPとAMPの濃度比は0.042゜実施例1)
Next, add 0.063 mM AT using a microcomputer.
P (concentration ratio of ATP and AMP is 0.042° Example 1)
.

0.07mMATP (ATPとAMPの濃度比は0.
047゜実施例2 ) 、 0.13mM ATP (
ATPとAMPの濃度比は0.087.実施例3 ) 
、 0.19mM ATP (ATPとAMPの濃度比
は0.127゜実施例4)と(イ)式を満足するように
種々変えてATPへの変換率を求めた。
0.07mMATP (The concentration ratio of ATP and AMP is 0.07mM ATP.
047゜Example 2), 0.13mM ATP (
The concentration ratio of ATP and AMP is 0.087. Example 3)
, 0.19mM ATP (the concentration ratio of ATP and AMP is 0.127°, Example 4), and the conversion rate to ATP was determined by various changes so as to satisfy equation (a).

その結果、いずれもカラムに供給後、わずかに20分後
に、すてにAMPは検出されず、98.5%のATP、
1.5%のADPが検出された。
As a result, only 20 minutes after supplying to the column, no AMP was detected, and 98.5% of ATP,
1.5% ADP was detected.

別に比較のため、ATP濃度を0.03mMATP(A
TPとAMPの濃度比は0.02゜比較例1)。
Separately, for comparison, the ATP concentration was set to 0.03mM ATP (A
The concentration ratio of TP and AMP was 0.02° (Comparative Example 1).

0.024mM ATP (ATPとAMPの濃度比は
0.016゜比較例2 ) 、 0.014mM AT
P (ATPとAMPの濃度比は0.009゜比較例3
)に変えて実施例1〜4と同様にして行った。
0.024mM ATP (concentration ratio of ATP and AMP is 0.016° Comparative Example 2), 0.014mM AT
P (The concentration ratio of ATP and AMP is 0.009° Comparative Example 3
) was carried out in the same manner as in Examples 1 to 4.

その結果、比較例1においては、A’i’Pが95%。As a result, in Comparative Example 1, A'i'P was 95%.

ADPが3%、AMPが2チ検出され、比較例2におい
ては、ATPが89%、ADPが8%、AMPが3%検
出され、比較例3においては、ATPが72チ、ADP
が20チ、AMPが8チ検出された。
In Comparative Example 2, 89% of ATP, 8% of ADP, and 3% of AMP were detected, and in Comparative Example 3, 72% of ATP and 2% of ADP were detected.
20 chips and 8 chips of AMP were detected.

実施例5 実施例2と同条件で反応を開始した後、20分後にカラ
ムからの溶出液をATPとAMPの濃度比が0.047
になるようにカラムに循環供給した。
Example 5 After starting the reaction under the same conditions as in Example 2, the eluate from the column was collected 20 minutes later at a concentration ratio of ATP and AMP of 0.047.
It was circulated to the column so that

その結果9反応器からの溶出液をATPの代りに用いて
後、20分以後5時間にわたり、ATPは98チから9
8,5φの間に維持していた。
As a result, after using the eluate from 9 reactors instead of ATP, ATP decreased from 98% to 9% over a period of 20 minutes and 5 hours.
It was maintained between 8.5φ.

実施例6 実施例1と同様にして得た固定化酢酸キナーゼ2000
単位、固定化アデニル酸キナーゼ200単位を内径2.
0鋸で長さが12crnのガラス製カラムに充填し、 
25mM塩化マグネシウムと0.04好)リウムアジド
を含む50mMイミダゾール−塩酸緩衝液。
Example 6 Immobilized acetate kinase 2000 obtained in the same manner as Example 1
unit, 200 units of immobilized adenylate kinase to an inner diameter of 2.
Packed into a glass column with a length of 12 crn using a zero saw,
50mM imidazole-hydrochloric acid buffer containing 25mM magnesium chloride and 0.04% lium azide.

Pfl 7.5 K溶かした3、0mM AMP 、 
0.13mM ATP(ATPとAMPの濃度比は0.
043 ) 、 10mMアセチルリン酸を300rn
v時間の流速でカラムに供給して(イ)式を満足するよ
うにAMPとATPの流量と濃度を保った。
Pfl 7.5 K dissolved 3,0mM AMP,
0.13mM ATP (concentration ratio of ATP and AMP is 0.
043), 10mM acetyl phosphate at 300rn
AMP and ATP were supplied to the column at a flow rate of v hours to maintain the flow rates and concentrations of AMP and ATP so as to satisfy equation (a).

その結果1反応開始後10日間にわた#)ATPへの変
換率は98.5%から99.0%の間に維持されていた
As a result, the conversion rate to #) ATP was maintained between 98.5% and 99.0% for 10 days after the start of the first reaction.

実施例7 実施例6と同条件で反応を開始した後、30分後にカラ
ムからの溶出液(98%のATPを含む)を、ATP(
7)代りKATPとAMP(7)濃度比が0.043に
なるようにカラムに循環供給した。
Example 7 After starting the reaction under the same conditions as in Example 6, 30 minutes later, the eluate from the column (containing 98% ATP) was converted into ATP (
7) Instead, KATP and AMP (7) were circulated and supplied to the column so that the concentration ratio was 0.043.

その結果1反応開始後10日間にわたりATPへの変換
率は98.2〜98.7 %で推移していた。
As a result, the conversion rate to ATP remained at 98.2 to 98.7% for 10 days after the start of one reaction.

代理人 児玉雄三Agent Yuzo Kodama

Claims (1)

【特許請求の範囲】 (11最適生育温度が50℃ないし85℃である微生物
の産生ずるアデノシン−リン酸をアデノシンニリン酸に
変換する酵素又はアデノシンニリン酸をアデノシンニリ
ン酸に変換する酵素を固定化し、得られたアデノシン−
リン酸をアデノシンニリン酸に変換する固定化酵素及び
アデノシンニリン酸をアデノシンニリン酸に変換する固
定化酵素を組み合わせてアデノシン−リン酸をアデノシ
ンニリン酸に変換させるに際し、アデノシンニリン酸の
濃度を下記(イ)式を満足する条件に制御することを特
徴とするアデノシン−リン酸のアデノシンニリン酸への
変換方法。 (但し、AMPはアデノシン−リン酸の濃度(mM) 
。 ATPはアデノシンニリン酸の濃度(mM)を表し、γ
はアデノシンニリン酸をアデノシンニリン酸に変換する
酵素の固定化酵素活性とアデノシン−リン酸をアデノシ
ンニリン酸忙変換する酵素の固定化酵素活性との比で、
1以上の正数を表す。) (2)  アデノシン−リン酸をアデノシンニリン酸に
変換する酵素が、アデニル酸キナーゼであり。 アデノシンニリン酸をアデノシンニリン酸に変換する酵
素が、酢酸キナーゼである特許請求の範囲第1項記載の
変換方法。
[Scope of Claims] (11. An enzyme that converts adenosine-phosphate into adenosine diphosphate or an enzyme that converts adenosine diphosphate into adenosine diphosphate produced by a microorganism whose optimal growth temperature is 50°C to 85°C is immobilized. , the obtained adenosine-
When converting adenosine-phosphate to adenosine diphosphate using a combination of an immobilized enzyme that converts phosphoric acid to adenosine diphosphate and an immobilized enzyme that converts adenosine diphosphate to adenosine diphosphate, the concentration of adenosine diphosphate is determined as follows ( b) A method for converting adenosine-phosphoric acid to adenosine diphosphoric acid, which is characterized by controlling the conditions to satisfy the formula. (However, AMP is the concentration of adenosine-phosphate (mM)
. ATP represents the concentration of adenosine diphosphate (mM), and γ
is the ratio of the immobilized enzyme activity of the enzyme that converts adenosine diphosphate to adenosine diphosphate and the immobilized enzyme activity of the enzyme that converts adenosine-phosphate to adenosine diphosphate.
Represents a positive number greater than or equal to 1. ) (2) The enzyme that converts adenosine-phosphate to adenosine diphosphate is adenylate kinase. 2. The conversion method according to claim 1, wherein the enzyme that converts adenosine diphosphate to adenosine diphosphate is acetate kinase.
JP57090424A 1982-01-26 1982-05-27 Conversion of adenosine monophosphate to adenosine triphosphate Pending JPS58209990A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57090424A JPS58209990A (en) 1982-05-27 1982-05-27 Conversion of adenosine monophosphate to adenosine triphosphate
DE8383300361T DE3368682D1 (en) 1982-01-26 1983-01-25 Process for producing physiologically active substance by multienzyme process and apparatus for the same
EP19830300361 EP0084975B1 (en) 1982-01-26 1983-01-25 Process for producing physiologically active substance by multienzyme process and apparatus for the same
US06/461,308 US4882276A (en) 1982-05-27 1983-01-26 Process for producing physiologically active substance by multienzyme process
CA000420264A CA1194825A (en) 1982-05-27 1983-01-26 Process for producing physiologically active substance by multienzyme process
DK29683A DK29683A (en) 1982-01-26 1983-01-26 PROCEDURE FOR THE PREPARATION OF PHYSIOLOGICAL ACTIVE SUBSTANCE BY A MULTIENZYM PROCESS AND APPARATUS FOR ITS EXERCISE
US07/202,606 US4960696A (en) 1982-05-27 1988-06-06 Process for producing physiololgically active substance by multienzyme process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57090424A JPS58209990A (en) 1982-05-27 1982-05-27 Conversion of adenosine monophosphate to adenosine triphosphate

Publications (1)

Publication Number Publication Date
JPS58209990A true JPS58209990A (en) 1983-12-07

Family

ID=13998219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57090424A Pending JPS58209990A (en) 1982-01-26 1982-05-27 Conversion of adenosine monophosphate to adenosine triphosphate

Country Status (2)

Country Link
US (1) US4882276A (en)
JP (1) JPS58209990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203197A (en) * 1984-03-29 1985-10-14 Kazutomo Imahori Method for converting adenosine monophosphate into adenosine triphosphate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630599B2 (en) * 1989-03-03 1994-04-27 ユニチカ株式会社 Process for producing fructose-1,6-diphosphate
US5995539A (en) * 1993-03-17 1999-11-30 Miller; William J. Method and apparatus for signal transmission and reception
US5367516A (en) * 1993-03-17 1994-11-22 Miller William J Method and apparatus for signal transmission and reception
WO1997013137A2 (en) * 1995-10-03 1997-04-10 Cem Corporation Microwave assisted chemical processes
NZ529366A (en) * 2001-11-21 2007-02-23 Unitika Ltd Visually determinable ATP measurement method and reagent therefor
TWI463015B (en) * 2010-08-06 2014-12-01 Ind Tech Res Inst Method and agent for detecting microorganisms
US11939615B2 (en) * 2017-06-15 2024-03-26 Anhui Gsh Bio-Tech Co., Ltd. Production method of enzymatic reaction using adenosine instead of ATP

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846239A (en) * 1972-07-24 1974-11-05 Monsanto Co Process for the preparation of heat-resistant alpha-galactosidase enzyme
GB1455993A (en) * 1973-01-12 1976-11-17 Novo Industri As Glucose isomerase
US4011139A (en) * 1974-11-26 1977-03-08 Standard Brands Incorporated Process for producing α-1,6 glucosidases using thermophilic microorganisms
US4164444A (en) * 1976-03-15 1979-08-14 Massachusetts Institute Of Technology Method for preparing adenosine triphosphate
US4220722A (en) * 1978-02-10 1980-09-02 Syva Company Method for conjugating to polyamino compounds employing haloacyl groups and compositions prepared thereby
ZA792410B (en) * 1978-05-22 1980-08-27 R Sharp Production of enzymes
JPS5519239A (en) * 1978-07-28 1980-02-09 Green Cross Corp:The Interferon-producing attractant
US4424278A (en) * 1981-11-16 1984-01-03 Research Corporation Cancer detection procedure using an acyl carrier protein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203197A (en) * 1984-03-29 1985-10-14 Kazutomo Imahori Method for converting adenosine monophosphate into adenosine triphosphate

Also Published As

Publication number Publication date
US4882276A (en) 1989-11-21

Similar Documents

Publication Publication Date Title
EP0202094B1 (en) Process for producing physiologically active substance
JPS58209990A (en) Conversion of adenosine monophosphate to adenosine triphosphate
EP0385486B1 (en) Process for producing fructose-1,6-diphosphate
US4886749A (en) Process for producing diadenosine tetraphosphate and derivatives thereof
JPH0521553B2 (en)
Toone et al. Enzymic synthesis of uridine 5'-diphosphoglucuronic acid on a gram scale
US5376535A (en) Method for producing 3'-phosphoadenosine 5'-phosphosulfate
EP0084975B1 (en) Process for producing physiologically active substance by multienzyme process and apparatus for the same
US4554253A (en) Apparatus for synthesizing adenosine-5'-triphosphate
Kitabatake et al. Synthesis of P1, P4-di (adenosine 5′-) tetraphosphate by leucyl-tRNA synthetase, coupled with ATP regeneration
US4960696A (en) Process for producing physiololgically active substance by multienzyme process
US5306629A (en) Method for producing dinucleoside polyphosphate, nucleoside polyphosphate or derivatives thereof
JPS6174595A (en) Production of substance
JPS58129992A (en) Process for converting adenosine monophosphate into adenosine triphosphate
CA1194825A (en) Process for producing physiologically active substance by multienzyme process
JPS59106296A (en) Preparation of physiologically active substance by composite enzyme process
EP0307854B1 (en) High-temperature method for the production of ribavirin
JPH0521554B2 (en)
EP0323068A2 (en) Enzymatic carbon-carbon bond formation
JPS60203197A (en) Method for converting adenosine monophosphate into adenosine triphosphate
Whitesides et al. Enzymatic Regeneration of ATP from AMP and ADP Part II: Enzyme Immobilization and Reactor Development
Okeson et al. Glutamine replenishment and ammonia removal in hybridoma cell cultures via immobilized glutamine synthetase
KR800001395B1 (en) Process for isomerizing glucose
JPS60105499A (en) Production of glutathione
Filip et al. Effect of reaction temperature on enzyme conversion of pyrimidine bases to nucleosides and 2′‐deoxynucleosides