JPS58208146A - Manufacture of base material for radiation resistant optical fiber - Google Patents

Manufacture of base material for radiation resistant optical fiber

Info

Publication number
JPS58208146A
JPS58208146A JP9030582A JP9030582A JPS58208146A JP S58208146 A JPS58208146 A JP S58208146A JP 9030582 A JP9030582 A JP 9030582A JP 9030582 A JP9030582 A JP 9030582A JP S58208146 A JPS58208146 A JP S58208146A
Authority
JP
Japan
Prior art keywords
fluorine
porous preform
optical fiber
preform
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9030582A
Other languages
Japanese (ja)
Other versions
JPH0135779B2 (en
Inventor
Takao Shioda
塩田 孝夫
Kazuo Sanada
和夫 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP9030582A priority Critical patent/JPS58208146A/en
Publication of JPS58208146A publication Critical patent/JPS58208146A/en
Publication of JPH0135779B2 publication Critical patent/JPH0135779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To make the fluorine content uniform and to reduce unevenness in refractive index, by forming a porous preform for a clad on the surface of a vitreous substrate for a core, treating the preform with gaseous fluorine, and converting the substrate and the resulting porous preform contg. fluorine into transparent glass. CONSTITUTION:A porous preform 3 for a clad is formed on the surface of a quartz glass rod 1 for a core by feeding H2, O2, SiCl4 and BF3 to the 1st burner 2 and by moving the rod 1 upward while rotating. H2, O2 and CF4 are then fed to the 2nd burner 4 to treat the preform 3 with reactive gaseous fluorine. The rod 1 and the resulting porous preform 3 contg. fluorine united in a body 5 are converted into transparent glass by heating in a helium atmosphere.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はフッ素を含有し、低屈折率のクラッドを持つ
耐放射線用光ファイバの母材の製造方法に関するもので
ある。 従来、耐放射−特性の長い耐放射線用光ファイバとして
コアにsio、、クラッドにSio、−BtOsk用い
たものが知られている。この棟の光ファイバでは、B(
ホウ素)によってクラッドの屈折率を低下さ・ぜている
が、Bによる屈折率の一低下分が少ないため、比屈折率
!(、J)の大きな光ファイバ1に得るにはBを多重に
ドープぞねばならない。しかし、Bτ多重にドープする
と、クラッドの熱膨張係数がコアのそれと大きく異るこ
とになシ、この熱膨張係数の差によって光ファイバが割
れることがあるという欠点があった。 このため、ドーパントのBの一部または全部をF(フッ
素)に置き換えたフッ素含有クラッドの元ファイバが製
造されるようになった。このフッ素含有クラッドの元フ
ァイバの製造方法としては、例えば高温のプラズマ炎中
にF生成化合物と6ti生成生成物を同時に送シ込み、
プラズマ炎中でFとsi とか結合したガラス微粒子を
生成さぜ、これ
The present invention relates to a method for manufacturing a base material of a radiation-resistant optical fiber containing fluorine and having a low refractive index cladding. Conventionally, as a radiation-resistant optical fiber having long radiation-resistant characteristics, one using SIO in the core and SIO in the cladding with -BtOsk is known. The optical fiber in this building is B(
Although the refractive index of the cladding is lowered by boron (boron), the reduction in refractive index by B is small, so the relative refractive index! In order to obtain a large optical fiber 1 with (, J), B must be doped multiple times. However, when Bτ multiple doping is used, the thermal expansion coefficient of the cladding is significantly different from that of the core, and this difference in thermal expansion coefficients has the disadvantage that the optical fiber may break. For this reason, original fibers with fluorine-containing cladding in which part or all of the B dopant is replaced with F (fluorine) have come to be manufactured. As a method for manufacturing the original fiber of this fluorine-containing cladding, for example, an F-generating compound and a 6ti-generating product are simultaneously fed into a high-temperature plasma flame,
In a plasma flame, glass particles combined with F and Si are generated.

【コアとなる石英ロッド上に透明ガラス
として析出させる方法がある。しかし、この方法では、
プラズマ装置等の複雑で周側な装置を必要とすること、
鍋温火炎中でSi とFとを反応さげるため、クラッド
となるガラス中のフッ素含有倉か一定とならないなどの
欠点がある。また、ガラス管内面に肉付は法によってフ
ッ素含有クラッドとなるスート盾を形成し、このガラス
管にコアとなる石英ロッドを挿入、加熱するロッドイン
チューブ法もある。しかし、この方法もF単独ではΔ音
大きく取ることが困難であるので、Bi同時にドープさ
せるが、Bのドープによって上述のようにコアとの熱膨
張係数の麦か大きくなり、ロッドを挿入して加熱し、充
火とするときに熱歪で割れる恐れがある。 この発明は上記事情に鑑みてなされたもので、特別の装
#忙必矢とせず、Fを安定して十分量含有せしめること
ができ、しかも製造中熱歪によって割れたシすることの
ない、F含有クラッド)−ヲ有する耐放射線用光フアイ
バ母材の製造方法を提供することを目的とするものでお
る。 以下、図面を吃照してこの発明の詳細な説明する。 図面はこの発明の製造方法の一例を@式的に示すもので
、図中符号1はコアとなる石英ガラス製の丸棒状のロッ
ドである。このロッド】は、その軸を回転軸として図示
しない回転移動装置によって、回転しつつ徐々に上方に
上昇するようになっている−そして、このロッド1の表
面には、第1のバーナ2によってクラッドとなる多孔質
プリフォーム3か形成される。すなわち、第1のバーナ
2は周知の多重管バーナとなってお沙、このバーナ2に
はガラス原桝ガスであるsic/いH2ガス、0、ガス
がそれぞれ供給バイブ2a 、2a・・・から同時に供
給さnている。この際、修景に応じて、BBr3、BP
、  などのB成分をドーパントとして同時にバーナ2
に供給し、クラッドとなるプリフォームの屈折率ヲ予め
低下させておくこともできるが、その添加髪は出来る限
り少賃とした方が好ましい。第1のバーナ2に供給され
た上記ガラス原杉ガス等は、火炎中で加水分解反応、熱
酸化反応を支は、微粒子状のsio、 +B20.のガ
ラスとなり、ロン110表面上に堆積しクラッドとなる
多孔質プリフォーム3が形成される。 このようにして、第1のバーナ2で多孔質プリフォーム
3がロッド1上に形成されると、第1のバーナ2の上方
に設けられた第2のバーナ4によって反応性フッ素ガス
による処理が行われる。第2のバーナ4も同様に多重管
バーナとなっており、このバーナ4にはF、ガスや火炎
中で分解してFt生成するOF4、SF6、CCl2F
、などのガス状のフッ素化合物と酸水素炎を形成する■
2ガス、0!ガスがそれぞれ供給管42.4a 、4a
によって同時に送シ込せれる。第2のバーナ4の火炎中
で加熱されてF、ガスは直接反応性に富む活性状態のF
となし、また上記フッ素化合物は一旦分解してF、とな
りついで反応性に富む活性状態のFとなり、ロッドl上
に堆積しているクラッドとなるプリフォーム3に吹き付
けられる。これによって活性状態のFは、多孔質プリフ
ォーム3中にガス状で深く浸透し、5io2の一部と反
応してSiF4等の5i−F結合を生成する。このよう
な反応性フッ素ガスによる処理を父けた多孔質プリフォ
ーム3 id、Fの混在によって、これ=m明ガラス化
した時の屈折率が低下することになる。 ついで、上記反応性フッ素ガスによる処理が終ったロッ
ド1と多孔質プリフォーム3との一体物5は電気炉等で
加熱され、多孔質プリフォーム3が透明カラス化されて
、光フアイバ母材となる。 この光フアイバ母材は、通常の浴融紡糸法によって、ロ
ッド1tコアとし、処理された多孔質プリフォームをク
ラッドとするステップインデックス型の耐放射線用光フ
ァイバとされる。かくして、得られた光ファイバは、そ
のクラッドにはFが含以下、実施例を示して具体的に説
明する。 〔実施例〕 直住12mmのコアとなる石英ガラスのロッド1上に、
第1のバーナ2によって8i0.−B203  の多孔
質プリフォーム3を形成した。第1のバーナ2には、H
2ガス4000cc/分、0.ガス8000cc/分、
5iCA4600cc/分、BF、、300cc/分を
それぞれ世給し、ロッドi30 R,P、M  で回転
させなめSら100m/時間の移動速度で上昇させた。 この結果、直径48罰のクラッドとなる多孔質プリフォ
ーム3が形成された。ついで、第2のバーナ4に、■、
ガス5000cc/分、0.ガス8000cc/分、0
F4300 cc/分tp給し、反応性フッ素ガスによ
る処理を多孔質プリフォーム3に施した。ついで、コア
1と多孔質プリフォーム3との一体物5をヘリウム雰囲
気中、1800°Cで加熱し、多孔質プリフォーム3を
透明ガラス化し、直往19m11の棒状の光フアイバ母
材を得た。この元ファイバ母材を紡糸してコア住ε;0
μ肩、全住125μmの光ファイバt−得た。この光フ
ァイバの比屈折率差Δは1チであった。1だ、クラッド
の屈折率に対するBのを4率は、Bの含有蓋がo3チ程
度で6%程度であり、熱歪により割れる可能性は少なか
った。 以上説明したように、この発明の耐放射線用光フアイバ
母材の製造方法は、コアとなるガラス質基材の表面にク
ラッドと力る多孔質プリフォームを形成し、ついでこの
多孔質ブリフ尤−ムを反応性フッ素ガスで処理してフッ
素含有多孔質プリフォームを形成し、その後このプリフ
ォームを透明ガラス化するものであるので、クラッドと
なる多孔質プリフォーム中にフッ素が容易に浸透、反応
し、フッ素を十分量含有値しめることができ、これより
得られる光ファイバのクラッドの屈折率は十分低下し、
比屈折”4Mの大きな光ファイバとなる。また、反応性
フッ素ガスによる処理を酸水素炎中に含まれたフッ素ガ
スで行うものでは、フッ素の含有量の調整が容易に行え
、フッ素含有斌ヲ一定とすることができ屈折率のバラツ
キを少なくできる。さらに、フッ素を十分鵞含有ぜしめ
つるので、屈折率を低下させるためにBをさほど多く冷
加する心安がなく、このためコアとクラッドとの熱#缶
係数の麦かすくなく、製造工程における   □加熱に
よる熱歪で割れる恐れもない。また、製造装置も通常の
元ファイバ製造に用いられる多重管バーナを利用するこ
とができるので、従来のプラズマ法に比べて設備費が格
段に安くてすみ、製造コストモ低くなる。さらに着た、
−丘疹孔質プリフォームを形成し、ついで反応性フッ素
ガスで処理しているので、多孔質プリフォームの形成と
反応性フッ素ガス処理とを同時に、例えば1本のバーナ
で行う方法に比べ、フッ素ガスによるガラスのエツチン
グ作用によってプリフォーム生成蓋が少なく、このため
プリフォームの密度が/」・さくなりプリフォームの段
階で割れるというような不都合が生じないなどの利点を
有する。
[There is a method in which transparent glass is deposited on a quartz rod that serves as the core. However, with this method,
Requiring complex and peripheral equipment such as plasma equipment;
Since the reaction between Si and F is reduced in the hot flame of the pot, there are drawbacks such as the fact that the amount of fluorine contained in the glass that becomes the cladding is not constant. There is also a rod-in-tube method in which a soot shield, which is a fluorine-containing cladding, is formed on the inner surface of a glass tube by a filling method, and a quartz rod serving as a core is inserted into this glass tube and heated. However, in this method, it is difficult to obtain a large Δ sound with F alone, so Bi is doped at the same time, but as mentioned above, doping with B increases the coefficient of thermal expansion with the core, so inserting the rod There is a risk of cracking due to thermal distortion when heating and igniting. This invention was made in view of the above circumstances, and it is possible to stably contain a sufficient amount of F without requiring any special packaging, and moreover, it will not crack due to thermal distortion during manufacturing. The object of the present invention is to provide a method for manufacturing a radiation-resistant optical fiber base material having a F-containing cladding. Hereinafter, the present invention will be described in detail with reference to the drawings. The drawings schematically show an example of the manufacturing method of the present invention, and reference numeral 1 in the drawings indicates a round rod made of quartz glass that serves as a core. This rod 1 is rotated by a rotary moving device (not shown) with its axis as a rotation axis, and is gradually raised upwards. A porous preform 3 is formed. That is, the first burner 2 is a well-known multi-tube burner, and this burner 2 is supplied with glass chamber gas SIC/H2 gas, 0 gas, and gas from vibrators 2a, 2a, . . . , respectively. are supplied at the same time. At this time, depending on the scenery, BBr3, BP
, etc. are used as dopants at the same time in burner 2.
Although it is possible to lower the refractive index of the preform that becomes the cladding in advance by supplying it to the cladding material, it is preferable that the amount of the added hair be as small as possible. The above glass raw cedar gas etc. supplied to the first burner 2 undergoes a hydrolysis reaction and a thermal oxidation reaction in the flame, and contains particulate sio, +B20. The glass is deposited on the surface of the iron 110 to form a porous preform 3 which becomes a cladding. After the porous preform 3 is formed on the rod 1 by the first burner 2 in this way, the second burner 4 provided above the first burner 2 performs treatment with reactive fluorine gas. It will be done. The second burner 4 is also a multi-tube burner, and this burner 4 contains F, OF4, SF6, and CCl2F, which decompose in gas and flame to generate Ft.
, form an oxyhydrogen flame with gaseous fluorine compounds such as ■
2 gas, 0! Gas is supplied through the supply pipes 42.4a and 4a, respectively.
can be sent at the same time. F is heated in the flame of the second burner 4, and the F gas is in an active state with high direct reactivity.
Furthermore, the fluorine compound is once decomposed into F, which is then turned into F in a highly reactive active state, and is sprayed onto the preform 3, which will become the cladding, deposited on the rod l. As a result, active F penetrates deeply into the porous preform 3 in a gaseous state, reacts with a portion of 5io2, and generates a 5i-F bond such as SiF4. Due to the presence of the porous preform 3id, F which has been treated with such a reactive fluorine gas, the refractive index when vitrified is lowered. Next, the integrated body 5 of the rod 1 and the porous preform 3 that has been treated with the reactive fluorine gas is heated in an electric furnace or the like, and the porous preform 3 is made into a transparent glass to form an optical fiber base material. Become. This optical fiber base material is made into a step-index type radiation-resistant optical fiber having a 1t rod core and a treated porous preform as a cladding by a conventional bath melt spinning method. The thus obtained optical fiber contains F in its cladding, and will be described in detail by way of examples. [Example] On the quartz glass rod 1 that serves as the core of the 12 mm direct mounting,
8i0. by the first burner 2. -B203 porous preform 3 was formed. The first burner 2 has H
2 gas 4000cc/min, 0. Gas 8000cc/min,
5iCA 4600 cc/min, BF, 300 cc/min were supplied respectively, and the rods were rotated by i30 R, P, M and raised at a moving speed of 100 m/hour. As a result, a porous preform 3 serving as a cladding having a diameter of 48 mm was formed. Then, to the second burner 4,
Gas 5000cc/min, 0. Gas 8000cc/min, 0
F4300 cc/min tp was supplied, and the porous preform 3 was treated with reactive fluorine gas. Next, the integrated body 5 of the core 1 and the porous preform 3 was heated at 1800°C in a helium atmosphere to turn the porous preform 3 into transparent glass, thereby obtaining a rod-shaped optical fiber preform with a diameter of 19 m11. . This original fiber base material is spun to form a core with ε;0
An optical fiber with a μ shoulder and a length of 125 μm was obtained. The relative refractive index difference Δ of this optical fiber was 1 chi. 1. The ratio of B to the refractive index of the cladding was about 6% when the B-containing lid was about 300 ml, so there was little possibility of it breaking due to thermal strain. As explained above, in the method for manufacturing a radiation-resistant optical fiber base material of the present invention, a porous preform that is bonded to a cladding is formed on the surface of a glassy base material serving as a core, and then this porous preform is The process involves treating the film with reactive fluorine gas to form a fluorine-containing porous preform, and then converting this preform into transparent glass. Therefore, fluorine easily penetrates and reacts into the porous preform that becomes the cladding. However, a sufficient amount of fluorine can be contained, and the refractive index of the resulting optical fiber cladding is sufficiently reduced.
The optical fiber has a large relative refraction of 4M.Furthermore, in the case of processing with reactive fluorine gas using fluorine gas contained in an oxyhydrogen flame, the fluorine content can be easily adjusted, and the fluorine content can be easily adjusted. It is possible to keep the refractive index constant and reduce variations in the refractive index.Furthermore, since it contains a sufficient amount of fluorine, there is no need to worry about cooling B so much in order to lower the refractive index. There is no grain loss due to heat # can coefficient, and there is no risk of cracking due to thermal strain caused by heating during the manufacturing process.Furthermore, the manufacturing equipment can use the multi-tube burner normally used for original fiber manufacturing, so Equipment costs are much lower than the plasma method, and manufacturing costs are also low.
- Because the papule-porous preform is formed and then treated with reactive fluorine gas, the fluorine Due to the etching action of the glass by the gas, there are fewer preforms to be produced, which has the advantage of reducing the density of the preform and eliminating problems such as breakage during the preform stage.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の耐放射線用光フアイバ母材の製造方法
の一例を示す説明図である。 1・・ ロッド、2・・・第1のバーナ、3・・・多孔
質プリフォーム、4・・・第2のバーナ、。 出願人 膝首゛亀巌体式会社 代理人 弁理士 志 賀 正 武
The drawings are explanatory drawings showing an example of the method for manufacturing the radiation-resistant optical fiber base material of the present invention. DESCRIPTION OF SYMBOLS 1... Rod, 2... First burner, 3... Porous preform, 4... Second burner. Applicant: Kneeneck Kamigantai Company Representative Patent Attorney: Masatake Shiga

Claims (1)

【特許請求の範囲】 +lj  コアとなるガラス實基材の表面にクラッドと
なる多孔質プリフォームを形成し、ついでこの多孔質プ
リフォームを反応性フッ素ガスで処理してフッ素含有多
孔質プリフォームを形成し、その後フッ素含有多孔質プ
リフォームta明ガラス化すること′に%徴とする耐放
射11!用光フアイバ母材の製造方法。 (2)上記反応性フッ素ガスによる処理が酸水素炎中に
含まれたフッ素ガスで行われることを特徴とする特許詞
求の範囲第1項記載の耐放射線用光フアイバ母材の製造
方法。
[Claims] +lj A porous preform to be a cladding is formed on the surface of a glass base material to be a core, and then this porous preform is treated with a reactive fluorine gas to form a fluorine-containing porous preform. By forming and then vitrifying the fluorine-containing porous preform, it has a radiation resistance of 11%. A method for manufacturing optical fiber base material for use. (2) The method for producing a radiation-resistant optical fiber base material according to claim 1, wherein the treatment with reactive fluorine gas is performed with fluorine gas contained in an oxyhydrogen flame.
JP9030582A 1982-05-27 1982-05-27 Manufacture of base material for radiation resistant optical fiber Granted JPS58208146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9030582A JPS58208146A (en) 1982-05-27 1982-05-27 Manufacture of base material for radiation resistant optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9030582A JPS58208146A (en) 1982-05-27 1982-05-27 Manufacture of base material for radiation resistant optical fiber

Publications (2)

Publication Number Publication Date
JPS58208146A true JPS58208146A (en) 1983-12-03
JPH0135779B2 JPH0135779B2 (en) 1989-07-27

Family

ID=13994822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9030582A Granted JPS58208146A (en) 1982-05-27 1982-05-27 Manufacture of base material for radiation resistant optical fiber

Country Status (1)

Country Link
JP (1) JPS58208146A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172643A (en) * 1984-09-19 1986-04-14 Sumitomo Electric Ind Ltd Manufacture of optical fiber preform
US4610709A (en) * 1984-01-24 1986-09-09 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US4643751A (en) * 1985-03-19 1987-02-17 Northern Telecom Limited Method for manufacturing optical waveguide
US4648891A (en) * 1984-09-17 1987-03-10 Northern Telecom Limited Optical fiber
JPS6278124A (en) * 1985-09-30 1987-04-10 Sumitomo Electric Ind Ltd Production of high-purity quartz pipe
US4675040A (en) * 1984-04-20 1987-06-23 Sumitomo Electric Industries, Ltd. Method for producing glass preform for single mode optical fiber
JPS63156032A (en) * 1986-02-03 1988-06-29 ライト ウエイブ テクノロジー インコーポレーテッド Formation of suit for preform
US4867774A (en) * 1985-05-21 1989-09-19 Alcatel N.V. Method of producing an elongated glass body, particularly a preform for optical waveguides
US4880452A (en) * 1984-06-04 1989-11-14 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber containing fluorine in cladding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610709A (en) * 1984-01-24 1986-09-09 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US4675040A (en) * 1984-04-20 1987-06-23 Sumitomo Electric Industries, Ltd. Method for producing glass preform for single mode optical fiber
US4880452A (en) * 1984-06-04 1989-11-14 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber containing fluorine in cladding
US4648891A (en) * 1984-09-17 1987-03-10 Northern Telecom Limited Optical fiber
JPS6172643A (en) * 1984-09-19 1986-04-14 Sumitomo Electric Ind Ltd Manufacture of optical fiber preform
JPH0583502B2 (en) * 1984-09-19 1993-11-26 Sumitomo Denki Kogyo Kk
US4643751A (en) * 1985-03-19 1987-02-17 Northern Telecom Limited Method for manufacturing optical waveguide
US4867774A (en) * 1985-05-21 1989-09-19 Alcatel N.V. Method of producing an elongated glass body, particularly a preform for optical waveguides
JPS6278124A (en) * 1985-09-30 1987-04-10 Sumitomo Electric Ind Ltd Production of high-purity quartz pipe
JPH0583503B2 (en) * 1985-09-30 1993-11-26 Sumitomo Electric Industries
JPS63156032A (en) * 1986-02-03 1988-06-29 ライト ウエイブ テクノロジー インコーポレーテッド Formation of suit for preform

Also Published As

Publication number Publication date
JPH0135779B2 (en) 1989-07-27

Similar Documents

Publication Publication Date Title
JP2000510093A (en) Apparatus and method for overcladding optical fiber preform rod and method for drawing optical fiber
EP0176263B1 (en) Optical fiber
JPS60257408A (en) Optical fiber and its production
JPS58208146A (en) Manufacture of base material for radiation resistant optical fiber
CA1266403A (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPS6081033A (en) Manufacture of optical fiber
JPH0479981B2 (en)
JPH0327491B2 (en)
JPH06263468A (en) Production of glass base material
JPH0551542B2 (en)
JP2613119B2 (en) Method for producing rare earth element doped DSC type optical fiber preform
JP2635563B2 (en) Manufacturing method of glass material for optical transmission body
JPS63147840A (en) Production of quartz glass material
JPS6183639A (en) Production of quartz pipe of high purity
JPS632900B2 (en)
JPS60155536A (en) Production of optical fiber preform
JPS5910938B2 (en) Method of manufacturing optical transmission glass
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JP3174682B2 (en) Method for producing glass preform for optical fiber
JP2022127161A (en) Method for manufacturing optical fiber preform and method for manufacturing optical fiber
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam
JPS63285128A (en) Production of optical fiber preform
JPH1059730A (en) Production of synthetic quartz glass
JPS63315531A (en) Production of optical fiber preform
JPS5925738B2 (en) Optical glass fiber manufacturing method