JPS5820096A - Digital gamma compensating circuit - Google Patents

Digital gamma compensating circuit

Info

Publication number
JPS5820096A
JPS5820096A JP56118737A JP11873781A JPS5820096A JP S5820096 A JPS5820096 A JP S5820096A JP 56118737 A JP56118737 A JP 56118737A JP 11873781 A JP11873781 A JP 11873781A JP S5820096 A JPS5820096 A JP S5820096A
Authority
JP
Japan
Prior art keywords
digital
frequency characteristics
video signal
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56118737A
Other languages
Japanese (ja)
Inventor
Taizo Nishino
西野 泰蔵
Junichi Yamanaka
山中 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56118737A priority Critical patent/JPS5820096A/en
Publication of JPS5820096A publication Critical patent/JPS5820096A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To improve the S/N and at the same time to avoid the deterioration of the image resolution to perform the ideal gamma compensation, by dividing the digitized video signal into plural parts corresponding to the levels and providing the frequency characteristics corresponding to the sampled signals. CONSTITUTION:The primary color video signal supplied through an input terminal 4 is converted into a digital signal through an A/D converter 5 and then applied to the digital comparators 6a-6n corresponding to the signal levels to be divided into (n) units of signals. The outputs of the comparators 6a-6n are fed to the filters 7a-7n and limited to the range of each prescribed frequency characteristics. The outputs of the filters 7a-7n are fed to the nonlinear circuits 8a-8n, and the gamma compensation is carried out through the circuits 8a-8n. The outputs of the circuits 8a-8n are shinthesized by a shinthesizer 11. Then the S/N is improved by providing the frequency characteristics, and at the same time the deterioration is avoided for the image resolution. Thus the ideal gamma compensation is possible.

Description

【発明の詳細な説明】 この発明は、符号化された各原色映像信号をディ、ジタ
ル化してガンマ補正を行うときに、レベルに対応して周
波数特性を変化させるようにしたディジタルガンマ補正
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a digital gamma correction circuit that changes frequency characteristics in accordance with the level when gamma correction is performed by digitizing each encoded primary color video signal. .

一般にカラー受像機側で杜、入力映像信号に対する螢光
面での輝度の変化が線形でなく、その、電、光変換特性
は第1図に示すようにガンマ約2.2の特性を持9てい
る。このため送像側Oカッーテレビジョンカメ2側では
これの特性すなわちガンマがx7zz+!、<sの非線
形電層を行う   ゛ている(第2図参照)。
In general, on the color receiver side, the change in luminance on the fluorescent surface with respect to the input video signal is not linear, and its electrical and optical conversion characteristics have a gamma of approximately 2.2, as shown in Figure 1. ing. Therefore, on the image sending side, the characteristics of this, that is, gamma, on the television camera 2 side are x7zz+! , < s (see Figure 2).

これによシカツーテレ、ビジョンの総合としてのガンマ
祉1とな〕、受、僚機何で忠実な色再現を行うヒとがで
きる。
This makes it possible to faithfully reproduce colors in the Cica-to-Tele, Gamma 1 as a comprehensive vision system, receiver, and wingman.

しかし)ガンマ補正を行うと、映像信号の低いレベルで
は、立ち上シが約3〜4倍となうているのて、映倫信号
の規定レペをに対(、低いレベルでは相対的に3〜4倍
増幅されるヒ、とになる。この丸め、低いレベルの映像
信号をその11増幅すると、映像成分とともにノイズ成
分も同じ割〕合いで増幅され尋些め、規定レベルの映像
信号に対すゐ信号成分対ノイズ成分の比(以下B/N 
、itと称す、)嬬ガン!補正を行う千とによル3〜4
倍劣化してしまう(ノイズ成分の規定は低いし補ルにお
いてのノイズ分をいう・)一般にカラーテレVジ画ンの
場合、ル乍の測定は周波数−fi100Ktイクルから
4.2メガサイクルまでの帯域の周波数特性の実効値を
計ることによシ行われている。VN比は画質を快走する
重要な要素の一つであシ、もし8A比が低下すると画面
上でノイズが目立つようになシ画質に重大な影響を与え
る。
However, when gamma correction is performed, the start-up time is approximately 3 to 4 times higher at low levels of the video signal. When a low-level video signal is amplified by 11 times, the noise component is amplified at the same rate as the video component, which is very small compared to the video signal at the specified level. Ratio of signal component to noise component (hereinafter referred to as B/N
, called it,) Tsumagan! Thousands of corrections 3-4
(The regulation of the noise component is low, so it refers to the noise in the complement.) Generally, in the case of color television V-jima, the measurement of the rule is from frequency - fi 100Kt cycles to 4.2 megacycles. This is done by measuring the effective value of the frequency characteristics of the band. The VN ratio is one of the important factors for improving image quality, and if the 8A ratio decreases, noise will become noticeable on the screen, which will seriously affect the image quality.

したがうて、良質な映像を伝達しようとすれば、髪乍の
劣化を極力減少させるように処理することが望まれる。
Therefore, in order to transmit high-quality images, it is desirable to perform processing to reduce the deterioration of the hair as much as possible.

単純に辻ガン!補正時の周波数特性の高域成分を下げれ
ばよいがそれに伴りて解像度の低下を生じてしまう。
Simply Tsujigan! Although it is possible to lower the high-frequency components of the frequency characteristics during correction, this will result in a decrease in resolution.

ガンマ補正を行うときの周波数特性は理想的には映像信
号のレベルが低一部分は高域0周波数特性を下げて伝達
し、映像信号のレベルの高い部介紘そのまま伝達するこ
とが望ましい、上記のことを例えば入力信号として掃引
発振器の出力を用いればレベルが低いときは第3図Oよ
うな周波数特性を持ち、かフレ4#が高いときは第4図
のような周波数特性を持ち、入力が規定レベル時Ka第
5図のような周波数特性を持つことと等価である。
Ideally, the frequency characteristics when performing gamma correction should be such that low-level portions of the video signal are transmitted by lowering the high-frequency 0 frequency characteristics, and high-level portions of the video signal are transmitted as they are. For example, if the output of a sweep oscillator is used as an input signal, when the level is low, it will have the frequency characteristics as shown in Figure 3 O, and when the frequency 4# is high, it will have the frequency characteristics as shown in Figure 4. This is equivalent to having the frequency characteristic of Ka at the specified level as shown in FIG. 5.

このような周波数特性であるなら低いレベルでOノイを
成分を減少させるのでガンマ補正時のし乍此の劣化を少
くする仁とができ、かつ高レベルでは那波数特性が平担
であるので、解像度の劣化等の悪影響状はとんどない。
With this kind of frequency characteristic, the O noise component is reduced at low levels, so it is possible to reduce this deterioration during gamma correction, and at high levels, the N wave number characteristic is flat, so There are almost no negative effects such as resolution deterioration.

実際のガンマ補正回路でれ、アナaダ方式で行っている
のが通常であるが、−例を第6wJに示す・この方法状
入力端子1に導入された入力映像信号紘増幅器1で増幅
された後、抵抗R1とダイオードD1%抵抗凰雪とメイ
オーFD。
In actual gamma correction circuits, it is normal to use the analog-a-da method, but an example is shown in No. 6 WJ. After that, resistor R1 and diode D1% resistor Oisetsu and Mayo FD.

の直列回路によシ、第7図に示すように、折れ線状の特
性で近以的にガンマ補正を行りて出力端子1よ〕出力す
るようにしているが、低レベルでの周波数特性線高域成
分を下け、かつ高レベルでの周波数特性を平坦にしよう
とするKa十分であるとは云えなかつた。なおRm も
抵抗を示す。
As shown in Figure 7, in the series circuit of , the gamma correction has been recently performed with a polygonal characteristic and the output is output from output terminal 1. However, the frequency characteristic line at low level It could not be said that Ka was sufficient to lower the high frequency components and flatten the frequency characteristics at high levels. Note that Rm also represents resistance.

このような周波数4I性を実現することは難かしく、近
似させるヒとは可能であっても調整がめんどうであるな
どの問題があった。
It is difficult to realize such frequency 4I characteristics, and even if it is possible to approximate it, there are problems such as troublesome adjustment.

この発明状、上記従来の欠点を除去するためになされた
もので、ディジタル化された映像信号をレベルに対応し
て、複数個に分割し、抜き出した各々に対応した周波数
特性を付与することによシ、”い比がよくかつ解像度O
劣化などの悪影響がはとんどないデ(ジタルガyマ補正
回路を提供することを目的とする。
This invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and it involves dividing a digitized video signal into a plurality of parts according to the level, and giving frequency characteristics corresponding to each of the extracted parts. Yes, the ratio is good and the resolution is O.
An object of the present invention is to provide a digital yamma correction circuit that is free from adverse effects such as deterioration.

以下、ζO発明のディジタルガンマ補正回路の実施例を
図面を参照して説明する。第8開拡その一実施例の構成
を示すツ四、り図である。
Hereinafter, embodiments of the digital gamma correction circuit of the ζO invention will be described with reference to the drawings. It is a four-dimensional diagram showing the structure of an embodiment of the eighth expansion.

この第8図において、各原色信号O処理拡間−であるの
で緑色チャンネルを例にとうて説明する。
In FIG. 8, each primary color signal is processed and expanded, so the explanation will be given by taking the green channel as an example.

入力端子4に導入された緑色映像信号紘、アナーダティ
ジタル炭換器J(以下ル勺麦換器と鼻す)によシディジ
タル信号に変換されるようになりている。一般に1テレ
vy、ン信号をディジタル償0号に変換する場合、@’
tF以上でサンゾルすれば十分である。
The green video signal introduced into the input terminal 4 is converted into a digital signal by an anada digital converter J (hereinafter referred to as a digital converter). In general, when converting a 1 TV signal to a digital compensation signal, @'
It is sufficient to perform Sansol at tF or more.

次に、゛このディジタル信号はディジタル比較器Cに導
入されるようにな9ておシ、この際、ディジタル信号の
レベルに対応してINKティジタル比較器−aから一凰
會で缶所定のレベル範囲毎に導入されるようにデ(ジタ
ル比較−C紘m(mlf3以上の整数)個に分割されて
いる・このようにして、ディジタル比較器#a〜tap
cよ)それぞれの分割されて抜き出された映像信号はフ
ィルタFOそれぞれのフィルタFa〜Fm1C導入され
、それぞれ所定の周波数特性O制限をうけるよ’) K
 t 9ている。
Next, this digital signal is introduced into the digital comparator C, and at this time, corresponding to the level of the digital signal, the INK digital comparator-a is inputted to a predetermined level. It is divided into digital comparators (mlf (an integer greater than or equal to mlf3)) so as to be introduced for each range.In this way, digital comparators #a to tap
c) Each divided and extracted video signal is introduced into the filters Fa to Fm1C of the filters FO, and each is subjected to a predetermined frequency characteristic O limit.') K
t 9.

このフィルタFa〜rmはたとえば、低域成分紘そO1
t伝達し、高域成分を下げる一一一スフィルタならばデ
ィジタルアイにメにより達成できる。これらのフィルタ
Fa〜r−紘必要に応じて、HFF(−イア4 、X 
フィルタ)中あるい紘フィルタなしで周波数41性を平
坦にしてもよい@ H1’F%ディジタルフィルタによ
)容易に構成できる。
These filters Fa to rm are, for example, low-frequency components Hiroso O1.
This can be achieved using a digital eye if it is a filter that transmits t and reduces high-frequency components. These filters Fa~r-Hiro, HFF (-ia 4, X
The filter) can be easily configured (by means of a digital filter) which may flatten the frequency 41 characteristic without a middle or high frequency filter.

映像信号Otいレベルに相蟲する比較器0出力は四−一
スフィルタを通し、高いレベル−に相当する比較器の出
力状周波数q#性を平jLKL、それぞれのフィルタ出
力はガンマ補正の非直線回路8のそれぞれの非直線回路
8龜〜8M&に導入されるよう帆なっている。′ ガンマ補正の非直i11回路low1mは入力線形信号
をたとえば第2図に示すよりにガンマが0.450曲I
Ik変換することを云うが、具体的Kaたとえば折れ線
によって近似をさせる方法とか、あらかじめ翼ムMK変
換テーブルを用意しておき、入力信号をIIAMのアド
レスに供給し、ガンマ補正の変換されたものをデータ部
よシ取シ出すことによル容易にガンマ補正を行うことが
できる。
The output of the comparator 0, which corresponds to the low level of the video signal, passes through a four-pass filter, and the output frequency q# of the comparator corresponding to the high level is equalized by It is designed to be introduced into each of the nonlinear circuits 8 to 8M& of the linear circuit 8. ' The gamma correction non-direct i11 circuit low1m converts the input linear signal to a gamma of 0.450 as shown in FIG.
Although we are talking about Ik conversion, there is a method of approximating Ka, for example, using a polygonal line, or preparing a wing MK conversion table in advance, supplying the input signal to the IIAM address, and converting the gamma-corrected one. Gamma correction can be easily performed by extracting the image from the data section.

第8図では、各フィルタFa〜1mの出力を非直線回路
81〜8mとして乗算回路に導入する場合を説明する。
In FIG. 8, a case will be described in which the outputs of the filters Fa to 1m are introduced into the multiplication circuit as non-linear circuits 81 to 8m.

各乗算回路では所定の係数の掛は算を演算させるように
してか111これらを合成器11で合成すゐことによ〕
折れ線近似のガンマ補正回路を構成する仁とができる。
In each multiplication circuit, the predetermined coefficients are multiplied by an arithmetic operation, or by combining them in a synthesizer 11.
It is possible to construct a gamma correction circuit using a polygonal line approximation.

(算回路はrイジタル掛は算器あるいは8ムMC)変換
チーデルを用いれに容易である。これらによ)レベルに
対応して周波数を変化させ九ガンマ補正回路が実現でき
る。
(The arithmetic circuit is an r-digit multiplier or an 8-m MC) It is easy to use the conversion cheedel. With these), a nine-gamma correction circuit can be realized by changing the frequency according to the level.

仁の第8図の例では、フィルタPa〜Fbと非直Im!
回路Iとしての乗算回路部の履で説−したか、この順序
を逆にして乗算回路部0次にフィルタ部を設妙てtよい
In the example of FIG. 8 of Jin, the filters Pa to Fb and the non-direction Im!
As explained in the description of the multiplication circuit section as circuit I, it is also possible to reverse this order and design the multiplication circuit section 0 and the filter section next.

壜たs #E9Eはこの発9110他の実施例を示すf
四ツク図である。ヒの第9図で杜、ティジタル比較器−
のらとにフィルタ1を通りて合成器11を経た後備の方
法、たとえば翼ム舅の変換を用いたガンマ補正回路部J
−による構成を示す・ この場合で4先icILAMclン!補正回路部10に
よ〉先ずガンマ補正を行9てから、次に比較器6、その
後に74ルタrを設けてもよいことは勿論である。
#E9E indicates another example of this release 9110
It is a four-dimensional diagram. In Figure 9 of H, Mori, digital comparator -
A gamma correction circuit section J using a backup method that passes through a filter 1 and a synthesizer 11, for example, a wing-shaped transformation.
- Shows the configuration by - In this case, 4 icILAMcln! It goes without saying that the correction circuit unit 10 may first perform gamma correction 9, then provide the comparator 6, and then provide the 74 lter r.

以上述べたよ5に之O発明のディジタルをンマ補正回路
によれば、テレビジ、ンヵメ2のディジタル化された各
原色1訣像信号をガンマ補正するときにディジタル化さ
れた各原色Wk會信号Oレベルに対応して周波数特性に
補正を加える゛ようにしたので、BlN比が良好で解像
度の劣化を引き起ζさない理想的表ガン!補正回路とす
ることがで詣る。
As described above, according to the digital gamma correction circuit of the invention, when gamma correcting the digitized primary color 1 image signal of the TV and camera 2, the digitized primary color Wk image signal O level is adjusted. Since the frequency characteristics are corrected in response to this, it is an ideal table gun that has a good BIN ratio and does not cause resolution deterioration! It can be used as a correction circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図紘一般のカラー受像機における入力映像信号に対
する輝lL間上の輝度の関係を示す図、第2図線従来の
ガンマ補正を行り九入力映像信号に対する出力信号の関
係を示す図、第3図はガンマ補正を行うと11に入力信
号として掃引発振器O出力を用いた場合の低レベル時の
周波数特性を示す図、第4固状ガンマ補正を行うときに
入力信号として掃引発振lIO出力を用いた場合の高レ
ベル時の周波数**を示す図、第5図はf7マ補正を行
うときに入力信号として掃引発振器O出力を用いた場合
O適正入力しベル時の周波数特性を示す図、第6WAは
従来のアナ關ダ方式によるeyマ補正回路の回路図、第
7図は第6図のfン!補正回路による折れ線状の入力映
像信号に対する出力信号の関係を示す図、第8、図紘こ
の発明のテイジタルガン!補正回路の一実施例の構成を
示すf口、り図、第9図はとの発明〇ティジタルガンマ
補正回路の他の実施例を示すfvs、り図である。 1−〜重液換−1−96−〜σn−ディジタル比較器、
r e F a〜F mm74 J’&I、a e#a
〜a m ・・・非線形回路、1e−ガンマ補正回路部
、11−合成器。 出願人代理人  弁履士 鈴江 武 彦第1図 >vシ吠ブiJag −el 第2図 〜駒&Jれ3  eI 第3図 叩良改− IN4図 同i校□
Fig. 1 is a diagram showing the relationship between the luminance between 1 and 1L with respect to the input video signal in a general color receiver; Fig. 2 is a diagram showing the relationship between the output signal and the input video signal after conventional gamma correction; Figure 3 shows the frequency characteristics at low level when the sweep oscillator O output is used as the input signal in 11 after gamma correction is performed, and the sweep oscillator IIO output is used as the input signal when performing the fourth solid gamma correction. Figure 5 is a diagram showing the frequency at high level when using f7ma correction, and Figure 5 is a diagram showing the frequency characteristics when O is properly input and the output is bell when the sweep oscillator O output is used as an input signal when performing f7ma correction. , 6th WA is a circuit diagram of an eye-major correction circuit using the conventional analogue system, and FIG. A diagram showing the relationship between the output signal and the polygonal input video signal from the correction circuit. FIG. 9 is a diagram showing the configuration of one embodiment of the correction circuit, and FIG. 9 is a diagram showing another embodiment of the digital gamma correction circuit according to the invention. 1-~heavy liquid exchange-1-96-~σn-digital comparator,
r e F a~F mm74 J'&I, a e#a
~am...Nonlinear circuit, 1e-gamma correction circuit section, 11-synthesizer. Applicant's attorney Takehiko Suzue Figure 1 > v Shibobu iJag -el Figure 2 ~ Koma & Jre 3 eI Figure 3 Takara Kai - IN4 Figure i school □

Claims (1)

【特許請求の範囲】[Claims] ディリ!タル化され九各原色映像信号をし横ルに対応し
て複数個に分割する第1の手段と、この第1の手段で分
割して抜き出された複数の各原色映像信号のそれぞれに
対応する周波特性を付与してヒの各原色映像信号を合成
して上記レベルに対応した周波数特性を変(ヒさせる第
2の手段とよ〕なるディジタルガンマ補正回路。
Dili! a first means for dividing each of the nine primary color video signals into a plurality of pieces corresponding to horizontal lines; A digital gamma correction circuit which synthesizes each of the primary color video signals by imparting a frequency characteristic to change the frequency characteristic corresponding to the level.
JP56118737A 1981-07-29 1981-07-29 Digital gamma compensating circuit Pending JPS5820096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118737A JPS5820096A (en) 1981-07-29 1981-07-29 Digital gamma compensating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118737A JPS5820096A (en) 1981-07-29 1981-07-29 Digital gamma compensating circuit

Publications (1)

Publication Number Publication Date
JPS5820096A true JPS5820096A (en) 1983-02-05

Family

ID=14743818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118737A Pending JPS5820096A (en) 1981-07-29 1981-07-29 Digital gamma compensating circuit

Country Status (1)

Country Link
JP (1) JPS5820096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0427564A2 (en) * 1989-11-10 1991-05-15 RCA Thomson Licensing Corporation Video signal processing
US5079622A (en) * 1988-01-12 1992-01-07 Sanyo Electric Co., Ltd. Auto iris/gamma correction apparatus for making automatic exposure adjustment and/or automatic gamma correction in response to video signal and image sensing apparatus comprising such auto iris/gamma correction apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079622A (en) * 1988-01-12 1992-01-07 Sanyo Electric Co., Ltd. Auto iris/gamma correction apparatus for making automatic exposure adjustment and/or automatic gamma correction in response to video signal and image sensing apparatus comprising such auto iris/gamma correction apparatus
EP0427564A2 (en) * 1989-11-10 1991-05-15 RCA Thomson Licensing Corporation Video signal processing
EP0427564A3 (en) * 1989-11-10 1992-01-08 Rca Licensing Corporation Video signal processing
TR26358A (en) * 1989-11-10 1995-03-15 Rca Licensing Corp NON-LINEAR RGB VIDEO SIGNAL PROCESSING
EP0427564B1 (en) * 1989-11-10 1996-12-11 RCA Thomson Licensing Corporation Video signal processing

Similar Documents

Publication Publication Date Title
KR920008630B1 (en) Compensation circuit of horizontal corner
US5696852A (en) Image signal processing apparatus
US7006704B2 (en) Method of and apparatus for improving picture quality
KR101051604B1 (en) Image processing apparatus and method
US5473373A (en) Digital gamma correction system for low, medium and high intensity video signals, with linear and non-linear correction
JP3302423B2 (en) Imaging device
US8279351B2 (en) Method and apparatus for hardware-efficient continuous gamma curve adjustment
JPS5820096A (en) Digital gamma compensating circuit
US4884140A (en) Vignetting compensating circuit for a video camera
US5311297A (en) HDTV to conventional TV signal converting apparatus with non-linear level correction
US4506287A (en) Color television camera apparatus
KR20020067051A (en) Processing of color signals in a color camera
JPH0316078B2 (en)
US5757436A (en) Image processor system
JPH0218789B2 (en)
JP3121379B2 (en) Color television signal transmission system
JPH10173958A (en) Video signal processor
JPS61270994A (en) Device for improving picture quality of television
GB2293514A (en) Luminance signal coding; correcting for failure of constant luminance
JPS61295786A (en) Improving device for television picture quantity
JPH10304394A (en) Beam current monitor circuit for color picture tube
CN115103142A (en) Video switching matrix for improving quality of analog video signal
JPS61295791A (en) Improving device for television picture quality
JPH0327149B2 (en)
JPH0327151B2 (en)