JPS5819159A - Power generating method by self buoyancy - Google Patents

Power generating method by self buoyancy

Info

Publication number
JPS5819159A
JPS5819159A JP11556981A JP11556981A JPS5819159A JP S5819159 A JPS5819159 A JP S5819159A JP 11556981 A JP11556981 A JP 11556981A JP 11556981 A JP11556981 A JP 11556981A JP S5819159 A JPS5819159 A JP S5819159A
Authority
JP
Japan
Prior art keywords
buoyancy
compressor
bucket
water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11556981A
Other languages
Japanese (ja)
Inventor
Kiichiro Yagi
八木 喜一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11556981A priority Critical patent/JPS5819159A/en
Publication of JPS5819159A publication Critical patent/JPS5819159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To enable to safely and efficiently generate power with a small facility by applying the buoyancy of gas due to specific weight of physical masses of fluid and gas to blade or bucket, thereby producing a rotary motion. CONSTITUTION:An electromotive force from a battery 3 is applied to a compressor 2, air produced by a compressor 2 is fed through an air feed tube 13 to the lower portion of a water tank 1, and is fed from a nozzle to a bucket 8. When buoyance is generated in the bucket 8, the bucket 8 mounted on the bet is sequentially rotated. This rotation is accelerated by an accelerator 5, and is applied through a power transmission mechanism 6 to a generator 7.

Description

【発明の詳細な説明】 本発明は浮力を原動力とした発電方法、に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of generating electricity using buoyancy as a driving force.

従来の発電方法として、原子力、火力、水力。Conventional power generation methods include nuclear power, thermal power, and hydropower.

風力、地熱、太陽熱、波力発電方法等があるが。There are wind, geothermal, solar thermal, wave power generation methods, etc.

これらの方法にはそれぞれの欠点が見出される。Each of these methods has its own drawbacks.

原子力では放射線による汚染と事故防止に関わる巨額の
設備費が必要であること、核燃料の大半を外国からの輸
入に頼っていることが指摘される。
It has been pointed out that nuclear power requires huge equipment costs to prevent radioactive contamination and accidents, and that most of the nuclear fuel is imported from foreign countries.

火力は公害と発電効率が40チ程度ときわめて低(,6
0%のエネルギー資源の損失がある。
Thermal power generation has extremely low pollution and power generation efficiency of around 40 cm (,6
There is a loss of 0% energy resources.

エネルギー資源を輸入に頼っている我国は、資源産出国
の政治動向に大きく左右されているとともに、限りある
資源の消費による発電方法は将来に大きく不安を残すも
のである。
Our country, which relies on imported energy resources, is greatly influenced by political trends in resource-producing countries, and the method of generating electricity by consuming limited resources leaves us with great concerns about the future.

水力発電はダム建設、送電施設に巨額の出資を用するこ
とと気象条件に左右されることがあげられる。また気象
条件に左右されるものに風力、太陽熱、波力がある。
Hydropower generation requires huge investments in dam construction and power transmission facilities, and is dependent on weather conditions. Wind power, solar heat, and wave power also depend on weather conditions.

地熱は地球内部構造に変化を与える危険性があり、火山
活動が行なわれている地域に発電施設を建造されねばな
らないことから地域的に限定され。
Geothermal heat carries the risk of changing the internal structure of the earth, and power generation facilities must be built in areas where volcanic activity is occurring, so geothermal energy is limited to certain areas.

発電能力に限界があると思われる。It seems that there is a limit to the power generation capacity.

以上のごとく、従来の方法には数々の欠点がみられる。As mentioned above, conventional methods have a number of drawbacks.

本発明の目的は、上記の欠点を除き公害資源、送電、天
候1発電効率、資源産出国の政治動向、建設費用、地理
的地域の限定等の諸条件を改良し9人工的でありながら
自然の法則に従い生活環境の中に無理なく活動し、外部
からのエネルギー資源を必要としない自刃浮力発電方法
を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, improve various conditions such as polluted resources, power transmission, weather, power generation efficiency, political trends in resource-producing countries, construction costs, and geographical area limitations, and The purpose of this invention is to provide a self-blade buoyancy power generation method that operates smoothly in the living environment according to the law and does not require external energy resources.

外部からのエネルギー資源を必要とせずに、自刃で恒久
的に作動を続ける発電方法を得る為に発明者は、液体の
中における気体の性質を利用することによってこれを解
決するに至った。
In order to obtain a power generation method that can continuously operate on its own without requiring external energy resources, the inventor came to solve this problem by utilizing the properties of gas in liquid.

液体の中の気体の性質として「浮力の大きさは物体が押
のけている体積と同体積の液体の重さに等しく、それで
浮力の大きさが物体の重さより大きいときに物体は浮く
」というアルキメデスの原理にしたがって水と空気を比
較した場合、水の質量に対して空気の質量は約1,00
0対1であるが。
A property of a gas in a liquid is that ``the magnitude of buoyant force is equal to the weight of the same volume of liquid as the volume that an object is displacing, so an object floats when the magnitude of buoyant force is greater than the weight of the object.'' When comparing water and air according to Archimedes' principle, the mass of air is approximately 1,000% of the mass of water.
Although it is 0 to 1.

水中における空気の浮力は約1,000倍となって現わ
れる。また水中の空気は水面上の大気に混合されるまで
上昇を続けようとする力が働き続けている性質がある。
The buoyant force of air in water is approximately 1,000 times greater. In addition, the air under water has a tendency to keep rising until it is mixed with the atmosphere above the water surface.

このふたつの性質を利用して次の実験を試みた。We attempted the following experiment using these two properties.

直流電源3V4W出力のコンプレッサーを使って。Use a compressor with a DC power supply of 3V4W output.

水を満した水槽に空気を送って1秒間に発生する容気容
量を計量したところ、70ccあった。
When air was pumped into a tank filled with water, the volume of air generated per second was measured and was found to be 70 cc.

同時に浮力は7019働いていた。At the same time, the buoyancy force was 7019.

1秒間70gの浮力を作るのにコンプレッサーは4Wの
消費電力を必要としだが、これを力の関係に求めると0
.402 (kgm/s )となる。そこで自刃で発電
を起させる力を得る為には、コンプレッサーや発電機部
A compressor requires 4W of power consumption to create 70g of buoyancy for 1 second, but if you calculate this in terms of force relationship, it becomes 0.
.. 402 (kgm/s). Therefore, in order to obtain the power to generate electricity with its own blade, a compressor or generator section is required.

他の装置の摩擦熱を上回る力を浮力に求めるのであるが
、これはコンプレッサーから連続して空気を送り続けさ
せた場合に、水槽下部にある送気管のノズル部分から水
槽上部に至る空気の浮力の全行程を力に変えることによ
って、水槽の水深を深くして浮力の働き続ける距離を長
くしてやることによって、水深に比例して浮力が大きく
なりコンプレッサーや他の摩擦熱を上回る力を作り出す
ことができる。
We are looking for buoyancy to be a force that exceeds the frictional heat of other devices, but this is due to the buoyancy of the air that flows from the nozzle of the air pipe at the bottom of the tank to the top of the tank when air is continuously sent from the compressor. By converting the entire stroke of water into force, by deepening the depth of the water in the aquarium and increasing the distance over which buoyancy continues to work, the buoyancy increases in proportion to the water depth, creating a force that exceeds the frictional heat of the compressor and other sources. can.

水中での気体の力は強いが上昇速度が遅いのでこれを増
速機で増速させてこの回転を発電機に与えるのである。
The force of the gas in the water is strong, but the rate of rise is slow, so the speed is increased by a speed increaser and this rotation is given to the generator.

これを水力発電方法にあてはめると、水の流量をコンプ
レッサーから発生する空気容量に、水の落差を水槽の水
深にたとえることができる。
Applying this to hydroelectric power generation methods, the flow rate of water can be compared to the volume of air generated by a compressor, and the head of water can be compared to the depth of water in an aquarium.

水力発電に水圧は必要としないのと同様に2本発明の方
法においても空気圧は必要とせず9本発明に重要である
ものは水の落差に相当する水深である。
Just as hydroelectric power generation does not require water pressure, the method of the present invention also does not require air pressure.9 What is important to the present invention is the water depth corresponding to the head of the water.

上記の浮力作用を利用した発電装置を示すと下記になる
A power generation device that utilizes the above buoyancy effect is shown below.

水槽(1)上部に若干の空気層を残して水槽(1)に水
を満す。発電に必要なコンプレッサー(2)、バッテリ
ー(3)、配電盤(4)、増速機(5)、動力伝導装置
(6)。
Fill the aquarium (1) with water, leaving some air space at the top of the aquarium (1). Compressor (2), battery (3), switchboard (4), speed increaser (5), and power transmission device (6) necessary for power generation.

発電機(7)等の器機を備える。水槽(1)の中にはコ
ンプレッサー(2)からの空気を受ける為のパケット(
8)をベルト(9)に多数取付るが、空気を最も効率よ
く受られるよう々形状にする必要がある。
Equipped with equipment such as a generator (7). Inside the water tank (1) is a packet (
8) are attached to the belt (9), but they must be shaped so that they can receive the air most efficiently.

まだ水中で回転する部品はできうるかぎり水の質量に近
い材質を選び、浮力を防げない注意が必要であることと
、錆ない材質を使用する。
For parts that still rotate underwater, choose materials that are as close to the mass of water as possible, be careful not to prevent buoyancy, and use materials that will not rust.

水槽(1)上部と下部に回転輪αのを取付、ここにベル
ト(9)を掛ける。水槽(1)上部の水面α6)の上に
パケット(8)や羽根(1υの空気層の器は常に水中に
位置するようにする。
Attach rotating wheels α to the top and bottom of the water tank (1) and hang the belt (9) there. The packet (8) and the blade (with an air layer of 1υ) are always placed underwater above the water surface α6 at the top of the aquarium (1).

水槽(1)上部又は下部の回転輪(10の輪軸(1つに
Aquarium (1) Upper or lower rotating wheels (10 wheel axles (in one).

はずみ車02)、動力伝導装置(6)、増速機05)発
電機(7)コンプレッサー(2)配電盤(4)バッテリ
ー(3)を連結させる。
The flywheel 02), power transmission device (6), speed increaser 05) generator (7) compressor (2) switchboard (4) and battery (3) are connected.

以上の装置によって発電するのであるが、始動するには
バッテリー(3)からの起電力をコンプレッサー(2)
に与える。コンプレッサー(2)で発生した空気を送気
管03)によって水槽(1)下部に導いてきてノズル(
14)からパケット(8)に与える。パケット(8)に
浮力が発生するとベルト(9)に取付られたパケット(
8)が順時回転してきて空気を受て浮力を増て行く。浮
力が最大になった時点で増速機05)で回転数を増速さ
せ動力伝導装置(6)によってこの力を発電機(7)に
伝えるとともに、コンプレッサー(2)への電源をバッ
チIJ−(3)から配電盤(4)によって9発電機(7
)に切換ると、その後は自刃で恒久的に発電され続ける
。発電機(7)で発生した電力の一部をコンプレッサー
(2)に送り、4剰の電力を実用価値電力として取出す
が、コンプレッサー(2)への電力は常に保持しておか
なければならない。
The above device generates electricity, but in order to start, the electromotive force from the battery (3) is transferred to the compressor (2).
give to The air generated by the compressor (2) is guided to the lower part of the water tank (1) through the air pipe 03) and is passed through the nozzle (
14) to packet (8). When buoyancy occurs in the packet (8), the packet (
8) rotates sequentially and receives air, increasing its buoyancy. When the buoyancy reaches its maximum, the speed increaser 05) increases the rotation speed and the power transmission device (6) transmits this force to the generator (7), and at the same time, the power to the compressor (2) is supplied to the batch IJ- (3) to 9 generators (7) by switchboard (4)
), the blade will continue to generate electricity permanently. A part of the electric power generated by the generator (7) is sent to the compressor (2), and the remainder of the electric power is extracted as practical value electric power, but the electric power to the compressor (2) must be maintained at all times.

寒冷地での本装置の使用にあたっては、タンクの中の液
体は氷点度の低い粘度の少いアルコール類かそれに類似
した油性類を使用するか2文は凍結防止剤を水に混入す
ることが必要であるとともに、空気の除湿を行い装置の
凍結を防がねばならない。また、浮力をより多くパケッ
ト(8)に与える為に水素ガスの使用によるのが最も効
率をあげることができるが、危険が供うのでヘリューム
ガスを使用するのが望ましい。この場合にはタンクを密
閉し、ガス漏を防ぐ必要がある。
When using this device in a cold region, the liquid in the tank should be a low-viscosity alcohol with a low freezing point or a similar oil-based liquid. In addition to being necessary, the air must be dehumidified to prevent equipment from freezing. Further, in order to give more buoyancy to the packet (8), it is most efficient to use hydrogen gas, but it is desirable to use helium gas because it is dangerous. In this case, it is necessary to seal the tank to prevent gas leakage.

以上の発電方法によれば次の効果が得れる。2、無尽蔵
にある水と空気を使用する点から降水量の少い砂漠地帯
や水の便の悪い山頂で本運転でき。
According to the above power generation method, the following effects can be obtained. 2. Since it uses inexhaustible water and air, it can be operated in desert areas with little precipitation or on mountain tops with poor access to water.

天候に左右されずに発電できる。悪臭や煤煙、放射能が
なく施設を埋設できることから音、震動の発生を防ぎ、
建造物や道路、公園の地下等に納めることができ、用地
利用度が高い。また各家庭の庭や建物の下に納めること
も可能であり9発電所からの遠距離送電を必要としない
ことから、送電施設の建設、運営コストを下げることが
できる。
It can generate electricity regardless of the weather. Because there is no odor, soot, or radioactivity, and the facility can be buried underground, noise and vibrations are prevented.
It can be placed underground in buildings, roads, parks, etc., and has a high degree of land utilization. Furthermore, it can be installed in the garden of each home or under a building, and does not require long-distance power transmission from nine power plants, which can reduce the construction and operation costs of power transmission facilities.

水力発電のようにダムを作ることがないので。Unlike hydroelectric power generation, there is no need to build dams.

海洋、湖に容易に建設でき、大型化されても建設費を安
価にできる。エネルギー資源を必要としない点から資源
産出国の政情に左右されないで独自の゛産業2文化を営
むことができる。また資源備蓄基地や倉庫を必要とせず
、エネルギー資源輸送を必要とせず、また発電の他に動
力を必要とする多くの産業に利用できる。
It can be easily constructed in the ocean or lake, and even if it is large-sized, the construction cost can be kept low. Since it does not require energy resources, it can operate its own industry-two-culture without being influenced by the political situation of resource-producing countries. Furthermore, it does not require resource stockpiling bases or warehouses, does not require energy resource transportation, and can be used in many industries that require power in addition to power generation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の水槽内部を示す正面断面図第2図は2
羽根の正面断面図とノズルの位置をットとバンドの射視
図である。 1・・・・・・水槽、  2・・・・・・コンプレッサ
ー、3.・・・・・バラ8・・・・・・パケット、9・
・・・・・ベルト、 10・・・・・・回転輪11・・
・・・・羽根、 12・・・・・・はずみ車、13・・
・・・・送気管、 14・・・・・・ノズル、 15・
・・・・・輪軸、16・・・・・・水面特許出願人  
八 木 喜 −部 第4図 第5図
Figure 1 is a front sectional view showing the inside of the aquarium of the present invention. Figure 2 is 2.
FIG. 2 is a front sectional view of the blade and a perspective view of the nozzle position and band. 1...Aquarium, 2...Compressor, 3.・・・Rose 8・・・Packet, 9・
...Belt, 10...Rotating wheel 11...
...Blade, 12...Flywheel, 13...
... Air pipe, 14 ... Nozzle, 15.
...Wheel shaft, 16...Water surface patent applicant
Yoshi Yagi - Part 4, Figure 5

Claims (1)

【特許請求の範囲】 コンプレッサーから送られてくる気体を液体を満したタ
ンクの下部より吹込み、液体と気体との物理的質量の比
重による気体の浮力を別車又はバ与え、余剰の電力を実
用価値電力として取出す。 浮力を原動力として外部からのエネルギー資源を必要と
しない自刃浮力発電方法。
[Claims] Gas sent from a compressor is blown into the bottom of a tank filled with liquid, and the buoyancy of the gas due to the specific gravity of the physical mass of the liquid and gas is applied to a separate vehicle or bar to generate surplus electricity. Extract it as practical value electricity. A self-blade buoyancy power generation method that uses buoyancy as the driving force and does not require external energy resources.
JP11556981A 1981-07-23 1981-07-23 Power generating method by self buoyancy Pending JPS5819159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11556981A JPS5819159A (en) 1981-07-23 1981-07-23 Power generating method by self buoyancy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11556981A JPS5819159A (en) 1981-07-23 1981-07-23 Power generating method by self buoyancy

Publications (1)

Publication Number Publication Date
JPS5819159A true JPS5819159A (en) 1983-02-04

Family

ID=14665800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11556981A Pending JPS5819159A (en) 1981-07-23 1981-07-23 Power generating method by self buoyancy

Country Status (1)

Country Link
JP (1) JPS5819159A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541894A (en) * 1983-05-27 1985-09-17 Rhone-Poulenc Sa Metallizable, essentially isotropic polymeric substrates well adopted for printed circuits
JPS6249277U (en) * 1985-09-13 1987-03-26
JPS6273937A (en) * 1985-09-26 1987-04-04 富士通株式会社 Multilayer printed board
JPS6265879U (en) * 1985-10-16 1987-04-23
US4703621A (en) * 1985-09-26 1987-11-03 Barrett Wilford C Solar power take-off
JPH0492538U (en) * 1990-12-26 1992-08-12
KR20180111472A (en) 2017-03-30 2018-10-11 에스케이씨 주식회사 Encapsulant for solar cells and solar cell module comprising the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4541894A (en) * 1983-05-27 1985-09-17 Rhone-Poulenc Sa Metallizable, essentially isotropic polymeric substrates well adopted for printed circuits
JPS6249277U (en) * 1985-09-13 1987-03-26
JPH0231801Y2 (en) * 1985-09-13 1990-08-28
JPS6273937A (en) * 1985-09-26 1987-04-04 富士通株式会社 Multilayer printed board
US4703621A (en) * 1985-09-26 1987-11-03 Barrett Wilford C Solar power take-off
JPS6265879U (en) * 1985-10-16 1987-04-23
JPH0231802Y2 (en) * 1985-10-16 1990-08-28
JPH0492538U (en) * 1990-12-26 1992-08-12
KR20180111472A (en) 2017-03-30 2018-10-11 에스케이씨 주식회사 Encapsulant for solar cells and solar cell module comprising the same
KR20190055051A (en) 2017-03-30 2019-05-22 에스케이씨에코솔루션즈(주) Encapsulant for solar cells and solar cell module comprising the same

Similar Documents

Publication Publication Date Title
CA2366001C (en) Hydrocratic generator
US4245475A (en) Method and apparatus for producing electricity from thermal sea power
US4442887A (en) Apparatus for harnessing wave motion and solar energy and coriolis acceleration of nature for solar distillation use
CN102261302B (en) Wave energy power generation unit and system based on sea-surface wave layer and deep sea stable region
EP1734255A1 (en) Wave energy converter
US20160169208A1 (en) Air-cushioned small hydraulic power generating device
CN204226095U (en) A kind of stream generating device
US8759996B2 (en) Method and apparatus for harnessing hydro-kinetic energy
WO2022166317A1 (en) Power generation device enabling high efficiency of low-water head micro-water volume water source
CN115777043A (en) FFWN clean energy power generation equipment
CN102192077A (en) System and method for storing wave and tidal energy as well as method and system for generating electricity
US20140028028A1 (en) Free-flow hydro powered turbine system
RU2150021C1 (en) Method and megawatt-capacity power-plant module for recovering energy of reusable sources (options)
JPS5819159A (en) Power generating method by self buoyancy
US4563248A (en) Solar distillation method and apparatus
Lodhi Helio-hydro and helio-thermal production of hydrogen
CN210564877U (en) Running water overstock power generation device
RU2347935C2 (en) In-channel river plant
WO2012127486A1 (en) System for generation of electrical power by siphoning sea water at sea shore
CN207598414U (en) Tide and flow magnitude electricity generation system
JPS62228672A (en) Tide utilizing dock type pressure power generating method
US20050127678A1 (en) System for generating power through the capture of gas bubbles and method therefor
JP7048925B2 (en) Hydroelectric power generation device using natural fluid
JP2010059950A (en) Device and method for generating new energy by water and air
RU2380479C2 (en) River hydro-electric power plant