JPS58187672A - Temperature-responsive valve - Google Patents

Temperature-responsive valve

Info

Publication number
JPS58187672A
JPS58187672A JP7193382A JP7193382A JPS58187672A JP S58187672 A JPS58187672 A JP S58187672A JP 7193382 A JP7193382 A JP 7193382A JP 7193382 A JP7193382 A JP 7193382A JP S58187672 A JPS58187672 A JP S58187672A
Authority
JP
Japan
Prior art keywords
valve
temperature
port
fluid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7193382A
Other languages
Japanese (ja)
Other versions
JPH0241679B2 (en
Inventor
Hideaki Yumoto
秀昭 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP7193382A priority Critical patent/JPS58187672A/en
Publication of JPS58187672A publication Critical patent/JPS58187672A/en
Publication of JPH0241679B2 publication Critical patent/JPH0241679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/36Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
    • F16K17/38Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To prevent the performance of a temperature-sensitive element from being heated to a maximum operating temperature or above to become deteriorated, by arranging the temperature-responsive element of a configuration memory alloy in a valve chamber, and allowing the element to transform in accordance with the temperature of a fluid in the valve chamber to drive a valve body. CONSTITUTION:A fluid flows from an inlet 2 via a valve port 10 into a valve chest 4, and passes through a space between the inner wall of the valve chest 4 and the valve body 5 and around the element 7, and leaves an outlet 3. During this, the temperature of the fluid is elevated and when the temperature reaches a prescribed temperature, the element 7 transforms inversely from the martensite phase to the mother phase to become longer, so that the valve body 5 is driven to be seated on a valve seat 11 to close the valve port 10. Alternatively, when the temperature of the fluid decreases to a prescribed temperature, the element 7 transforms from the mother phase to the martensite phase to become shorter to close the valve port 10.

Description

【発明の詳細な説明】 (発明の対象) 本発明は流体系から所定濃度以下の流体を自動的に排出
する温度応動弁に関する。暖房用ラジェータから復水を
排出したり1.油輸送管等を蒸気や渇水で保温するトレ
ース管から低温水を排出したり、蒸気や温水を用いる装
置等が凍結しない用に所定温度以下の水を排出する場合
等に用いる。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention) The present invention relates to a temperature-responsive valve that automatically discharges fluid below a predetermined concentration from a fluid system. Discharging condensate from heating radiators 1. It is used to discharge low-temperature water from trace pipes that keep oil transport pipes warm with steam or dry water, or to discharge water below a specified temperature to prevent equipment that uses steam or hot water from freezing.

(従来技術) 特願昭55−54644@で温度応動素子を形状記憶合
金で作った温度応動弁を提案した。この弁の構造の概要
は次の通りである。弁ケーシングで入口と、入口の流体
が流入する弁室と、弁室の流体が弁口を通して流出する
出口とを形成する。
(Prior Art) In Japanese Patent Application No. 55-54644, we proposed a temperature-responsive valve in which the temperature-responsive element was made of a shape memory alloy. The outline of the structure of this valve is as follows. The valve casing defines an inlet, a valve chamber into which the inlet fluid enters, and an outlet through which the valve chamber fluid exits through the valve port.

弁口の開口部分に弁座を形成する。弁座に着座して弁口
を塞ぎ弁慶から離れて弁口を開く様に弁体を配置する。
A valve seat is formed at the opening of the valve port. The valve body is arranged so as to sit on the valve seat, close the valve port, and move away from the valve valve to open the valve port.

所定温度以下に冷却されると母相からマルテンサイト相
に熱弾性型マルテンサイト変態をし所定温度以上に加熱
されるとその逆変態をする形状記憶合金で作った温度応
動素子を弁室内に配置し、温度応動素子が弁室内の流体
の温度に応じて変態し弁体を駆動して所定温度以上にな
ると弁体を弁座に着座させて弁口を塞ぐ様にする。
A temperature-responsive element made of a shape memory alloy that undergoes a thermoelastic martensitic transformation from the parent phase to a martensitic phase when cooled below a predetermined temperature and undergoes the reverse transformation when heated above a predetermined temperature is placed in the valve chamber. However, the temperature-responsive element transforms in response to the temperature of the fluid in the valve chamber and drives the valve body, and when the temperature reaches a predetermined temperature or higher, the valve body is seated on the valve seat and closes the valve port.

この温度応動弁では温度応動素子が弁口に対して入口側
に配置されているので、高温の流体系に取付けた場合、
形状記憶合金が最高使用温度以上に加熱されることがあ
る。現在実用できるチタン−ニッケル、銅−亜鉛−アル
ミニウム合金等の最高使用可能温度はほぼ120度Cで
ある。従って、形状記憶合金が析出瑛象あるいは時効効
果を起こして性能が劣悪になる欠点があった。
In this temperature-responsive valve, the temperature-responsive element is placed on the inlet side of the valve port, so when installed in a high-temperature fluid system,
Shape memory alloys may be heated above their maximum service temperature. The maximum usable temperature of currently available titanium-nickel, copper-zinc-aluminum alloys, etc. is approximately 120 degrees Celsius. Therefore, the shape memory alloy has the drawback of causing precipitation or aging effects, resulting in poor performance.

(本発明の技術的課題) 本発明の技術的課題は形状記憶合金で作った温度応動素
子が最高使用温度以上に加熱されて性能が劣悪になるこ
とを防止することである。また、同時に温度応動素子の
相変態サイタルが外気の温度の影響で短くなることを防
止することである。
(Technical Problem of the Present Invention) A technical problem of the present invention is to prevent a temperature-responsive element made of a shape memory alloy from being heated to a temperature higher than the maximum operating temperature and resulting in poor performance. Another object is to prevent the phase transformation cycle of the temperature-responsive element from being shortened due to the influence of the outside air temperature.

(本発明の構成と作用) 第1の発明の温度応動弁の構成は次の通りである。弁ケ
ーシングで入口と、入口の流体が弁口を通して流入する
弁室と、弁室の流体が流出する出口とを形成する。弁口
の開口部分に弁座を形成する。弁座に着座して弁口を塞
ぎ弁座から離れて弁口を開く様に弁体を配置する。所定
温度以下に冷却されると母相からマルテンサイト相に熱
弾性型マルテンサイト変態をし所定温度以上に加熱され
るとその逆変態をする形状記憶合金で作った温度応動素
子を弁室内に配置し、温度応動素子が弁室内の流体の温
度に応じて変態し弁体を駆動して所定温度以上になると
弁体を弁座に着座させて弁口を塞ぐ様にする。
(Structure and operation of the present invention) The structure of the temperature-responsive valve of the first invention is as follows. The valve casing defines an inlet, a valve chamber into which fluid from the inlet enters through the valve port, and an outlet from which fluid from the valve chamber exits. A valve seat is formed at the opening of the valve port. The valve body is arranged so that it seats on the valve seat to close the valve port and leaves the valve seat to open the valve port. A temperature-responsive element made of a shape memory alloy that undergoes a thermoelastic martensitic transformation from the parent phase to a martensitic phase when cooled below a predetermined temperature and undergoes the reverse transformation when heated above a predetermined temperature is placed in the valve chamber. However, the temperature-responsive element transforms in response to the temperature of the fluid in the valve chamber and drives the valve body, and when the temperature reaches a predetermined temperature or higher, the valve body is seated on the valve seat and closes the valve port.

作用は次の通りである。流体系の流体は入口から弁口を
通って弁室に入り、弁室内に配置した温度応動素子を加
熱あるいは冷却する。形状記憶合金は所定温度以下に冷
却されると母相からマルテンサイト相に熱弾性型マルテ
ンサイト変態をし所定温度以上に加熱されるとその逆変
態をする。温度応動素子はこの変態を利用して弁体を駆
動し、所定温度以上になると弁体を弁座に着座させて弁
口を塞ぐ。それ以下のfA度の流体は弁口を通って弁室
に流入し出口から外部に流出する。弁室内は出口を通し
て一般に大気に連通したりして、入口よりもかなり低い
圧力にあり、高温水は低a−域にて再蒸発して温度が飽
和温度まで下がる。従って、弁室内の温度は温度応動素
子が弁口を塞ぐ設定温度以上にはならないので、形状記
憶合金は性能が劣悪にならない。
The action is as follows. The fluid of the fluid system enters the valve chamber from the inlet through the valve port and heats or cools a temperature-responsive element disposed within the valve chamber. When a shape memory alloy is cooled to a predetermined temperature or below, it undergoes a thermoelastic martensitic transformation from a parent phase to a martensitic phase, and when heated above a predetermined temperature, it undergoes the reverse transformation. The temperature-responsive element utilizes this transformation to drive the valve body, and when the temperature exceeds a predetermined temperature, the valve body seats on the valve seat and closes the valve port. Fluid at fA degrees below this flows into the valve chamber through the valve port and flows out from the outlet. The valve chamber generally communicates with the atmosphere through the outlet and is at a much lower pressure than the inlet, and the high temperature water re-evaporates in the low a-region, reducing the temperature to the saturation temperature. Therefore, the temperature inside the valve chamber does not exceed the set temperature at which the temperature-responsive element blocks the valve port, so the performance of the shape memory alloy does not deteriorate.

第2の発明の温度応動弁の構成は次の通りである。弁ケ
ーシングで入口と、入口の流体が弁口を通して流入する
弁室と、弁室の流体が流出する出口とを形成する。弁口
の開口部分に弁座を形成する。弁座に着座して弁口を塞
ぎ弁座から離れて弁口を開く様に弁体を配置する。所定
温度以下に冷却されると母相からマルテンサイト相に熱
弾性型マルテンサイト変態をし所定温度以上に加熱され
るとその逆変態をする形状配憶合金で作ったII応動素
子を弁室内に配置し、温度応動素子が弁室内の流体の温
度に応じて変態し弁体を駆動して所定温度以上になると
弁体を弁座に着座させて弁口を塞ぐ様にする。弁室内に
液体を溜めて温度応動素子が液体中に浸かる様にする。
The configuration of the temperature-responsive valve of the second invention is as follows. The valve casing defines an inlet, a valve chamber into which fluid from the inlet enters through the valve port, and an outlet from which fluid from the valve chamber exits. A valve seat is formed at the opening of the valve port. The valve body is arranged so that it seats on the valve seat to close the valve port and leaves the valve seat to open the valve port. A II response element made of a shape memory alloy that undergoes thermoelastic martensitic transformation from the parent phase to a martensitic phase when cooled to a predetermined temperature or below, and undergoes the reverse transformation when heated above a predetermined temperature, is installed in the valve chamber. The temperature-responsive element transforms in response to the temperature of the fluid in the valve chamber, drives the valve body, and when the temperature reaches a predetermined temperature or higher, the valve body seats on the valve seat and closes the valve port. A liquid is stored in the valve chamber so that the temperature-responsive element is immersed in the liquid.

液体を溜めてその液体中に温度応動素子を浸ける手段と
して、弁室と出口との間に小さな孔を多数あけた隔壁を
設け、弁口が塞がれているときに液体を弁室内に溜めて
おく様にすること、あるい【よ、出口を弁室の上部に開
口させ、弁室内に液体を溜め、その液体溜りに温度応動
素子が浸かる様にすることが適用出来る。
As a means of storing liquid and immersing the temperature-responsive element in the liquid, a partition wall with many small holes is provided between the valve chamber and the outlet, and the liquid is stored in the valve chamber when the valve port is blocked. Alternatively, the outlet may be opened at the top of the valve chamber, liquid may be stored in the valve chamber, and the temperature-responsive element may be immersed in the liquid pool.

この様にすると上記第1発明に加えて次の様な作用があ
る。弁口が塞がれた閉弁時にも弁室内に液体が溜ってお
り、十分な熱量が確保されるので外気による冷却がゆっ
くりと進む。低湿の空気が弁室内に流入することがない
。従って、温度応動素子の相変態サイクルの短縮を防止
できる。
In addition to the above-mentioned first invention, this arrangement provides the following effects. Even when the valve is closed and the valve port is blocked, liquid remains in the valve chamber, ensuring a sufficient amount of heat, allowing the outside air to slowly cool the valve. Low humidity air does not flow into the valve chamber. Therefore, shortening of the phase transformation cycle of the temperature responsive element can be prevented.

(第1実施例) 第1図と、第2図に示す第1実施例を説明する。(First example) A first embodiment shown in FIG. 1 and FIG. 2 will be described.

ニップル形状の本体1で入口2と、入口の流体が弁口1
0を通して流入する弁室4と、弁室内の流体が流出する
出口3を形成する。弁口10は入口2と弁室4の間の隔
壁に孔をあけて形成する。入口2には弁口10を覆って
ストレーナ6を配置する。弁口10の弁室側開口部分に
弁座を形成する。
A nipple-shaped main body 1 has an inlet 2, and the fluid at the inlet is connected to a valve port 1.
A valve chamber 4 is formed through which the fluid flows in, and an outlet 3 is formed through which the fluid in the valve chamber flows out. The valve port 10 is formed by drilling a hole in the partition wall between the inlet 2 and the valve chamber 4. A strainer 6 is disposed at the inlet 2 so as to cover the valve port 10. A valve seat is formed at the opening portion of the valve port 10 on the valve chamber side.

弁室4は内周壁を円筒形状に形成し、弁体5を挿入する
。弁体5の先端部12は円錐形状で弁座11に着座して
弁口10を塞ぐことができる。中央部分は第2図に明ら
かなように、はぼ三角柱形状で、角の部分は弁室4の内
周壁に摺接する。後端は小径の円柱形状でその回りにコ
イル状の形状記憶合金で作った温度応動素子7を配置す
る。素子7は一端が弁体5の中央と後端部分の間の段部
に当り、他端が隔壁8に当る。形状記憶合金とじては可
逆形状記憶効果を有する銅−亜鉛−アルミニウム合金を
用いる。この索子7は所定温度以下に冷却されると熱弾
性型マルテンサイト変態して短くなり、所定温度以上に
加熱されると逆変態して長くなる。形状記憶合金として
チタン−ニッケル合金を用いてもよい。111g!8に
は直径が1ミリメートル程度の孔を多数あける。また、
スナップ・リング9で本体1に取付ける。
The valve chamber 4 has an inner peripheral wall formed into a cylindrical shape, and a valve body 5 is inserted therein. The tip 12 of the valve body 5 has a conical shape and can be seated on the valve seat 11 to close the valve port 10. As is clear from FIG. 2, the central portion has a substantially triangular prism shape, and the corner portions slide against the inner circumferential wall of the valve chamber 4. The rear end has a cylindrical shape with a small diameter, and a temperature-responsive element 7 made of a coiled shape memory alloy is arranged around it. One end of the element 7 is in contact with a step between the center and rear end portions of the valve body 5, and the other end is in contact with the partition wall 8. As the shape memory alloy, a copper-zinc-aluminum alloy having a reversible shape memory effect is used. When this cord 7 is cooled below a predetermined temperature, it undergoes thermoelastic martensitic transformation and becomes shorter, and when heated above a predetermined temperature, it undergoes reverse transformation and becomes longer. A titanium-nickel alloy may be used as the shape memory alloy. 111g! 8 has many holes with a diameter of about 1 mm. Also,
Attach to main body 1 with snap ring 9.

次の様に作動する。第1図に示す様に横向きに取付けて
も、あるいは上・下向きに取付けてもよい。第1図は弁
室4が低湿であり、温度応動素f7が短く、弁体5が弁
座11から離れて弁口10が開いている状態を示してい
る。流体は入口2から弁口10を通って弁室4に流入し
、弁室4の内周壁と弁体5の間の空き間から素子7の回
りを流れ、隔壁8の孔を通って出口3から流出する。こ
の間に流体の温度が高くなり加熱されて所定温用に達す
ると、素子7はマルテンサイト相から母相に逆変態して
長くなり、弁体5を駆動して弁座11に着座させ、弁口
10を塞ぐ。隔壁8にあ()だ孔が小さいので弁室4の
液体は表面張力の作用で出口311に流出しない。出口
3側の空気等の気体が弁室4に入らない。従って、弁室
4の液体の温度はゆっくりと下がる。そして、所定温度
まで下がると素子7は母相からマルテンサイト相にマル
テンサイト変態して短くなる。弁体5は入口2側の流体
の圧力で押されて弁座11から離れて、弁口10を開く
。この様にして流体の温度に応じて弁口を開閉して所定
温度以下の流体を自動的に排出する。
It works as follows. It may be mounted horizontally as shown in FIG. 1, or may be mounted upwardly or downwardly. FIG. 1 shows a state in which the valve chamber 4 has low humidity, the temperature responsive element f7 is short, the valve element 5 is separated from the valve seat 11, and the valve port 10 is open. Fluid enters the valve chamber 4 from the inlet 2 through the valve port 10, flows around the element 7 through the gap between the inner circumferential wall of the valve chamber 4 and the valve body 5, passes through the hole in the partition 8, and reaches the outlet 3. flows out from. During this time, when the temperature of the fluid increases and reaches a predetermined temperature, the element 7 reversely transforms from the martensitic phase to the parent phase and becomes longer, driving the valve element 5 to seat it on the valve seat 11, and causing the element 7 to become longer. Close your mouth 10. Since the holes in the partition wall 8 are small, the liquid in the valve chamber 4 does not flow out to the outlet 311 due to surface tension. Gas such as air on the outlet 3 side does not enter the valve chamber 4. Therefore, the temperature of the liquid in the valve chamber 4 slowly decreases. Then, when the temperature drops to a predetermined temperature, the element 7 undergoes martensitic transformation from the parent phase to the martensitic phase and becomes shorter. The valve body 5 is pushed by the pressure of the fluid on the inlet 2 side, moves away from the valve seat 11, and opens the valve port 10. In this way, the valve opening is opened and closed according to the temperature of the fluid, and fluid below a predetermined temperature is automatically discharged.

本実施例では、可逆形状配憶効果を有する合金を用いた
ので、温度応動素子は低温時に自から短くなる。従って
、低圧流体でも弁体を押して弁口を開けることができる
。開弁用のバイアス・スプリングを必要としない。内部
部品をニップル形状の本体内にコンパクトに配置したの
で、小形である。材料が少ないから経済的につ(れる。
In this example, since an alloy having a reversible shape memory effect is used, the temperature-responsive element automatically shortens at low temperatures. Therefore, even with low pressure fluid, the valve body can be pushed to open the valve port. Does not require a bias spring to open the valve. The internal parts are compactly arranged inside the nipple-shaped main body, so it is small. It's economical because there aren't many materials.

(第2実施例) 第3図に示す第2実施例を説明する。ディスク状本体2
7の中央部分に弁口28をあける。金属5ill板を帽
子状にした隔壁部材30を本体27の片側に取付け、両
部材の外周部分を気密的に溶接する。隔壁部材30の中
央部分には直径が1ミリメートル程度の小さな孔を多数
あける。隔壁部材30の中に球形弁体29と形状記憶合
金でスパイラル状に作った温度応動素子31を配置する
。素子31は一端が弁体29に、他端が隔壁部材30に
当る。また、第1実−施例と同様に、所定温度以上に加
熱されれば伸び所定温度以下に冷却されれば縮む。弁体
29は素子31の伸縮で駆動されて弁口28を開閉する
。上記ユニットは入口(23〉側配管21と出口(24
)側配管22のフランジの間にガスケット32.33を
挾んで取付けて使用する。番号25.26はボルト・ナ
ツトを示す。
(Second Example) A second example shown in FIG. 3 will be described. Disc-shaped body 2
A valve port 28 is opened in the center part of 7. A partition member 30 made of a cap-shaped metal 5ill plate is attached to one side of the main body 27, and the outer peripheral portions of both members are welded airtightly. A large number of small holes with a diameter of about 1 mm are made in the center of the partition member 30. A spherical valve body 29 and a temperature responsive element 31 made of a shape memory alloy in a spiral shape are arranged in the partition member 30. The element 31 has one end in contact with the valve body 29 and the other end in contact with the partition member 30. Further, as in the first embodiment, it expands when heated above a predetermined temperature and contracts when cooled below a predetermined temperature. The valve body 29 is driven by the expansion and contraction of the element 31 to open and close the valve port 28. The above unit has an inlet (23) side pipe 21 and an outlet (24)
) The gaskets 32 and 33 are sandwiched between the flanges of the side pipe 22 and installed. Numbers 25 and 26 indicate bolts and nuts.

この実施例の作動は第1実施例と同様であり、容易に理
解されるので省略する。球形弁体と温度応動素子をディ
スク状本体と帽子状隔壁部材の中にコンパクトに配置し
たので極めて小形である。
The operation of this embodiment is similar to that of the first embodiment and is easily understood, so a description thereof will be omitted. The spherical valve body and the temperature-responsive element are compactly arranged within the disk-shaped main body and the cap-shaped partition member, making it extremely compact.

(第3実施例) 第4図に示す第3実施例を説明する。第1実施例とほぼ
同様の構造であるので、相応する部分は参照番号の説明
に止どめる。51は本体、52は入口、53は出口、5
4は弁室、55は弁体、57は形状記憶合金で作った温
度応動素子、58は小さな孔を多数あけた隔壁、59は
スナップ・リング、60は弁口、61は弁座、62は弁
頭である。温度応動素子57は不可逆形状記憶型の合金
、すなわち母相の形状は記憶しているがマルテンサイト
相の形状は記憶していなくて、冷却されて所定温度以下
になっても自からは短くなれない合金を用いてもよい。
(Third Example) A third example shown in FIG. 4 will be described. Since the structure is almost the same as that of the first embodiment, explanations of corresponding parts will be limited to reference numerals. 51 is the main body, 52 is the inlet, 53 is the outlet, 5
4 is a valve chamber, 55 is a valve body, 57 is a temperature responsive element made of a shape memory alloy, 58 is a partition wall with many small holes, 59 is a snap ring, 60 is a valve port, 61 is a valve seat, 62 is a He is a bento. The temperature-responsive element 57 is an irreversible shape-memory alloy, that is, it remembers the shape of the matrix phase but does not remember the shape of the martensitic phase, and cannot shorten itself even when cooled to a predetermined temperature or lower. You may also use alloys that do not have

これを補うために弁口60を形成する隔壁と弁体55の
間にバイア3・スプリング56を配置した。
In order to compensate for this, a via 3 and a spring 56 are arranged between the partition wall forming the valve port 60 and the valve body 55.

この実施例の作動は、弁体を弁座敷から引き離すときに
入口側の流体の圧力に加えて、バイアス・スプリング5
6が作用することを考慮すれば、第1実施例とほぼ同様
であり、容易に理解できるので省略する。
The operation of this embodiment is such that when the valve body is pulled away from the valve seat, in addition to the pressure of the fluid on the inlet side, the bias spring 5
Considering that 6 acts, it is almost the same as the first embodiment and can be easily understood, so a description thereof will be omitted.

(第4実施例) 第5図に示す第4実施例を説明する。第1実施例とほぼ
同様の構造であるので、相応する部分は参照番号の説明
に止どめる。71は本体、72は入口、73は出口、7
4は弁室、75は弁体、77は形状記憶合金で作った温
度応動素子、78は中央部に大きな孔をあけた温度応動
素子の支持リング、79はスナップ・リング、80は弁
口、81は弁座、82は弁頭である。
(Fourth Example) A fourth example shown in FIG. 5 will be described. Since the structure is almost the same as that of the first embodiment, explanations of corresponding parts will be limited to reference numerals. 71 is the main body, 72 is the inlet, 73 is the outlet, 7
4 is a valve chamber, 75 is a valve body, 77 is a temperature-responsive element made of a shape memory alloy, 78 is a support ring for the temperature-responsive element with a large hole in the center, 79 is a snap ring, 80 is a valve port, 81 is a valve seat, and 82 is a valve head.

この実施例の弁は図示の用に入口を下にして取付けて用
いる。この様にすると弁室内は液体の溜りとなり、小さ
な孔を多数あけた隔壁を用いなくても温度応動素子は液
体溜りの中に浸かる。作動は第1実施例とほぼ同様であ
り、容易に理解できるので省略する。
The valve of this embodiment is used with the inlet facing down for purposes of illustration. In this way, the inside of the valve chamber becomes a pool of liquid, and the temperature-responsive element is immersed in the liquid pool without using a partition wall with many small holes. The operation is almost the same as that in the first embodiment and is easily understood, so a description thereof will be omitted.

(本発明の特有の効果) 形状記憶合金で作った温度応動素子を弁口に対して出口
側に配置したので、形状配憶合金の最高使用温度以上に
加熱されることがない。従って、析出現象や時効効果が
起こらないので、性能が劣悪にならない。寿命が長くな
る。
(Special Effects of the Invention) Since the temperature-responsive element made of a shape memory alloy is placed on the outlet side with respect to the valve opening, it will not be heated above the maximum operating temperature of the shape memory alloy. Therefore, since precipitation phenomena and aging effects do not occur, performance does not deteriorate. Longer lifespan.

弁体を弁口に対して出口側に配置すれば、開弁に流体の
圧力を利用できるのでバイアス・スプリングを省略でき
る。また、形状記憶合金の性能が劣悪となった場合でも
、弁口を塞がない。
If the valve body is placed on the outlet side with respect to the valve port, the pressure of the fluid can be used to open the valve, so the bias spring can be omitted. Furthermore, even if the performance of the shape memory alloy deteriorates, the valve port will not be blocked.

弁室内に液体を溜めて濃度応動素子を浸ける様にしたの
で、閉弁時にゆっくりと冷却される。従って、温度応動
素子を弁口の出口側に配置しても、形状記憶合金のマル
テンサイト変態と逆変態のサイクルの短縮を防止できる
。寿命が長くなる。
Since liquid is stored in the valve chamber and the concentration-responsive element is immersed in it, it is slowly cooled down when the valve is closed. Therefore, even if the temperature-responsive element is placed on the outlet side of the valve port, the cycle of martensitic transformation and reverse transformation of the shape memory alloy can be prevented from being shortened. Longer lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の温度応動弁の実施例の断面図、第2図
は第1図のA−A線部断面図、第3図から第5図はそれ
ぞれその他の実施例の断面図である。 2.23.52.72:入口 3.24.53.73:出口 4.54.74:弁室 5.29.55.75:弁体 7.31.57.77:形状記憶合金で作った温度応動
素子 8.30.58:隔壁部材 10.28.60.80:弁口 56:バイアス・スプリング 特許出願人
FIG. 1 is a sectional view of an embodiment of the temperature-responsive valve of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIGS. 3 to 5 are sectional views of other embodiments. be. 2.23.52.72: Inlet 3.24.53.73: Outlet 4.54.74: Valve chamber 5.29.55.75: Valve body 7.31.57.77: Made of shape memory alloy Temperature responsive element 8.30.58: Partition member 10.28.60.80: Valve port 56: Bias spring Patent applicant

Claims (1)

【特許請求の範囲】 〈1) 弁ケーシングで入口と、入口の流体が弁口を通
して流入する弁室と、弁室の流体が流出する出口とを形
成し、弁口の開口部分に弁座を形成し、弁座に着座して
弁口を塞ぎ弁座から離れて弁口を開く様に弁体を配置し
、所定温度以下に冷却されると母相からマルテンサイト
相に熱弾性型マルテンサイト変態をし所定温度以上に加
熱されるとその逆変態をする形状記憶合金で作った温度
応動素子を弁室内に配置し、温度応動素子が弁室内の流
体の温度に応じて変態し弁体を駆動して所定温度以上に
なると弁体を弁座に着座させて弁口を塞ぐ様にしたこと
を特徴とする温度応動弁。 (2) 弁ケーシングで入口と、入口の流体が弁口を通
して流入する弁室と、弁室の流体が流出する出口とを形
成し、弁口の開口部分に弁座を形成し、弁座に着座して
弁口を塞ぎ弁座から離れて弁口を開く様に弁体を配置し
、所定温度以下に冷却されると母相からマルテンサイト
相に熱弾性型マルテンサイト変態をし所定温度以下に加
熱されるとその逆変態をする形状記憶合金で作った温度
応動素子を弁室内に配置し、温度応動素子が弁室内の流
体の温度に応じて変態し弁体を駆動して所定温度以上に
なると弁体を弁座に着座させて弁口を塞ぐ様にし、弁室
内に液体を溜めて温度応動素子が液体中に浸かる様にし
たことを特徴とする温度応動弁。 (3) 弁室と出口との間に小さな孔を多数あけた隔壁
を設け、弁口が塞がれているときに液体を弁室内に溜め
ておく様にしたことを特徴とする特許請求の範囲第2項
記載の温度応動弁。 (4) 出口を弁室の上部に開口させ、弁室内に液体を
溜め、その液体溜りに温度応動素子が浸かる様にしたこ
とを特徴とする特許請求の範囲第2項記載の温度応動弁
[Claims] <1) The valve casing forms an inlet, a valve chamber into which fluid from the inlet flows in through the valve port, and an outlet from which fluid from the valve chamber flows out, and a valve seat is provided at the opening of the valve port. The valve body is arranged so that it seats on the valve seat and closes the valve port, and moves away from the valve seat to open the valve port. When the valve body is cooled to a predetermined temperature or less, the mother phase changes to a martensite phase. A temperature-responsive element made of a shape-memory alloy that transforms and undergoes reverse transformation when heated above a predetermined temperature is placed inside the valve chamber, and the temperature-responsive element transforms according to the temperature of the fluid in the valve chamber, causing the valve body to change. A temperature-responsive valve characterized in that, when the temperature reaches a predetermined temperature or higher when the valve is driven, a valve element is seated on a valve seat to close a valve port. (2) The valve casing forms an inlet, a valve chamber into which fluid from the inlet flows in through the valve port, and an outlet from which fluid from the valve chamber flows out, and a valve seat is formed at the opening of the valve port, and a valve seat is formed at the opening of the valve port. The valve body is arranged so that it closes the valve port when seated, and opens the valve port by moving away from the valve seat.When the valve body is cooled to a predetermined temperature or below, a thermoelastic martensitic transformation occurs from the parent phase to a martensitic phase, and the valve body undergoes thermoelastic martensitic transformation below the predetermined temperature. A temperature-responsive element made of a shape-memory alloy that undergoes reverse transformation when heated is placed inside the valve chamber. A temperature-responsive valve characterized in that a valve body is seated on a valve seat to close a valve port, and a liquid is stored in a valve chamber so that a temperature-responsive element is immersed in the liquid. (3) A patent claim characterized in that a partition wall with many small holes is provided between the valve chamber and the outlet, so that liquid is retained in the valve chamber when the valve port is blocked. Temperature-responsive valve according to range 2. (4) The temperature-responsive valve according to claim 2, wherein the outlet is opened at the upper part of the valve chamber, liquid is stored in the valve chamber, and the temperature-responsive element is immersed in the liquid reservoir.
JP7193382A 1982-04-28 1982-04-28 Temperature-responsive valve Granted JPS58187672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193382A JPS58187672A (en) 1982-04-28 1982-04-28 Temperature-responsive valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193382A JPS58187672A (en) 1982-04-28 1982-04-28 Temperature-responsive valve

Publications (2)

Publication Number Publication Date
JPS58187672A true JPS58187672A (en) 1983-11-01
JPH0241679B2 JPH0241679B2 (en) 1990-09-18

Family

ID=13474808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193382A Granted JPS58187672A (en) 1982-04-28 1982-04-28 Temperature-responsive valve

Country Status (1)

Country Link
JP (1) JPS58187672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310215U (en) * 1986-07-07 1988-01-23
US5655892A (en) * 1996-08-21 1997-08-12 Walbro Corporation Thermally actuated fuel pump vapor vent valve
KR101715805B1 (en) * 2016-06-09 2017-03-15 (주)파워레인 Drain valve for sprinkler pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150680A (en) * 1980-04-23 1981-11-21 Tlv Co Ltd Temperature response valve
JPS5728963U (en) * 1980-07-25 1982-02-16

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660102A (en) * 1980-10-20 1981-05-23 Yokowo Mfg Co Ltd Antenna unit for car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150680A (en) * 1980-04-23 1981-11-21 Tlv Co Ltd Temperature response valve
JPS5728963U (en) * 1980-07-25 1982-02-16

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310215U (en) * 1986-07-07 1988-01-23
US5655892A (en) * 1996-08-21 1997-08-12 Walbro Corporation Thermally actuated fuel pump vapor vent valve
KR101715805B1 (en) * 2016-06-09 2017-03-15 (주)파워레인 Drain valve for sprinkler pipe

Also Published As

Publication number Publication date
JPH0241679B2 (en) 1990-09-18

Similar Documents

Publication Publication Date Title
JPS58187672A (en) Temperature-responsive valve
JP3341192B2 (en) Thermo-responsive steam trap
RU2039876C1 (en) Thermostat for liquid cooling system of internal combustion engine
JPS6141498Y2 (en)
JP2932233B2 (en) Thermo-responsive steam trap
JP2003207098A (en) Thermally-actuated steam trap
JP4115821B2 (en) Thermally responsive steam trap
JPH06213393A (en) Thermal responsive steam trap
JPS6054553B2 (en) Float type steam trap
JPH073108Y2 (en) Temperature control valve for constant temperature bath
JPH094755A (en) Temperature-sensitive valve
JP2761674B2 (en) Thermo-responsive steam trap
JP2835688B2 (en) Thermo-responsive steam trap
JP2000205492A (en) Thermally actuated steam trap
JP3509956B2 (en) Thermo-responsive steam trap
JPH0130040B2 (en)
JPS5911239Y2 (en) thermo valve
JP3484530B2 (en) Thermo-responsive steam trap
JP2024017434A (en) Thermally-actuated valve
JP2884317B2 (en) Thermo-responsive steam trap
JP2741320B2 (en) Thermo-responsive steam trap
JP2835686B2 (en) Thermo-responsive steam trap
JP2884318B2 (en) Thermo-responsive steam trap
JP2003207097A (en) Thermally-actuated steam trap
JP3443612B2 (en) Large capacity steam trap