JPS58182091A - Corrugated fin type evaporator - Google Patents

Corrugated fin type evaporator

Info

Publication number
JPS58182091A
JPS58182091A JP6382282A JP6382282A JPS58182091A JP S58182091 A JPS58182091 A JP S58182091A JP 6382282 A JP6382282 A JP 6382282A JP 6382282 A JP6382282 A JP 6382282A JP S58182091 A JPS58182091 A JP S58182091A
Authority
JP
Japan
Prior art keywords
air
fin
air flow
condensate
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6382282A
Other languages
Japanese (ja)
Inventor
Masaaki Ito
正昭 伊藤
Takeo Tanaka
武雄 田中
Satoru Tomita
富田 哲
Seiichi Wakairo
若色 清一
Toshio Hatada
畑田 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6382282A priority Critical patent/JPS58182091A/en
Publication of JPS58182091A publication Critical patent/JPS58182091A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a corrugated fin type evaporator, which is highly resisting to freezing and has large cooling capacity, by a structure wherein the joining lines between fins and flattened tubes are inclined with a rising gradient from the horizontal plane along the direction of air flow so as to lead the condensate to the air inlet side, at which the air temperature is higher than that at the air outlet side. CONSTITUTION:The flattened tube 1, in which heat transfer medium flows and at both ends of which headers 2 and 3 are jointed, is formed in zigzag and fins 4 folded in zigzag are jointed by brazing or the like between the parallel parts of the tube 1. Each fin 4 has ridgelines 6 and also has a large number of louver 7 at its fin part. Said ridgeline 6 is inclined with a rising gradient along the direction of air flow 5 and the air temperature becomes gradually lower toward the direction of air flow 5. A large part of the condensate adhered to the fin surface is led toward the air inlet side. Because the relation between the speed of air flow (u)m/sec and the critical acclivity angle thetamm. (degree), at which the condensate can return to the air inlet side, is thetamm.=arc sin(0.05Xu), the angle of inclination of acclivity theta, which is larger than the critical acclivity angle thetamm., is employed so as to lead the condensate to the air inlet side, at which the air temperature is higher than that at the air outlet side, in order to make the amount of the condensate at the air outlet side, at which the freezing is apt to occur, as small as possible, resulting in obtaining an evaporator, which is highly resisting to freezing.

Description

【発明の詳細な説明】 本発明は、フィン向に多数の傾斜ルーバーを有するフィ
ン全ジグザグ状に折曲げてその稜線を偏平管の側面に接
合してなるコルゲートフィン形蒸発器に関し、特にカー
エアコンやルームエアコンの蒸発器に好適なコルゲート
フィン形蒸発器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corrugated fin type evaporator in which the fins have a large number of inclined louvers in the fin direction and are all bent in a zigzag shape and the ridge line is joined to the side surface of a flat tube. The present invention relates to a corrugated fin type evaporator suitable for use in air conditioners and room air conditioners.

従来のこの種蒸発器は、偏平管とジグザグ状に折曲げた
フィンの稜線(偏平管との接合#iりが水平かあるいは
水切り全考慮して空気流れに浴って下り勾配に傾斜させ
るのが通常であった。確かにこのように下り勾配に傾斜
させると、凝縮水は接合線全仏わってフィン前端すなわ
ち風上側エリもフィン後端すなわち風下側から多く排出
される。
Conventional evaporators of this type have a flat tube and a zigzag-shaped fin that is tilted downward in the air flow, taking into consideration whether the joint #i with the flat tube is horizontal or draining. It is true that when the fin is tilted downward like this, the condensed water crosses the entire joint line, and a large amount of condensed water is discharged from the front end of the fin, that is, the windward side area, and from the rear end of the fin, that is, the leeward side.

しかしフィン間を流れる空気温度は流れ方向に浴つて次
第に低くなり、空気出口端では最も低温となっているの
でもし冷媒温度が低く、凍結が生じる工うな粂件だと、
空気出口端の多量の凝縮水が凍結し、凍結に対して非常
に弱い熱交換器となってし筐う。つ葦ジ従来のコルゲー
トフィン形熱交換器は、例えはクロスフィン形蒸発器な
ど他の形の蒸発器に比べて、凍結しやすいという欠点が
あった。
However, the temperature of the air flowing between the fins gradually decreases in the direction of flow, and is the lowest at the air outlet end, so if the refrigerant temperature is low and freezing is unlikely to occur,
A large amount of condensed water at the air outlet end freezes, making the heat exchanger extremely susceptible to freezing. Conventional corrugated fin heat exchangers have the disadvantage that they freeze more easily than other types of evaporators, such as cross-fin evaporators.

本発明の目的に、空気を冷却する過程で生成さ扛る凝縮
水を、温度の高い空気入口側に導くことにより、凍結に
強いコルゲートフィン形蒸発器ケ提供することにβる。
An object of the present invention is to provide a corrugated fin type evaporator that is resistant to freezing by guiding condensed water generated during the process of cooling the air to the high temperature air inlet side.

本発明のコルゲートフィン形蒸発器は凝縮水全空気人口
側に導くために、コルゲートフィンと偏平電との接合線
が、空気流れに清って水平より上り勾配となるようにフ
ィン金配置することにエリ、凝縮水の車力が空気の粘性
による摩擦力に打ち勝つようにしたことを%徴としてい
る。
In the corrugated fin type evaporator of the present invention, in order to guide the condensed water to the whole air population side, the fins are arranged so that the joining line between the corrugated fin and the flat conductor slopes upward from the horizontal direction to follow the air flow. The characteristic is that the force of the condensed water overcomes the frictional force caused by the viscosity of the air.

以下1本発明の蒸発器の一実施例全第1図〜第3図にエ
リ説明する。
An embodiment of the evaporator of the present invention will be explained below with reference to FIGS. 1 to 3.

内部を熱媒体が流詐る偏平管1は蛇行状に形成さnその
両端部にヘッダ2.3が結合さ汎ている。
A flat tube 1 through which a heat medium flows is formed in a meandering shape, and headers 2.3 are connected to both ends thereof.

この偏平管1の平行部分間にはジグザグ状に折曲げら扛
たフィン4がろう付けなどにより接合されている。5は
空気の流れケ示す。
A zigzag-shaped fin 4 is joined between the parallel portions of the flat tube 1 by brazing or the like. 5 shows the air flow.

ジグザグ状に折曲げられたフィン4は稜線6(偏平管1
とフィン4との接合線)葡南し、そのフィン部に多数の
ルーツ(Δ7が切起こ沁汎ている。
The fin 4 bent in a zigzag shape has a ridgeline 6 (flat tube 1
and fin 4), and there are many roots (Δ7) in the fin part.

そしてこの稜線6は、第3図に示すように空気の流n方
向5に浴って、水平より上り勾配に傾斜させており、本
実施例でに110度だけ水平より上り勾配に傾斜してい
る。この時の空気の温度変化は第4図に示すように、空
気流れ方向に宿って次第に低下していく。フィン面上に
付着する凝縮水の分布全実験的に測定してみると第5図
のようになっており、大部分の凝縮水が空気入口側の方
へ導かれている。この時の風速は秒速約2.5mである
。空気流速kl (m/ sec )と凝縮水が空気入
口側に戻る限界の上り勾配の角度θ騙(度)との間には
、次の関係式が成立つことが実験的に確められた。即ち
フィン壁面の傾斜角を0.凝縮水の投影面積ケA、液膜
厚さに+!1.水の密度をρ7としたとき、摩慄で引っ
ばられる力Ffおよび重力で引き戻さ扛る力FWは Ff−τOA 。
As shown in FIG. 3, this ridgeline 6 is sloped upward from the horizontal in the direction 5 of the air flow, and in this embodiment, it is sloped upward by 110 degrees from the horizontal. There is. As shown in FIG. 4, the temperature change of the air at this time occurs in the direction of air flow and gradually decreases. When the distribution of condensed water adhering to the fin surface was experimentally measured, it was as shown in FIG. 5, and most of the condensed water was guided toward the air inlet side. The wind speed at this time was approximately 2.5 m/s. It has been experimentally confirmed that the following relational expression holds between the air flow velocity kl (m/sec) and the critical upward slope angle θ (degrees) for condensed water to return to the air inlet side. . That is, the inclination angle of the fin wall surface is set to 0. Projected area of condensed water A, + liquid film thickness! 1. When the density of water is ρ7, the force Ff pulled by shudder and the force FW pulled back by gravity are Ff - τOA.

FW=ρ7・θ、A・yφ5111v。FW=ρ7・θ, A・yφ5111v.

となる。becomes.

ただしτGは壁面での剪断応力で、フィンピッチ2 f
、空気の粘性係数tμ、風速1uとすればToた上±。
However, τG is the shear stress on the wall surface, and the fin pitch is 2 f
, the viscosity coefficient of air is tμ, and the wind speed is 1u, then To is ±.

p Ff=FWより 上式より 一般に、カークーラ等の最大風速はu = 2.577
Z/Sであり、u −2,5m/sのときの限界傾斜角
θ騙は上記の計算式から7.2度となり、これ以上ない
と凝縮水が後方に飛散してしまうことになる。
From the above formula, p Ff = FW, the maximum wind speed of car coolers, etc. is generally u = 2.577
Z/S, and the critical inclination angle θ when u −2.5 m/s is 7.2 degrees from the above calculation formula, and if it is not more than this, the condensed water will scatter backwards.

従って、風速Uと限界傾斜角OMとの間には次の関係式
が成立つ。
Therefore, the following relational expression holds between the wind speed U and the limit inclination angle OM.

°(4) Ow = arCsin  (0,05X u )  
−−−(1)このようにして、上り勾配の傾斜角V〉θ
−’Thつけることにより凝縮水?温度の高い空気入口
側に導くことにより、凍結ケ生じる空気出口端の凝縮水
は少なくなり、凍結に対して強い蒸発器を得ることがで
きる。
°(4) Ow = arCsin (0,05X u )
--- (1) In this way, the slope angle of the uphill slope V〉θ
-'Th condensed water by adding? By guiding the air to the high-temperature air inlet side, the amount of condensed water at the air outlet end, where freezing occurs, is reduced, making it possible to obtain an evaporator that is resistant to freezing.

第6図は、凍結會防止するためにフィンに取り付けられ
るサーモスタットの限界値?示したものである。横軸は
、サーモスタットのOFF 値、 iて軸はサーモスタ
ットのDIFF値で、領域Aは凍結する領域、領域Bは
凍結しない領域である。
Figure 6 shows the limit value of the thermostat attached to the fin to prevent freezing. This is what is shown. The horizontal axis is the OFF value of the thermostat, and the i-axis is the DIFF value of the thermostat, where region A is a frozen region and region B is a non-frozen region.

ジグザグ状に折曲げられたフィンの稜線(偏平管との接
合部〕が水平筐たは空気の流れ方向に下り勾配で傾斜し
ているような従来の蒸発器におけるコルゲートフィンの
限界値は線aで示さn、また本発明の蒸発器におけるコ
ルゲートフィンの限界値は線すで示されている。本発明
により限界値が低くなり、より低い温度にサーモスタッ
ト?設定することができ、今まで以上に低温の空気ケ得
ることができるようになった。このため冷房能力ゲ大幅
に向上させることができた。
The limit value of corrugated fins in conventional evaporators, where the ridgeline of the fins bent in a zigzag shape (junction with the flat tube) is inclined downward in the horizontal case or in the direction of air flow, is line a. n, and the limit value of the corrugated fin in the evaporator of the present invention is shown by the line.With the present invention, the limit value is lower and the thermostat can be set at a lower temperature than ever before. It became possible to obtain low-temperature air.As a result, the cooling capacity was significantly improved.

このようなフィンの稜線(、接合H)k上り勾配に配置
する場合、通常のルーバーフィンを用いると、空気はフ
ィンの稜線(接合線)に沿って上り勾配に吹き出してし
まう。蒸発器全体金部けてフィン稜線(接合線)?傾け
るようにする場合、蒸発器全体全垂直に直かなげ扛はな
らないときには、蒸発器の上下隅に空気の澱んでしまう
領域が存在する。これに対する解決策としてフィン傾斜
角θとルーバー傾斜角γとの間に一定の関係をもたせる
とよい。次にこのフィン1頃斜角θとルーツ(−1頃斜
0とルーバー傾斜角の間には、次式の関係全満足するよ
うにする。
When the fin ridgeline (joint H) is arranged on an upward slope, if a normal louver fin is used, air will blow out upward along the fin ridgeline (joint line). Is the fin ridgeline (joint line) of the entire evaporator metal part? When tilting the evaporator, if the entire evaporator cannot be tilted completely vertically, there will be areas at the top and bottom corners of the evaporator where air will stagnate. As a solution to this problem, it is preferable to create a certain relationship between the fin inclination angle θ and the louver inclination angle γ. Next, the relationship between the slope angle θ around the fin 1, the slope 0 around the root (-1), and the louver slope angle is made to completely satisfy the following relationship.

1  2sirBI sin 2γ−2C1+δ*) (b −7J ”””
 (2)ここで tニル−パーの板厚(m) 7)*ニルーバー後端の排除厚ヨ1.72B;(倣)b
ニル−バーの長さくm) Reb ニル−バーのレイノルズ数三1−lニル−パー
の間隔(m) U:空気流速  (m/ sec ) シ:空気の動粘性係数(靜’/5ec)フィン傾斜角V
とルーバー傾斜角γとが、式(2)の関係を満たす時、
空気はフィン傾斜角θにかかわらず、空気流入方向を変
えずに直進して流れる。
1 2sirBI sin 2γ−2C1+δ*) (b −7J “””
(2) Here, t Niru-par plate thickness (m) 7) * Removal thickness of rear end of Niru bar 1.72B; (copying) b
Nir-bar length (m) Reb Reynolds number of nil-bar 31-l Nir-par spacing (m) U: Air flow velocity (m/sec) C: Kinematic viscosity coefficient of air (T'/5ec) Fin Inclination angle V
When and the louver inclination angle γ satisfy the relationship of equation (2),
Regardless of the fin inclination angle θ, the air flows straight forward without changing the air inflow direction.

このように、フィンに凝縮水が付着する蒸発器において
は、凍結防止のために凝縮水全空気入口側に流し洛と丁
ことが必要である。このため、前述の式(1)と式(2
)の制限により、最適のフィン構造全得ることができる
In this way, in an evaporator in which condensed water adheres to the fins, it is necessary to drain all of the condensed water on the air inlet side to prevent freezing. Therefore, the above equation (1) and equation (2
), an optimal fin structure can be obtained.

第8図、第9図はこnら2つの制限を加えたフィン構造
の特性ケ示す図である。第8図、第9図において、横1
lIIはフィン傾斜角(θ0)、縦軸はルーバー傾斜角
(γ0)でOがマイナスは、入口空気流れに対して下り
勾配ケあられし、γがマイナスば、上り勾配をあられし
ている。また領域A11−1凍結する領域、領域Bは凍
結する領域を示す。
FIGS. 8 and 9 are diagrams showing the characteristics of the fin structure with these two restrictions added. In Figures 8 and 9, horizontal 1
lII is the fin inclination angle (θ0), and the vertical axis is the louver inclination angle (γ0). If O is negative, there is a downward slope with respect to the inlet air flow, and if γ is negative, it is sloped upward. Further, area A11-1 indicates an area to be frozen, and area B indicates an area to be frozen.

qt −0,15咽、 1)−2,3m、 l=2.3
mm 、         。
qt -0,15th, 1) -2,3m, l=2.3
mm.

u −2,5m/s 、  シー1.38 X 10−
 ’m”/s  とすると、Reb −417、δ*=
0.194mm式(1) 、 (2)は次のように変形
できる。
u -2.5m/s, sea 1.38 x 10-
'm''/s, Reb -417, δ*=
0.194mm Equations (1) and (2) can be transformed as follows.

= 0.308 (1−2sinθ)−・・・・・−−
(8)θ ≧7.18°       ・・・・・・・
・・・・・・・・・・(4)第8図には、上記の式(8
) 、 (4)の関係金線c、dで示しである。凝縮水
の付かない熱交換器用フィンとしては、式(3)の条件
だけで十分であるが、凝縮水が付着する蒸発器用フィン
としては、式(3)の他に式(4)の条件が加わり、線
C上の太線部分で衣わチェうにフィン傾斜角θ、ルーバ
ー傾斜角γの適用範囲は狭くなる。
= 0.308 (1-2 sin θ)−・・・・・−−
(8) θ ≧7.18° ・・・・・・・
・・・・・・・・・・・・(4) Figure 8 shows the above equation (8
), The relationship in (4) is shown by gold lines c and d. For heat exchanger fins to which condensed water does not adhere, the condition of equation (3) alone is sufficient, but for evaporator fins to which condensed water adheres, the condition of equation (4) in addition to equation (3) is sufficient. In addition, the range of application of the fin inclination angle θ and the louver inclination angle γ becomes narrower in the thick line portion on line C.

また第9図は上記の条件において、風速u2u= 2.
5 m/sから1.0771/Sに代えた場合である。
Moreover, FIG. 9 shows that under the above conditions, the wind speed u2u=2.
This is a case where the speed is changed from 5 m/s to 1.0771/S.

u=2代えることにLすRebil:Reb= 167
 、δ1ばδ”−0,3061nMとなる。このとき式
(1)および式(2)は次のようになる。
L to replace u=2 Rebil: Reb= 167
, δ1 becomes δ”-0,3061 nM. In this case, equations (1) and (2) become as follows.

5in2γ−0,405(1−2sinθ)・・・・・
・・・・・・・・・・・・・・・・(5)θ ≧2.8
7° ・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・(6)図中式(5
) 、 (6)の関係を線e、fで示しである。
5in2γ-0,405(1-2sinθ)・・・・・・
・・・・・・・・・・・・・・・・・・(5) θ ≧2.8
7° ・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・(6) Formula in the figure (5
) and (6) are shown by lines e and f.

・(8)・ 以上説明したように本発明によれば、フィンと偏平管と
の接合線が空気の流れ方向に浴って、水平面より上り勾
配に傾斜させたので、凝縮水が空気入口側に導か扛、凍
結に強いコルゲートフィン形蒸発器を提供することがで
きる。その結果、凍結防止用のサーモスタットの設定値
を低くすることができ、従来より大きな冷房能カケ得る
ことができるという効果がある。
・(8)・ As explained above, according to the present invention, the joining line between the fin and the flat tube is oriented in the direction of air flow and is inclined upwardly from the horizontal plane, so that condensed water flows toward the air inlet side. A corrugated fin-shaped evaporator that is resistant to corrugated and freezing can be provided. As a result, the set value of the anti-freeze thermostat can be lowered, resulting in a greater cooling capacity than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のコルゲートフィン形蒸発器の一例の斜
視図、第2図は第1図におけるコルゲートフィンの斜視
図、第3図は第1図におけるコルゲートフィンの稜線の
一例を示す図、第4図は空気流れ方向と空気温度の変化
?示す図、第5図は本発明の蒸発器のフィンにおける凝
縮水の分布金示す図、第6図は凍結防止のためのサーモ
スタットの限界値金示す図、第7図は本発明におけるコ
ルゲートフィンのフィン傾斜角と傾斜ルーバー傾斜角の
関係を説明する図、第8図、第9図は、フィン傾斜角と
傾斜ルーバー傾斜角の関係全説明する図である。 1・・・偏平管、4・・・フィン、訃・・空気流れ、6
・・・稜線、7・・・傾斜ルーバー。 ・ 酊 ・ 才1国 23図 オ斗国       第5″国 オムニ ナー’f−X77)  OFFイ直 (’C)十7(2
) ャδ 目 フイレ神今牛稍 θ  Q笑ノ
FIG. 1 is a perspective view of an example of the corrugated fin type evaporator of the present invention, FIG. 2 is a perspective view of the corrugated fin in FIG. 1, and FIG. 3 is a diagram showing an example of the ridgeline of the corrugated fin in FIG. 1. Figure 4 shows changes in air flow direction and air temperature? Figure 5 is a diagram showing the distribution of condensed water on the fins of the evaporator of the present invention, Figure 6 is a diagram showing the limit value of the thermostat for anti-freezing, and Figure 7 is a diagram showing the distribution of condensed water on the fins of the evaporator of the present invention. The diagrams illustrating the relationship between the fin inclination angle and the inclination louver inclination angle, FIGS. 8 and 9, are diagrams completely explaining the relationship between the fin inclination angle and the inclination louver inclination angle. 1... flat tube, 4... fin, tail... air flow, 6
...Ridge line, 7...Slanted louver.・ Drunkenness ・ Sai 1 country 23 maps Oto country 5th country Omniner'f-X77) OFF I direct ('C) 17 (2
) ya δ eye fille god now beef θ Q lol no

Claims (1)

【特許請求の範囲】 1、 フィン面に多数の傾斜ルーバーを有するフィンを
ジグザグ状に折曲げその稜線全偏平管の側面に接合して
なるコルゲートフィン形蒸発器において、前記フィンと
前記偏平管との接合線を空気の流れ方向に沿う水平面と
なす角度θが、次の関係金満すように上り勾配で傾斜さ
せたことを特徴とするコルゲートフィン形蒸発器。 θ≧arc Sin (0,05Xu )ただしU:空
気流速(m/ Sec )2、 フィン接合線の傾斜角
度θとフィン面上の傾斜ルーバーの迎え角度γが次の関
係金満たすようにしたこと全特徴とする特許請求の範囲
第1項記載のコルゲートフィン形蒸発器。 5in2γ−2(1+δ*)(−!1−−2sinθ)
bI! θ≧arc sin (0,05X u )ただし l
ニル−バーの板厚(m) u     (n−ン δセル−パー後端の排除厚ミ1.72注正bニルーパー
の長さくm) −b 1(eb ニル−バーのレイノルズ数三□ν lニル−バーの間隔<m) U:空気流速(m/ sec ) シ:空気の動粘性係数(tt?/ 5ec)
[Scope of Claims] 1. In a corrugated fin type evaporator in which a fin having a large number of inclined louvers on the fin surface is bent in a zigzag shape and its ridgeline is joined to the side surface of a flat tube, the fins and the flat tube are connected to each other. A corrugated fin type evaporator, characterized in that it is inclined upwardly so that the angle θ between the joining line and the horizontal plane along the air flow direction satisfies the following relationship. θ≧arc Sin (0.05 A corrugated fin type evaporator according to claim 1. 5in2γ-2(1+δ*)(-!1--2sinθ)
bI! θ≧arc sin (0,05X u) but l
Plate thickness of nil bar (m) u (n δ exclusion thickness at rear end of cell par min 1.72 Note b length of nil bar m) -b 1 (eb Reynolds number of nil bar 3 □ν L-bar spacing <m) U: Air flow velocity (m/sec) C: Kinematic viscosity coefficient of air (tt?/5ec)
JP6382282A 1982-04-19 1982-04-19 Corrugated fin type evaporator Pending JPS58182091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6382282A JPS58182091A (en) 1982-04-19 1982-04-19 Corrugated fin type evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6382282A JPS58182091A (en) 1982-04-19 1982-04-19 Corrugated fin type evaporator

Publications (1)

Publication Number Publication Date
JPS58182091A true JPS58182091A (en) 1983-10-24

Family

ID=13240436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6382282A Pending JPS58182091A (en) 1982-04-19 1982-04-19 Corrugated fin type evaporator

Country Status (1)

Country Link
JP (1) JPS58182091A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6408941B1 (en) 2001-06-29 2002-06-25 Thermal Corp. Folded fin plate heat-exchanger
US6598669B2 (en) * 1999-04-19 2003-07-29 Peerless Of America Fin array for heat transfer assemblies and method of making same
US7017655B2 (en) 2003-12-18 2006-03-28 Modine Manufacturing Co. Forced fluid heat sink
CN103502765A (en) * 2011-10-19 2014-01-08 松下电器产业株式会社 Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598669B2 (en) * 1999-04-19 2003-07-29 Peerless Of America Fin array for heat transfer assemblies and method of making same
US6408941B1 (en) 2001-06-29 2002-06-25 Thermal Corp. Folded fin plate heat-exchanger
US7017655B2 (en) 2003-12-18 2006-03-28 Modine Manufacturing Co. Forced fluid heat sink
CN103502765A (en) * 2011-10-19 2014-01-08 松下电器产业株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
US4615384A (en) Heat exchanger fin with louvers
GB2042708A (en) Finned-tube heat exchanger
JPS58182091A (en) Corrugated fin type evaporator
JPH03181759A (en) Refrigerant evaporator
JPH04186070A (en) Heat exchanger
JP4690605B2 (en) Corrugated fin heat exchanger
JPS6346357B2 (en)
JPH0410530Y2 (en)
JP2003214790A (en) Heat exchanger
JPS59104094A (en) Heat exchanger
JPS61140790A (en) Refrigerant vaporizer
JPH0330718Y2 (en)
JPS58158496A (en) Finned-tube type heat exchanger
JPS58214783A (en) Heat exchanger
JPS58178192A (en) Corrugated fin
JPH10339595A (en) Heat exchanger
JPH11166796A (en) Heat exchanger
CN214333492U (en) Reinforced heat exchange fin and finned tube heat exchanger
JPS61240099A (en) Heat exchanger
JP3180434B2 (en) Fin-tube heat exchanger
JPS5819692A (en) Fin for heat exchanger
JPS60248997A (en) Heat exchanger
JPS5820863Y2 (en) Evaporator
JPH05302791A (en) Fin tube type heat exchanger
JPS6287791A (en) Fin for heat exchanger