JPS58180918A - Infrared ray monitoring device - Google Patents

Infrared ray monitoring device

Info

Publication number
JPS58180918A
JPS58180918A JP6361682A JP6361682A JPS58180918A JP S58180918 A JPS58180918 A JP S58180918A JP 6361682 A JP6361682 A JP 6361682A JP 6361682 A JP6361682 A JP 6361682A JP S58180918 A JPS58180918 A JP S58180918A
Authority
JP
Japan
Prior art keywords
scanner
infrared ray
scan
optical system
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6361682A
Other languages
Japanese (ja)
Inventor
Junichiro Yamashita
純一郎 山下
Riichi Saeki
佐伯 利一
Toshio Takei
竹居 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6361682A priority Critical patent/JPS58180918A/en
Publication of JPS58180918A publication Critical patent/JPS58180918A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Radiation Pyrometers (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PURPOSE:To perform infrared ray monitoring characterized by a broad visual field, high detecting probability, and low error detecting probability, by combining vertical scan, horizontal scan, and rotary scan so as to form a desired number of combinations, and receiving incident infrared rays by infrared ray detectors which are arranged in a linear state. CONSTITUTION:Incident infrared rays 5 are inputted into a monitoring optical system comprising a focal optical system 6, a vertical scanner 7, a horizontal scanner 8, a condenser lens 10, infrared ray detectors 9 which are arranged in a linear state, and the like. The monitoring optical system is provided on a rotary mount 11, which is rotated by a rotating device 14. The scanners 7 and 8 and the device 14 are controlled through a signal processing part 12. Vertical scan and rotary scan are performed by the combination of the scanner 7 and the device 14, and horizontal scan is performed only by the scanner 8. In these ways, the monitoring characterized by a broad visual field 1 and a narrow visual field 20 having a high data rate can be performed. As a result, the infrared ray monitoring characterized by the broad vidual field, highe detecting propability, and low error detecting probability can be performed.

Description

【発明の詳細な説明】 この発明は、11i線状に配列された各々の赤外線検出
器が見る視野が走査する方向を必要に応じて。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that the field of view of each infrared detector arranged in a 11i line is scanned in a scanning direction as necessary.

赤外線検出器の並びの方向もしくはその方向に直交した
方向に切換え0周囲の情景を熱像として撮像する赤外線
監視装置に関するものである。
The present invention relates to an infrared monitoring device that images a surrounding scene as a thermal image by switching in the direction in which infrared detectors are arranged or in a direction perpendicular to that direction.

第1図は、赤外線監視装置が撮像しなければならない情
景の例を表わす図である。視野(1)の中には、目標(
2)以外に、海面(3)、雲(4)等が含まれている。
FIG. 1 is a diagram illustrating an example of a scene that an infrared monitoring device must image. In the field of view (1), there is a goal (
In addition to 2), the sea surface (3), clouds (4), etc. are included.

赤外線監視装置において目標(21金正確に検出するに
は、目標(2)と目標(2)以外の物体すなわち第1図
の例においては海面(31,雲(4)等から放射される
赤外線放射の時間的、空間的性質の違いを利用して目標
(2)全分離する必要がある。例えば、目標(2)とし
て、赤外線監視装置の方向へ進んで来る低コントラスト
の物体を考える場合、目標(2)の見かけの位置は変わ
らず、その目標(2)よりの赤外線受光音は時間的に単
調に増加し、また、背景との見かけの温度差は小さい。
In order to accurately detect a target (21 gold) with an infrared monitoring device, infrared radiation emitted from the target (2) and objects other than target (2), such as the sea surface (31, clouds (4), etc. in the example in Figure 1) It is necessary to completely separate target (2) by taking advantage of the differences in the temporal and spatial properties of The apparent position of target (2) remains unchanged, the infrared reception sound from target (2) increases monotonically over time, and the apparent temperature difference with the background is small.

これに対し、海面(31,真(41等から放射される赤
外線は通常広い領域において時間的、空間的[変動する
。従りて、赤外線監視装置のm像方式は、上記の放射の
性質の違いを分離するのに都合の良い方式、すなわち、
温度分解能が艮〈、シかも単位時間当りに同−空間を走
査する回数すなわちデータレートの高い方式が望ましい
On the other hand, infrared rays emitted from the sea surface (31, true (41, etc.) usually fluctuate temporally and spatially over a wide area. Therefore, the m-image method of infrared monitoring equipment is based on the characteristics of the radiation described above. A convenient way to separate the differences, i.e.
A method with a high temperature resolution and a high data rate, that is, the number of times the same space can be scanned per unit time, is desirable.

この発明は、このような必要全考慮してなされたもので
あり、以下、その内容を図面を用いて詳細に説明する。
The present invention has been made with all the necessary considerations in mind, and the contents thereof will be explained in detail below with reference to the drawings.

第2図は、この発明の実施例を表わす図である。FIG. 2 is a diagram showing an embodiment of the invention.

入射赤外光(5)全受光するアフォーカル光学系(61
゜情景を垂直方向に往復走査する垂直スキャナ(7)。
Incident infrared light (5) Afocal optical system that receives all light (61
゜Vertical scanner (7) that scans the scene back and forth in the vertical direction.

情景を水平方向に往復走査する水平スキャナ(8j。A horizontal scanner (8j) that scans the scene back and forth in the horizontal direction.

赤外光を直線状に配列された赤外線検出器(9)に集光
する集光レンズ00)は回転架台01)上に設けられて
おり、直線状に配列された赤外線検出器(9)の並びの
方向は垂直スキャナ(7)の走査方向と並行である。
A condensing lens 00) that condenses infrared light onto the linearly arranged infrared detectors (9) is installed on a rotating pedestal 01). The direction of arrangement is parallel to the scanning direction of the vertical scanner (7).

信号処理部■は直線状に配列された赤外線検出器(9)
の各出力をもとに制御開信号aalt−出力]7.垂直
スキャナ(7)、水平スキャナ+81および回転架台旋
回装置(141の動作を制御する。第2図に示す装置は
、制御信号(13)の内容により垂直スキャナ(71と
回転架台旋回装置0句が動作し、水平スキャナ(8)が
動作しないシリアルモードと、水平スキャナ(81のみ
が動作するパラレルモードの2つのモードで走査を行な
うか、この2つのモードについて次に述べる。
The signal processing section ■ has infrared detectors (9) arranged in a straight line.
control open signal aalt-output based on each output]7. It controls the operations of the vertical scanner (7), the horizontal scanner +81, and the rotary gantry swivel device (141).The device shown in FIG. Scanning is performed in two modes: a serial mode in which the horizontal scanner (8) is activated and the horizontal scanner (81) is not activated, and a parallel mode in which only the horizontal scanner (81) is activated. These two modes will be described below.

第3図は、シリアルモードを示す図である。シリアルモ
ードにおいては、垂直スキャナの往復走置と1回転架台
の垂直スキャナの走査に比べて十分遅い水平方向走査の
組合わせによシ、走査の方向時は図中に示すように、直
線状に配列された赤外線検出器(9)の並びの方向とほ
ぼ等しく、ジグザグ状に水平方向へ進む形をとるため、
同一の空間を走査する周期は長いが水平方向に大きな視
野(例えば全周)がとれる。また、直線状に配列された
赤外線検出器(9)は垂直スキャナの走査によシ。
FIG. 3 is a diagram showing the serial mode. In the serial mode, the combination of reciprocating scanning of the vertical scanner and horizontal scanning, which is sufficiently slow compared to the scanning of the vertical scanner with a single rotation mount, allows the scanning direction to be moved in a straight line as shown in the figure. Since it takes the form of moving horizontally in a zigzag pattern, which is almost the same as the direction of the array of infrared detectors (9),
Although the period of scanning the same space is long, a large horizontal field of view (for example, all around) can be obtained. Further, the infrared detectors (9) arranged in a straight line are used for scanning by a vertical scanner.

10」−の空間を順々に見るため、各検出器の出力信号
音適当な時間だけ遅延させて加算すれば、温度分解能の
艮い信号が得られることは、  TDI (T 1m5
Delay and I ntegration )方
式として専門家の閣では周知の技術である。シリアルモ
ードにおいては。
In order to view the space of 10"- in sequence, if the output signal sound of each detector is delayed by an appropriate time and added, a signal with excellent temperature resolution can be obtained. TDI (T 1m5
This is a well-known technique among experts as a delay and integration method. In serial mode.

各検出器の出力は、信号処理部内に設けられたTDIを
行なうTDI回路叫を通過した後に信号処理回路αηに
入力される。
The output of each detector is input to the signal processing circuit αη after passing through a TDI circuit provided in the signal processing unit for performing TDI.

第4図は、パラレルモードを示す図である。パラレルモ
ードにおいては、水平スキャナによる水平方向往復走査
のみが行なわれるため、走査の方向α5)は赤外線検出
器列の並びと@ダしており直線状に配列された赤外i検
出器(9)が見る空間は独立であるが、水平スキャナで
往復走査が行なわれるため、比較的短い時間に何度も同
一の空間を走査することができる。しかし、視野の大き
さは、縦方向は赤外線検出器列の長さ、横方向は水平ス
キャナの撮幅で決定されるためにシリアルモードより狭
い。
FIG. 4 is a diagram showing the parallel mode. In the parallel mode, only horizontal reciprocating scanning is performed by the horizontal scanner, so the scanning direction α5) is in line with the row of infrared detectors, and the infrared i detectors (9) arranged in a straight line are arranged in a straight line. Although the spaces viewed by the robots are independent, the same space can be scanned many times in a relatively short period of time because the horizontal scanner performs back-and-forth scanning. However, the field of view is narrower than in the serial mode because it is determined by the length of the infrared detector array in the vertical direction and by the field of view of the horizontal scanner in the horizontal direction.

また、第4図においては、各検出器の出力は信号処理部
内に設けられた0時分側条重を行なうMPX(Mult
ipl*x )回路(1梯により、単一の信号に変換し
た後に信号処理回路C1?lに送られる構成となってい
るが、 MPX回路はこの発明において必ずしも不可欠
な本のではない。
In addition, in FIG. 4, the output of each detector is output from an MPX (Mult
Although the MPX circuit is configured to be converted into a single signal by the ipl *

第5図は、この発明に係る赤外線監視装置における走査
モードの切換えを表わす図である。
FIG. 5 is a diagram showing switching of scanning modes in the infrared monitoring device according to the present invention.

この発明に係る赤外線監視装置忙おいては、上記の如く
、良い温度分解能と、広い視野を持つが。
As mentioned above, the infrared monitoring device according to the present invention has good temperature resolution and a wide field of view.

早位時間当シに同一の空間を走査する回数すなわちデー
タレートの低いシリアルモードと温度分解能、視野とも
にシリアルモードに劣るがデータレ−l)高いパラレル
モードの2つのモードを切換えて情景を走査できるため
、まず、シリアルモードにおいて広い視野(1)内を良
い温度分解能で捜索し1周囲との温度変化、大きさの点
において目標と疑わしい点α9が検出され友ならばその
周囲(イ)をパラレルモードで走査し、上記の疑わしい
点曲からの赤外線放射の時間的変動を分析することによ
って真の目標であるか否かが区別できる。従って。
Scenes can be scanned by switching between two modes: the serial mode, which has a low data rate (that is, the number of times the same space is scanned per hour), and the parallel mode, which has a high data rate but is inferior to the serial mode in both temperature resolution and field of view. First, in serial mode, a wide field of view (1) is searched with good temperature resolution, and if point α9, which is suspected to be the target in terms of temperature change and size, is detected as a friend, then the surrounding area (a) is searched in parallel mode. By scanning the target and analyzing the temporal variations in infrared radiation from the suspected point, it is possible to distinguish whether it is a real target or not. Therefore.

この発明に係る赤外線監視装置においては二重の目標識
別機能を持つため、高い発見確率と低い誤警報確率を得
ることができる。なお、上述の、目標と疑わしい点曲の
検出ならびに目標と疑わしい点杷からの赤外線放射の時
間的変動の分析U第2図に示した信号処理部におい1自
動的になされるが、これらの技術は昨今のディジタル信
号処理技術t4ってすれば極めて容易なことである。
Since the infrared monitoring device according to the present invention has a dual target identification function, it is possible to obtain a high detection probability and a low false alarm probability. Note that the above-mentioned detection of points suspected to be targets and analysis of temporal fluctuations in infrared radiation from points suspected to be targets are automatically performed in the signal processing unit shown in Figure 2, but these techniques is extremely easy to do using recent digital signal processing technology t4.

以上のように、この発明に係る赤外線監視装置において
は、2つの走査方式を切換えることにより、広い視野と
高い発見確率、低い誤警報確率を併せ持つことができる
As described above, the infrared monitoring device according to the present invention can have a wide field of view, a high detection probability, and a low false alarm probability by switching between the two scanning methods.

なお0以上は光検出器として赤外線検出器を用いた赤外
線監視装置について述べたが、この発明はこれ罠限らず
、可視光の光検出器例えばCCDを用いた光学監視装置
においても応用できる。
Although the above description has been made regarding an infrared monitoring device using an infrared detector as a photodetector, the present invention is not limited to this, but can also be applied to an optical monitoring device using a visible light photodetector such as a CCD.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は赤外線監視装置が撮像しなけれはならない情景
の例を示す図、182図はこの発明の実施例を表わす囚
、第3図はシリアルモードを示す図。 第4図はパラレルモードを示す図、第5図はこの発明に
係る赤外線監視装置における走査モードの切換えを表わ
す図である。 図中、(7)は垂直スキャナ、(81は水平スキャナ。 (9)は直線状に配列された赤外線検出器、(1υは回
転架台、(121は信号処理部、叫は走査の方向である
。 なお0図中、同一あるいは相当部分には同一符号を付し
て示しである。 代理人 葛 野 信 −
FIG. 1 is a diagram showing an example of a scene that must be imaged by an infrared monitoring device, FIG. 182 is a diagram showing an embodiment of the present invention, and FIG. 3 is a diagram showing a serial mode. FIG. 4 is a diagram showing the parallel mode, and FIG. 5 is a diagram showing switching of the scanning mode in the infrared monitoring device according to the present invention. In the figure, (7) is a vertical scanner, (81 is a horizontal scanner), (9) is an infrared detector arranged in a straight line, (1υ is a rotating mount, (121 is a signal processing unit, and (121 is a scanning direction) In Figure 0, the same or equivalent parts are indicated by the same reference numerals. Agent Shin Kuzuno -

Claims (1)

【特許請求の範囲】 入射赤外光を受光するアフォーカル光学系と。 上記アフォーカル光学系よりIll躬された赤外光を往
復走査する垂直スキャナと、垂直スキャナの定食方向と
は直交する方向に往復走査する水平スキャナと、赤外線
を集光する集光レンズと、東元レンズの結像面上に設け
られ、前記垂直スキャナが走走する方向と同一の方[口
]に並べられたf、Mflの赤外線検出器と、上記の部
品全て全保持する架台と。 その架台を水平スキャナの走査方向と同一の方II」に
回転走査させる旋回装置と、前記赤外線慎重diの出力
信号をもとに所定のf(I断會行ない0則記垂直スキャ
ナ、水平スキャナ、および旋回Atfit’に所定の組
合わせで動作さぜるべく肺1胆信号金発生する信号処理
部と全備えたことを特許とする亦メを線盟視装置。
[Claims] An afocal optical system that receives incident infrared light. A vertical scanner that scans the infrared light emitted from the afocal optical system back and forth, a horizontal scanner that scans the infrared light back and forth in a direction perpendicular to the fixed direction of the vertical scanner, a condensing lens that focuses the infrared light, and Togen. an infrared detector of f and Mfl provided on the imaging plane of the lens and arranged in the same direction as the direction in which the vertical scanner travels; and a pedestal for holding all of the above-mentioned parts. A rotating device that rotates and scans the mount in the same direction as the scanning direction of the horizontal scanner, The patented line sighting device is fully equipped with a signal processing section that generates a signal to operate in a predetermined combination with the turning Atfit'.
JP6361682A 1982-04-16 1982-04-16 Infrared ray monitoring device Pending JPS58180918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6361682A JPS58180918A (en) 1982-04-16 1982-04-16 Infrared ray monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6361682A JPS58180918A (en) 1982-04-16 1982-04-16 Infrared ray monitoring device

Publications (1)

Publication Number Publication Date
JPS58180918A true JPS58180918A (en) 1983-10-22

Family

ID=13234417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6361682A Pending JPS58180918A (en) 1982-04-16 1982-04-16 Infrared ray monitoring device

Country Status (1)

Country Link
JP (1) JPS58180918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461837A2 (en) * 1990-06-11 1991-12-18 Matsushita Electric Industrial Co., Ltd. Pyro-electric type infrared detector
EP0612988A2 (en) * 1993-02-26 1994-08-31 Matsushita Electric Industrial Co., Ltd. Temperature distribution measuring device and measuring method
FR2709631A1 (en) * 1992-10-20 1995-03-10 Thomson Csf Panoramic imaging method for surveillance and identification, incorporating a scanning camera and operating system
US20160187022A1 (en) * 2013-08-28 2016-06-30 Mitsubishi Electric Corporation Thermal image sensor and air conditioner
JP2016218035A (en) * 2015-10-23 2016-12-22 パナソニックIpマネジメント株式会社 Light receiving sensor, and air conditioner and electronic cooker using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461837A2 (en) * 1990-06-11 1991-12-18 Matsushita Electric Industrial Co., Ltd. Pyro-electric type infrared detector
US5281818A (en) * 1990-06-11 1994-01-25 Matsushita Electric Industrial Co., Ltd. Pyro-electric type infrared detector
FR2709631A1 (en) * 1992-10-20 1995-03-10 Thomson Csf Panoramic imaging method for surveillance and identification, incorporating a scanning camera and operating system
EP0612988A2 (en) * 1993-02-26 1994-08-31 Matsushita Electric Industrial Co., Ltd. Temperature distribution measuring device and measuring method
EP0612988A3 (en) * 1993-02-26 1995-06-21 Matsushita Electric Ind Co Ltd Temperature distribution measuring device and measuring method.
US5660471A (en) * 1993-02-26 1997-08-26 Matsushita Electric Industrial Co., Ltd. Temperature distribution measuring device and measuring method
US20160187022A1 (en) * 2013-08-28 2016-06-30 Mitsubishi Electric Corporation Thermal image sensor and air conditioner
US9696053B2 (en) * 2013-08-28 2017-07-04 Mitsubishi Electric Corporation Thermal image sensor and air conditioner
JP2016218035A (en) * 2015-10-23 2016-12-22 パナソニックIpマネジメント株式会社 Light receiving sensor, and air conditioner and electronic cooker using the same

Similar Documents

Publication Publication Date Title
US4584704A (en) Spatial imaging system
CA2009963C (en) Adaptive thresholding technique
CN109655931A (en) Millimeter wave/THz wave imaging device and detection method to human body or article
CN209342946U (en) Millimeter wave/THz wave imaging device
EP0612185B1 (en) Optical scanning apparatus
JPS58180918A (en) Infrared ray monitoring device
EP0410745B1 (en) Reflective chopper for infrared imaging systems
RU2131133C1 (en) Target detection device
JPH1063818A (en) Object detecting device
JP2663451B2 (en) Automatic focusing device
JPH07244145A (en) Image target detection apparatus
JP2000039407A (en) X-ray foreign object inspection device
JPH06273506A (en) Target detector
JP3219071B2 (en) Infrared laser imaging device
RU2024212C1 (en) Method of infra-red imaging identification of shape of objects
JPH0738226B2 (en) Separation method and apparatus used for moving objects
JPH07274215A (en) Stereoscopic video camera
JPS61154278A (en) Infrared image pick-up device
RU2051398C1 (en) Method and device for analyzing and synthesizing images
JP2508843B2 (en) Target finder
JPH07284130A (en) Stereoscopic vision camera
JPH09245269A (en) Object detection system
SU763700A1 (en) Radiation videometer
JPH0593610A (en) Camcorder
JPH0627705B2 (en) Steam leak detector