JPS58180069A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58180069A
JPS58180069A JP57061765A JP6176582A JPS58180069A JP S58180069 A JPS58180069 A JP S58180069A JP 57061765 A JP57061765 A JP 57061765A JP 6176582 A JP6176582 A JP 6176582A JP S58180069 A JPS58180069 A JP S58180069A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
layer
insulating material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57061765A
Other languages
Japanese (ja)
Other versions
JPS6338874B2 (en
Inventor
Sunao Matsubara
松原 直
Juichi Shimada
嶋田 寿一
Atsushi Saiki
斉木 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57061765A priority Critical patent/JPS58180069A/en
Publication of JPS58180069A publication Critical patent/JPS58180069A/en
Publication of JPS6338874B2 publication Critical patent/JPS6338874B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simplify not only the parallel connection of a plurality of photoelectrical generating region on the same substrate surface but also the series connection thereon by a method wherein a flexible insulating material layer, having an excellent heat-resisting property,is applied on the substrate, thereby a plane surface is formed. CONSTITUTION:A plane-surfaced polyimide-isoindologuinazolinedione (PI resin) film 5 is formed on a non-mirror-faced metal substrate 4 using a coating method. Then, aluminum or chromium, to be turned to a lower electrode 6, is vapor- deposited on the PI resin film 5. Besides, an N type amorphous silicon layer 7, an i-type amorphous silicon layer 8 and a P type amorphous silicon layer 9 are formed on a lower electrode 6 respectively, and lastly, ITO (In2O2-SnO2) film is formed as a transparent electrode 10 by performing an EB vapor-deposition method, thereby enabling to obtain a solar battery.

Description

【発明の詳細な説明】 本発明は非単結晶薄膜太陽電池に関するものである。更
に詳しくは、耐熱性のある無機質基板または有機質基板
の母体基板上に、可撓性で耐熱性に冨む絶縁材料をたと
えば塗布法によシ形成し、これを新たな基板として作製
した非単結晶薄膜太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-single crystal thin film solar cell. More specifically, a flexible and heat-resistant insulating material is formed on a heat-resistant inorganic or organic base substrate by a coating method, and this is used as a new substrate. This invention relates to crystalline thin film solar cells.

従来、薄膜太陽電池は、スパッター蒸着法やプラズマグ
ロー放電法によりアモルファスシリコン薄膜を、ステン
レス鋼、ガラス板等を便用した基板上に生成させていた
。太陽電池用の基板として、特にステンレス鋼等の導電
性の材料を用いる場合は、その材料が圧延、加工、成形
等の工程を経て得られるため基板材料の表面に圧延、加
工、成形した傷跡が残っている。その丸め、傷の深さが
形成する薄膜の厚さよシも大きい場合は、太陽電池の短
絡原因の一因となっていた。したがって、ステンレス鋼
の基板表面を鏡面に又は平坦にするような鏡面仕上げ技
術が必要であった。そして、同じくステンレス鋼等の導
電性の材料を基板にした場合は、基板自体を下部電極と
して使用できるが同一基板面上での複数個の光発電区域
の直列接続が不可能であった。
Conventionally, thin film solar cells have been produced by forming an amorphous silicon thin film on a substrate conveniently made of stainless steel, glass plate, etc. by sputter deposition or plasma glow discharge. When using a conductive material such as stainless steel as a substrate for solar cells, the material is obtained through processes such as rolling, processing, and forming, so there may be scars from rolling, processing, or forming on the surface of the substrate material. Remaining. When the depth of the rounding and scratches is greater than the thickness of the thin film formed, it becomes a cause of short circuits in solar cells. Therefore, there has been a need for a mirror finishing technique to make the surface of the stainless steel substrate mirror or flat. Similarly, when a conductive material such as stainless steel is used as the substrate, the substrate itself can be used as the lower electrode, but it is impossible to connect a plurality of photovoltaic areas in series on the same substrate surface.

本発明は、鏡面仕上げ工程を必要とせず基板表面の傷跡
や凹凸のある状態でも、可撓性で耐熱性に富む畦気的絶
縁性のある絶縁材料j−を基板上に形成し、この絶縁材
料層によシ平坦な面を得ることに特徴がある。この絶縁
材料としては耐熱性の高分子樹脂が電も好ましい。具体
的には念とえばボリイ2ド、ポリアミド、ボリア2ド・
イミド等の樹脂がある。また、この平坦化のための樹脂
はば気的絶縁性を有するので、金属基板を用いているに
もかかわらず同一基板面上での複数個の光発電区域の並
列接続のみならず直列接続が容易である。
The present invention forms a flexible, heat-resistant, ridge-like insulating material j- on a substrate, and this insulation The feature is that the material layer has a flat surface. The insulating material is preferably a heat-resistant polymer resin. Specifically, I would like to mention Boli2D, Polyamide, Boli2D,
There are resins such as imide. In addition, since this flattening resin has gas insulating properties, it is possible to connect multiple photovoltaic areas not only in parallel but also in series on the same substrate surface, even though a metal substrate is used. It's easy.

を圧延、刀ロエ、成形されたステンレス板表面に塗布し
たときの表面状態を示したものである。曲線は表面のあ
らさ測定器のトレースの結果である。
This figure shows the surface condition when applied to the surface of a rolled, rolled, or formed stainless steel plate. The curve is the result of a surface roughness meter trace.

表面荒さ最大4μmを有するステンレス板の表面lに、
最大表面荒さと同じ4μmの膜厚のPI樹脂膜を塗布法
により形成したときのステンレス板上のPI情脂漠の1
表面状態が2である。3は同じく1のステンレス板上に
PI樹脂膜を10μm形成したときの表面状態である。
On the surface l of a stainless steel plate with a maximum surface roughness of 4 μm,
PI resin film on a stainless steel plate when a PI resin film with a thickness of 4 μm, which is the same as the maximum surface roughness, was formed by coating method.
The surface state is 2. 3 shows the surface condition when a 10 μm thick PI resin film was also formed on the stainless steel plate 1.

ステンレス板の表閣荒さ1と同程度のPI樹脂膜2を塗
布した吃のでは、基板表面にまだ突起が与られたが、3
では表面状態本平らになっている。ステンレス板の上に
PI樹脂膜が塗布形成妊れた3の表面状態を有する基板
上に、グロー放電法にょプアモルファスシリコン薄膜太
陽電池を作成した結果、短絡は生じなかった。
In the case where the PI resin film 2 was coated with the surface roughness 1 of the stainless steel plate, there were still protrusions on the substrate surface, but 3
The surface condition is flat. An amorphous silicon thin-film solar cell was fabricated using a glow discharge method on a substrate having the surface condition 3 in which a PI resin film was applied and formed on a stainless steel plate, and as a result, no short circuit occurred.

この短絡を防止するPI樹脂膜の膜厚さは、下地となる
ステンレス板の最大表面荒さの2倍以上であれば充分で
ある。PI樹脂膜を塗布しておらず且表面荒さα05μ
m以下の傷を有するステンレス板をそのまま基板として
太陽゛電池に便用した場合は、その傷跡が短絡を生じさ
せる原因になるとはかぎらないがこうした平坦度を得る
ために研磨が必要である。更に傷跡が0.05μm以上
の場合Vi傷の深さの2倍以上の膜厚さを有するPI樹
脂膜を塗布形成したものを基板として用いた方が確実に
短絡防止ができる。ま友、ステンレス板の表面荒さが最
大1100A以上のものを便用する場合は、PI樹脂膜
は膜厚250μm以上が好ましい。250μm以上のP
I樹脂膜を1回の塗布法によシ形成することは、P1樹
脂膜にひび割れが生じ平坦な膜を形成するのが困−であ
る。したがって、PI樹脂膜の形成膜厚が厚くなると嵐
ね塗りの工夫が必要である。この重ね塗pの場合は、P
I樹脂膜の膜厚さが300μm位いまでは膜にひび割れ
が生じることなく平坦な表面を形成できる。
It is sufficient that the thickness of the PI resin film to prevent this short circuit is at least twice the maximum surface roughness of the underlying stainless steel plate. No PI resin film applied and surface roughness α05μ
If a stainless steel plate with scratches of less than 200 m is used as a substrate for solar cells, polishing is necessary to obtain such flatness, although the scratches do not necessarily cause short circuits. Furthermore, if the scar is 0.05 μm or more, short circuits can be more reliably prevented by using a substrate coated with a PI resin film having a thickness twice or more the depth of the Vi scratch. When using a stainless steel plate with a maximum surface roughness of 1100 A or more, the PI resin film preferably has a thickness of 250 μm or more. P of 250μm or more
Forming the I resin film by a single coating method causes cracks in the P1 resin film, making it difficult to form a flat film. Therefore, when the thickness of the PI resin film increases, it is necessary to take measures to prevent overcoating. In the case of this multi-coating p, P
A flat surface can be formed without cracking the film until the film thickness of the I resin film is about 300 μm.

第2図は、PI樹脂の絶縁材料薄膜を塗布形成したもの
を基板として作成したアモルファスシリコン薄膜太陽電
池の礪造を示す。すなわち、鏡面でない最大表面荒さ1
0μmの表面状態を有するステンレス板4の上に、塗布
法によ1膜厚さ25μmのPI樹脂膜5を形成する。そ
して、PI樹脂PA5の上に下部成極6となるアルミニ
ウム又はクロムを蒸着し、さらに下部−極6の上にグロ
ー放(法によ、91000人の膜厚さを有するn型のア
モルファスシリコン層7.6000人の過型のアモ着法
によJ) I T O(Inn’s −8nOs ) 
! 1000人を形成して太陽電池とする。
FIG. 2 shows the structure of an amorphous silicon thin film solar cell prepared using a substrate coated with a thin film of an insulating material of PI resin. That is, the maximum surface roughness that is not specular is 1
A PI resin film 5 having a thickness of 25 μm is formed on a stainless steel plate 4 having a surface condition of 0 μm by a coating method. Then, on top of the PI resin PA5, aluminum or chromium, which becomes the lower electrode 6, is vapor-deposited, and then on the lower electrode 6, glow is emitted (according to the method, an n-type amorphous silicon layer with a film thickness of 91,000 nm is deposited). 7. By the method of over-forming ammo of 6000 people J) ITO (Inn's -8nOs)
! Form 1000 people and use it as a solar cell.

上述の例は、PI樹脂膜を塗布形成する母体基板として
良導体のステンレス板を使用したが、他の基板として鉄
板、ニッケル板、モリブデン板。
In the above example, a stainless steel plate, which is a good conductor, was used as the base substrate on which the PI resin film was applied, but other substrates could be iron plates, nickel plates, or molybdenum plates.

プリツキ板、トタン板等の良導体、あるいはセラミック
などの絶縁体をも使用できる。そして、これらの基板材
料の表面に凹凸がたとえば100μm存在して4PI樹
脂膜を塗布形成することにより、いずれも平坦な基板表
面が得られる。さらに、PI樹脂膜が太陽電池の動作に
悪影響を及ぼす母体基板からの不純物拡散を防止するこ
とができるなどの効果もあり、太陽電池用の基板材料の
範囲が広がることが約束される4のである。
Good conductors such as prickly plates and galvanized iron plates, or insulators such as ceramics can also be used. Then, by forming a 4PI resin film on the surface of these substrate materials with irregularities of, for example, 100 μm, a flat substrate surface can be obtained. Furthermore, the PI resin film has the effect of preventing the diffusion of impurities from the host substrate, which has a negative effect on the operation of solar cells, and promises to expand the range of substrate materials for solar cells4. .

第3図は、良導体を基板材料にして作成した従来の薄膜
太陽′電池の構造である。すなわち、下部電極としての
鏡面状態のステンレス基板11の上に、グロー放電法に
よJ1000人のngアモルファスシリコン417.6
000人の1型のアモルファスシリコン層8および10
0人のp型のアモルファスシリコン+19をそれぞれ形
成し、蟻後に透明電極として1000人のITO膜10
を形成して太陽電池としたものである。この構造におい
ては、同一基板上で複数個の光発電区域を設け、並列あ
るかはまたは直列接続を得ようとした場合、良導体の基
板材料を光発電区域の下部電極として使用しているため
同一基板面上での直列接続が出来なかった。しかし、本
発明を用いることにニジ、良導体の母体巷板上にPI樹
脂膜を塗布したものが、ガラス基板を用いた場合と同等
な取扱込が町iヒとなる。
FIG. 3 shows the structure of a conventional thin film solar cell made using a good conductor as a substrate material. That is, J1000 ng amorphous silicon 417.6 was deposited on a mirror-like stainless steel substrate 11 as a lower electrode by a glow discharge method.
000 type 1 amorphous silicon layers 8 and 10
0 p-type amorphous silicon + 19 was formed respectively, and 1000 ITO films 10 were formed as transparent electrodes after the ant.
A solar cell is formed by forming a solar cell. In this structure, if multiple photovoltaic areas are provided on the same substrate and a parallel or series connection is attempted, the same substrate material with good conductivity is used as the bottom electrode of the photovoltaic areas. Series connection on the board surface was not possible. However, when using the present invention, a product in which a PI resin film is coated on a base base plate of good conductor cannot be handled in the same way as a glass substrate.

第4図は、母体基板にステンレス板12の良導13を形
成する。次に、該PI樹脂膜13上に下部に*14を複
数個層成する。そして、下部′1極工4の上に接合を有
するアモルファスシリコン膜15を形成するが、この4
合下部電極14が一部露出するようにアモルファスシリ
コンB!X15を形成する。最後に、膜15の上に透明
電極16を形成するが、このとき透明電極16と一部露
出した下部電極14とが電気的に直列に接続されるよう
に形成し、複数個の光発電区域を直列に接続した太陽電
池が良導体基板材料12上に得られる。
In FIG. 4, a conductor 13 of a stainless steel plate 12 is formed on a base substrate. Next, a plurality of layers *14 are formed on the lower part of the PI resin film 13. Then, an amorphous silicon film 15 having a bond is formed on the lower single electrode structure 4.
Amorphous silicon B! Form X15. Finally, a transparent electrode 16 is formed on the membrane 15, and at this time, the transparent electrode 16 and the partially exposed lower electrode 14 are formed so as to be electrically connected in series, and a plurality of photovoltaic areas are formed. A solar cell is obtained on the good conductive substrate material 12 by connecting the two in series.

以上述べたように、可撓性で耐熱性のある嵯気的絶縁材
料の一つであるPI樹脂膜を、母体基板表面に塗布し、
該PI樹脂膜上に形成された薄膜1・1( ことが約束される。さらに、母体基板材料に良導体を用
いた場合、従来は同一基板上での先発′亀区域の直列接
続が不OT能であったが、絶縁材料金光発電区域の−F
部電極と母体基板との間に設けることによシ光発遡区域
の並列接続のみならず直夕U接続も実現できる。
As described above, a PI resin film, which is a flexible and heat-resistant insulating material, is applied to the surface of the base substrate.
The thin film 1.1 formed on the PI resin film is guaranteed.Furthermore, when a good conductor is used as the base substrate material, it has conventionally been impossible to connect the leading regions in series on the same substrate. However, the -F of the insulating material Kinko power generation area
By providing it between the partial electrode and the base substrate, not only parallel connection of the light emitting areas but also direct U-connection can be realized.

なお、以上の具体例ではPI衝脂の同を述べたが、他の
耐熱性高分子樹脂、たとえばポリイミド。
In addition, in the above specific example, the same as PI resin was described, but other heat-resistant polymer resins, such as polyimide.

ポリアミド、ポリイミド・アミド樹脂でも同等の効果を
得ることができる。
Similar effects can be obtained with polyamide and polyimide/amide resins.

【図面の簡単な説明】[Brief explanation of drawings]

5g1図は、ステンレス基板と該基板表面にポリイミド
系の樹脂を塗布したときの基枦の表面状態を示す図、第
2図は、本発明の実施例における薄膜太陽紙性の断面図
、g3図は、従来の薄膜太陽を池の断面図、第4図は、
本発明の別の実施例をI示す薄膜太陽眠池の@面図であ
る。 下部電極、718,9・・・アモルファスシリコン膜、
10・・・透明電極。 特許出願人 工業技内院長 石 坂 誠 → χ 1  図 第 2 図 1/’1 第 3 (2) %411D
Figure 5g1 is a diagram showing the surface condition of a stainless steel substrate and the base plate when polyimide resin is applied to the surface of the substrate, Figure 2 is a cross-sectional view of the thin film solar paper according to the embodiment of the present invention, and Figure g3. is a cross-sectional view of a conventional thin-film solar pond, and Figure 4 is
FIG. 7 is an @ side view of a thin film solar pond showing another embodiment of the present invention. Lower electrode, 718,9... amorphous silicon film,
10...Transparent electrode. Patent applicant Makoto Ishizaka, Director of Industrial Technology Center → χ 1 Figure 2 Figure 1/'1 3rd (2) %411D

Claims (1)

【特許請求の範囲】 L 所定の無機質基板又は有機質基板上に可撓性で且耐
熱性の絶縁材料の層を形成し、この絶縁材料のノー上に
第1の電極、少なくとも一層のPN接合又はPIN接合
を有する非単結晶層および第2の電極を少なくともMし
、該接合部で光起電力を生ぜしめることを特徴とする半
導体装置。 2 前記絶縁材料の層は塗布性なることを特徴とする特
許請求の範囲第1項記載の半導体装置。 1 前記絶縁材料のノーは耐熱性高分子樹脂層なること
を特徴とする特許請求の範囲第1項記載の半導体装置。 4 特許請求の範囲第1項記載の半導体装置において、
耐熱性のある無機質基板または育S買基板として、該基
板表面の荒さがα05μm以上で100μm以下である
基板を用いたことを特徴とする半導体装置。 5、特許請求の範囲第1項記載の半導体装置において、
絶縁材料の層が被着形成された基板上に複数の光発電区
域を構成し、該区域の各々は接合を有する非単結晶層と
集電電極とを少なくとも含み、上記各区域の集電手段は
各区域における先発′峨区域が直列及び又は並列関係に
なるべく互いに電気的に接続されることを特徴とする半
導体装置。 6、特許請求の範囲1g1項、i@2項又は第5項記載
の半導体装置において、基板材料が電気的に良導体なる
ことを特徴とする半導体装置。
[Claims] L A layer of a flexible and heat-resistant insulating material is formed on a predetermined inorganic or organic substrate, and a first electrode, at least one layer of PN junction or A semiconductor device characterized in that a non-single crystal layer having a PIN junction and a second electrode are at least M, and a photovoltaic force is generated at the junction. 2. The semiconductor device according to claim 1, wherein the layer of insulating material is coatable. 1. The semiconductor device according to claim 1, wherein the insulating material is a heat-resistant polymer resin layer. 4. In the semiconductor device according to claim 1,
A semiconductor device characterized in that a heat-resistant inorganic substrate or a substrate having surface roughness of α05 μm or more and 100 μm or less is used as a heat-resistant inorganic substrate or a growth substrate. 5. In the semiconductor device according to claim 1,
a plurality of photovoltaic areas are formed on a substrate having a layer of insulating material deposited thereon, each of the areas including at least a non-monocrystalline layer having a junction and a current collecting electrode; current collecting means for each of said areas; A semiconductor device characterized in that leading edge regions in each region are electrically connected to each other in a series and/or parallel relationship. 6. Claim 1g The semiconductor device according to claim 1, i@2 or 5, wherein the substrate material is an electrically good conductor.
JP57061765A 1982-04-15 1982-04-15 Semiconductor device Granted JPS58180069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57061765A JPS58180069A (en) 1982-04-15 1982-04-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57061765A JPS58180069A (en) 1982-04-15 1982-04-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58180069A true JPS58180069A (en) 1983-10-21
JPS6338874B2 JPS6338874B2 (en) 1988-08-02

Family

ID=13180541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57061765A Granted JPS58180069A (en) 1982-04-15 1982-04-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58180069A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210883A (en) * 1984-03-05 1985-10-23 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Semiconductor device and method of producing same
JPS6115763U (en) * 1984-07-02 1986-01-29 太陽誘電株式会社 Thin film device using mica molded substrate
US5244509A (en) * 1990-08-09 1993-09-14 Canon Kabushiki Kaisha Substrate having an uneven surface for solar cell and a solar cell provided with said substrate
US5282902A (en) * 1991-05-09 1994-02-01 Canon Kabushiki Kaisha Solar cell provided with a light reflection layer
US5479043A (en) * 1992-04-15 1995-12-26 Picogiga Societe Anonyme Multispectral photovoltaic component
JP2009135473A (en) * 2007-11-09 2009-06-18 Semiconductor Energy Lab Co Ltd Photoelectric converter and manufacturing method thereof
JP2009152577A (en) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof
US7909894B2 (en) 2002-10-04 2011-03-22 Chevron U.S.A. Inc. Systems and methods of improving diesel fuel performance in cold climates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287715A (en) * 2009-06-11 2010-12-24 Mitsubishi Electric Corp Thin film solar cell and method of manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210883A (en) * 1984-03-05 1985-10-23 エナージー・コンバーシヨン・デバイセス・インコーポレーテツド Semiconductor device and method of producing same
JPS6115763U (en) * 1984-07-02 1986-01-29 太陽誘電株式会社 Thin film device using mica molded substrate
US5244509A (en) * 1990-08-09 1993-09-14 Canon Kabushiki Kaisha Substrate having an uneven surface for solar cell and a solar cell provided with said substrate
US5282902A (en) * 1991-05-09 1994-02-01 Canon Kabushiki Kaisha Solar cell provided with a light reflection layer
US5479043A (en) * 1992-04-15 1995-12-26 Picogiga Societe Anonyme Multispectral photovoltaic component
US7909894B2 (en) 2002-10-04 2011-03-22 Chevron U.S.A. Inc. Systems and methods of improving diesel fuel performance in cold climates
JP2009135473A (en) * 2007-11-09 2009-06-18 Semiconductor Energy Lab Co Ltd Photoelectric converter and manufacturing method thereof
US8394655B2 (en) 2007-11-09 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
JP2009152577A (en) * 2007-11-29 2009-07-09 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6338874B2 (en) 1988-08-02

Similar Documents

Publication Publication Date Title
TW304309B (en)
RU2190901C2 (en) Photoelectric foil manufacturing process and foil produced in the process
KR20070119702A (en) Solar cell
JPS58180069A (en) Semiconductor device
US4508609A (en) Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets
JPH04299873A (en) Manufacture of photovoltaic device
JPS62209872A (en) Photoelectric conversion element
JPS6249673A (en) Photovoltaic device
JPS59208789A (en) Solar cell
JPS61141185A (en) Manufacture of photovoltaic element
JPH0864850A (en) Thin film solar battery and fabrication thereof
US4645866A (en) Photovoltaic device and a method of producing the same
JPS5955079A (en) Thin film semiconductor device
JPH04116870A (en) Manufacture of photo detector
JPS58196060A (en) Thin film semiconductor device
JP3278535B2 (en) Solar cell and method of manufacturing the same
FR2524717A1 (en) BATTERY OF AMORPHOUS SILICON PHOTOVOLTAIC BATTERIES
JPH08288529A (en) Photoelectric conversion device and manufacture thereof
JPS6035554A (en) Thin film solar cell
JPS58111379A (en) Thin-film solar cell
JPS59167071A (en) Amorphous silicon solar battery
JPS6441278A (en) Manufacture of thin film photovoltaic element
JPS62137873A (en) Manufacture of photoelectric conversion device
JP2002094093A (en) Solar cell device
JPS5947776A (en) Amorphous silicon solar battery