JPS58175379A - Converting circuit of color television signal - Google Patents

Converting circuit of color television signal

Info

Publication number
JPS58175379A
JPS58175379A JP57056602A JP5660282A JPS58175379A JP S58175379 A JPS58175379 A JP S58175379A JP 57056602 A JP57056602 A JP 57056602A JP 5660282 A JP5660282 A JP 5660282A JP S58175379 A JPS58175379 A JP S58175379A
Authority
JP
Japan
Prior art keywords
signal
color
signals
circuit
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57056602A
Other languages
Japanese (ja)
Inventor
Masahiko Achiha
征彦 阿知葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57056602A priority Critical patent/JPS58175379A/en
Publication of JPS58175379A publication Critical patent/JPS58175379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems

Abstract

PURPOSE:To obtain a high-precision color picture which is free from the quality deterioration of a dynamic picture, by picking up the pictures of both the 1st and 2nd fields at the same time point. CONSTITUTION:When the signal supplied to an input terminal 1 is under the 4th scan, the output of a field memory 2 is equal to a signal of the 3rd scanning line. The output of a subtractor circuit 3 passes through a 1/2 coefficient circuit 4 and a BPF5 and is turned into carrier color signals corresponding to the 3rd and 4th scanning lines. These color signals are demodulated by a color demodulating circuit 10 to obtain two types of color difference signals IQ34. Then the color difference signals IQ2 and IQ3 underwent the linear interpolation and corresponding to the 2nd and 3rd scanning signals are obtained between the signal TQ34 and a color difference signals IQ12 which is delayed by a delay line 12. At the same time, luminance signal Y3, Y4 and Y2 are obtained from the carrier color signals supplied from the BPF5. These obtained signals Y2, Y3, IQ2 and IQ3 are supplied to a time axis compressing circuit 15 to receive the 1/2 compression. This output of compression is switched by a switching circuit 18 and in a field period and then delivered.

Description

【発明の詳細な説明】 本発明はカラーナレビジョン信号処理回路に係9、特に
走査481数を2倍化して高精細な1儂を再生、する侶
号変侠回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color revision signal processing circuit, and more particularly to a color revision signal processing circuit that doubles the number of scans (481) and reproduces a high-definition single image.

現在実用化さnているNTSC方式のカラーテレビジョ
ン信号では2:1インタレース走査姑れており、高精細
な再生画儂t−得るため前フィールドの走査線の信号を
同時に表示するいわゆる走査[2倍化処理を行なうと、
被写体が動いた場合にエツジ部分が2重儂となる画質劣
化が生じる。これを改善するため、被写体の動きの有無
を判断して走査412倍化の信号処理方式を切換える方
式があるが、処理回路が複雑にな9、また若干の画質劣
化が伴なうなどの問題がある。
The NTSC color television signals that are currently in practical use use 2:1 interlaced scanning, and in order to obtain high-definition reproduced images, the so-called scanning system that simultaneously displays the signals of the scanning lines of the previous field is used. When the doubling process is performed,
When the subject moves, the edge portion becomes double-sided, resulting in deterioration in image quality. To improve this, there is a method that switches the signal processing method for scanning at 412 times by determining the presence or absence of movement of the subject, but this has problems such as the processing circuit becomes complex9 and there is some deterioration in image quality. There is.

これを解決する一案として、カメラ側でインタレースの
ない順次走査を行ない、その1フレームを奇数走査1.
4A数走査縁に分けてフィールド画gIAフォーマット
として伝送し、受信側で同一フレーム内の隣接フィール
ドの走査線管同時に表示する走査線2倍化方式が知られ
ている。
One way to solve this problem is to perform sequential scanning without interlace on the camera side, and scan one frame with odd numbers 1.
A scanning line doubling method is known in which the field image is divided into several 4A scanning edges and transmitted as a field image gIA format, and the scanning line tube of adjacent fields within the same frame is simultaneously displayed on the receiving side.

カラーテレビジョン信号の場合J受信側で正確な輝度1
色信号の分tIIA1j−行なわないと、両信号の混合
によル、ドツトクロール、偽色信号等が発生し、走査線
2倍化処理による画質向上効果を相殺してしまう。
In case of color television signal, accurate brightness 1 at J receiving side
If the color signal tIIA1j- is not performed, the mixing of both signals will generate rolls, dot crawls, false color signals, etc., which will offset the image quality improvement effect of the scanning line doubling process.

前記カメラ側で順次走査する走査@2倍化をカラーテレ
ビジョン信号に適用した場合、受信側で従来実用化され
ている簡易な輝度9色消号分離回M’に用いたのでは上
述し九通りぜっかくの画質向上効果が相殺されてしまう
。一方、隣接フレーム間の差信号によシ輝度信号と色信
号を分離すれば理想的な輝度1色分離が行なわれるが、
被写体が動いたときには劣化が生じる。このため動き適
応型の輝度2色分離処理が必要となり、回路が複雑にな
るとともに、若干の画質劣化が残る。
When scanning @ doubling, which is performed sequentially on the camera side, is applied to a color television signal, the above-mentioned The effect of improving image quality will be canceled out. On the other hand, if the luminance signal and chrominance signal are separated using the difference signal between adjacent frames, ideal luminance and one color separation can be performed.
Deterioration occurs when the subject moves. Therefore, motion-adaptive luminance two-color separation processing is required, which complicates the circuit and leaves some image quality deterioration.

本発明の目的は上記問題点を解決し、wJ−儂の画質劣
化のない高精細のカラー1iili儂を得る簡易な構成
の信号処理回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a signal processing circuit with a simple configuration that provides high-definition color 1IIII images without deterioration in image quality.

上記目的を達成するため、本発明の信号処理回路でに、
NTSC方式カラーテレビジョン信号倉入力とし、フレ
ームを構成している第1フイールドと第2フイールドの
走査線(搬送色信号の極性が互いに反転している画面上
で隣接した走査M)の間の差信号から両7il:isに
対応する輝度信号と色信号とを分離し、同一7レーム内
の両フィールドの上記分離され良信号を利用しで、NT
SCカ式の1フレ一ム周期にわたって補間走査線の信号
を作成し、その時間軸を1/2に圧縮して、水平走置周
期がNTSC方式のはy1/2となった走査線数が2倍
化さnたカラーテレビジョン信号に変換することを特徴
とする。すなわち、カメラ典゛ でインタレースのない
順次走査方式で撮像され次カラーテレビジョン信号を、
奇数走査線と偶数走査線とに分けて第1.第2フイール
ドを構成し次インタレースさnたテレビジョン信号に変
換し、現行テレビジョン放送規格であるNTSC方式に
合致した信号フォーマットに変換する。このように処理
されfcNT8C信号では、フレームを構成している第
1フイールドと第2フイールドの画像は同一時刻に撮像
されたiii+*であシ、フィールド間にわ念る処理を
行なっても被写体の動きにともなう特性の変化は生じな
い。従って、このNTSC信号全上述した変換回路に入
力すれば、従来方式の問題点が解決された高品質のカラ
ーテレビジョン信号を得ることができる。
In order to achieve the above object, in the signal processing circuit of the present invention,
The difference between the scanning lines of the first field and the second field (adjacent scanning lines M on the screen in which the polarities of the carrier color signals are reversed to each other) of the NTSC system color television signal input and forming the frame. NT
An interpolated scanning line signal is created over one frame period in the SC format, and its time axis is compressed to 1/2, so that the number of scanning lines whose horizontal scanning period is y1/2 in the NTSC format is It is characterized by converting into a doubled color television signal. That is, the color television signal is captured by a camera using a progressive scanning method without interlacing, and the next color television signal is
The first scan line is divided into odd scan lines and even scan lines. The second field is constructed and then converted into an interlaced television signal, and converted into a signal format that conforms to the NTSC system, which is the current television broadcasting standard. In the fcNT8C signal processed in this way, the images of the first field and the second field constituting the frame are iii+* taken at the same time, and even if careful processing is performed between the fields, the image of the subject will be No changes in characteristics occur due to movement. Therefore, by inputting all of this NTSC signal to the above-mentioned conversion circuit, it is possible to obtain a high quality color television signal in which the problems of the conventional system are solved.

以下、本発明の一実施例を図を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の信号変換回路の基本動作1FrI!5
2明するタイムチャートである。同図において、■は撮
像、■は伝送、■は受像における7−レーム周期にわた
るタイムチャートを示す。撮偉時には、525本の走査
巌ハインタレース走査すること、なく、1/30秒のフ
レーム周期にわ九って、画像の上から下へIIMii次
走食して装置。得られたビデオ信号は、既存テレビジョ
イ愼器とのコンノ(ティビリティ−を保つため、奇数走
査線と偶数走査線に分けられ、第1図[有]に示すよう
にイレーム単位にあたかもインタレース走査され良信号
フォーマントに変換され仝。この信号を従来のテレビジ
ョン受儂機に表示させ友場合、1/30秒毎に撮像され
た同一画像がフィールド毎に2画表示される。
FIG. 1 shows the basic operation 1FrI! of the signal conversion circuit of the present invention. 5
This is a time chart that shows the results. In the figure, ■ indicates a time chart covering a 7-frame period in imaging, ■ in transmission, and ■ in image reception. When photographing, the device scans the image from top to bottom at a frame period of 1/30 seconds without interlacing 525 lines. The obtained video signal is divided into odd-numbered scanning lines and even-numbered scanning lines in order to maintain consistency with existing TV joy equipment, and is interlaced in units of frames as shown in Figure 1. When this signal is scanned and converted into a good signal form and displayed on a conventional television receiver, two identical images taken every 1/30 seconds are displayed for each field.

NTSC方式のカラーテレビジョン信号では、色副搬送
波信号の極性が水平走査周期H毎に反転している。第1
図■において、第1走査−と次フイ、−ルドの第2走査
線とは263Hだけ離れているため搬送色信号の慣性は
反転している。従って受像側でこQ両足31.線間の差
を算出すると、この差信号には搬送色1西号成分と輝度
信号の垂直方向の変化成−分が含まnる。この差信号中
の搬送色信号成分t−帯域通過フィルタ(BPF)で抽
出すれば、色信号成分をn度よ<NTSC信号から分離
することができる。
In the NTSC color television signal, the polarity of the color subcarrier signal is inverted every horizontal scanning period H. 1st
In Figure 3, the first scanning line and the second scanning line of the next field are separated by 263H, so the inertia of the conveyed color signal is reversed. Therefore, the lever on the image receiving side is Q both legs 31. When the difference between the lines is calculated, this difference signal includes a carrier color component and a vertical variation component of the luminance signal. By extracting the carrier color signal component t in this difference signal using a bandpass filter (BPF), the color signal component can be separated from the NTSC signal by n degrees.

このようにして分離し次輝度信号と色信号とを時間軸圧
縮回路て1/2に時間圧縮すれば、NTSC信号の1フ
イ一ルド周期(1/60秒)に525本の走査線を含ん
だ高精細テレビジョン信号フォーマットを得ることがで
きる。第2フイールドについても、5g17レームと同
じ分離され次例えば第1.第2走査線輝度信号と色信号
を用いて、第2フイールドの高′n細テレビジョン信号
會作成する。変換された高精細テレビジョン信号が第1
図■に示すように、インタノースしない順次走査方式の
場合には、NT8C信号の第2フイールドに第1フイー
ルドと同じ信号に変換され、フレーム数が60枚/秒と
倍増される。他方、インタレースさnた高精細テレビジ
ョンに変換する場合には、第2フイールドでは第1フイ
ールドの中間を走査するため、W4接する上下の走査−
から補間して新しい走査線の信号を求める。
If the luminance signal and chrominance signal are separated in this way and then time-compressed to 1/2 using a time-base compression circuit, 525 scanning lines will be included in one field period (1/60 second) of the NTSC signal. You can get high definition television signal format. The second field is also separated in the same way as the 5g17 frame, and then, for example, the first field. The second scanning line luminance signal and color signal are used to create a second field high-n fine television signal. Converted high-definition television signals are the first
As shown in FIG. 3, in the case of the non-internorsing progressive scanning method, the second field of the NT8C signal is converted into the same signal as the first field, and the number of frames is doubled to 60 frames/second. On the other hand, when converting to interlaced high-definition television, the second field scans the middle of the first field, so the upper and lower scans adjacent to W4 -
Find a new scanning line signal by interpolating from .

第2図はインタレースのない高精細テレビジョン信号に
変換する本発明の変換回路の一実施fllt−示す。同
図において、入力端子1には第1図の信号■に不すよう
なインタレース走査方式に変換されたカラーテレビジョ
ン信号が入力される。入力信号U263Hの容t’を持
つ友フィールド遅延メモリ2にも入力され、フィールド
遅延出力との差が減算回w!13で算出される。入力端
子に入力さnた信号が第1図の第4走査のとき、フィー
ルドメモリの出力は第3走査線の信号である。減算回路
3の出力は1/2係数回路4、帯域通過フィルタ5を経
由することによシ、第3.第4走査線に対応した搬送色
信号(副搬送波信号の極性r′i第4走査線と同じ)と
なる。これt色復n回路lOで復調することによシ、2
種の色差信号IQ34が得ら、れる。一方、BrF3の
出pである油田さnた搬送色信号を遅延回路6.7(遅
延時間はBrF3の演算遅延時間に等しい)全経由した
入力信号すなわち第3.第4走査線の複合カラーテレビ
ジョン信号−1と加(減)算回路8.9で加算、減算す
れば、第3.第4走査線に対応した輝度信号Y3゜Y4
が得らnる。
FIG. 2 shows one implementation of the conversion circuit of the present invention for converting to a non-interlaced high definition television signal. In the figure, a color television signal converted to an interlaced scanning system similar to the signal (2) in FIG. 1 is input to an input terminal 1. The input signal U263H is also input to the friend field delay memory 2 having a capacity t', and the difference with the field delay output is subtracted times w! 13. When the signal input to the input terminal is the fourth scan in FIG. 1, the output of the field memory is the signal of the third scan line. The output of the subtraction circuit 3 is passed through a 1/2 coefficient circuit 4 and a bandpass filter 5, and is then output to the third . The carrier color signal corresponds to the fourth scanning line (the polarity r'i of the subcarrier signal is the same as that of the fourth scanning line). By demodulating this with t color demodulation circuit IO, 2
A seed color difference signal IQ34 is obtained. On the other hand, the input signal, that is, the color signal conveyed from the oil field, which is the output of BrF3, is passed through the delay circuit 6.7 (the delay time is equal to the calculation delay time of BrF3), that is, the third. If the addition (subtraction) circuit 8.9 adds and subtracts the composite color television signal -1 of the fourth scanning line, the third. Luminance signal Y3°Y4 corresponding to the fourth scanning line
is obtained.

色復調回路lOで得られた2種の色差信号IQ34は第
3.第4走査線の色差信号の平均値となっておシ、その
重心ri第3.第4走査線の中間の位置となる。従って
この信号な水平走査周期(H)の遅延時間を有する遅延
線12で遅aきせた色差信号IQ12(第1.第2走査
線の色差信号の平均値)との関で係数積和回路13.1
4により距離の比に逆比例した荷重をかけることにより
、第2、第3走査線に対応し直線補間された色差信号I
Q2.IQ3に得ることができる。すなわちIQ2=(
3XIQ12+IQ34)/4IQ3=(IQI2+3
XIQ34)/4第4走査線の輝度信号Y4tLH遅延
回路11を経由させると第1図■に示すように第2走査
線の輝度信号Y2が得らnる。
The two types of color difference signals IQ34 obtained by the color demodulation circuit IO are converted into the third color difference signal IQ34. The average value of the color difference signals of the fourth scanning line is the average value of the color difference signal of the fourth scanning line, and its center of gravity is the third. This is the middle position of the fourth scanning line. Therefore, in relation to the color difference signal IQ12 (average value of the color difference signals of the first and second scanning lines) delayed by the delay line 12 having a delay time of the horizontal scanning period (H), .1
By applying a load inversely proportional to the distance ratio by 4, the linearly interpolated color difference signal I corresponding to the second and third scanning lines is obtained.
Q2. You can get an IQ of 3. That is, IQ2=(
3XIQ12+IQ34)/4IQ3=(IQI2+3
XIQ34)/4 Fourth scanning line luminance signal Y4tLH When passed through the delay circuit 11, a second scanning line luminance signal Y2 is obtained as shown in FIG.

侍られた第2.第3走査−の輝度信号1色差信号Y2.
Y3.IQ2.IQ3を時間軸圧縮回路15に入力し、
その時間軸を1/2に圧縮して、走査線単位に多重化し
て順次信号Y、IQK変換する。これをマl−1)クス
回路16で3原色信号R1G、BK変換し、525H(
7)容at持つ7V−4メモリ17で遅延させ7t3m
色信号と1NT8c信号のフィールド周期単位に切換回
路18により切換えることにニジ、出力熾子19には第
1図Cに示した走査線数525本、)嶋次走査、60フ
レーム/秒の3原色f6号が元のNT8C信号の17ノ
一ム周期にわたって2回出力される。−第3図は第2図
と同じ18号変換出力t−侍る他の実施例をボす。同図
において、第2図と同−査号を付した回路は同じ機能會
釆すものとする。
The second person attended. 3rd scan - luminance signal 1 color difference signal Y2.
Y3. IQ2. Input IQ3 to the time axis compression circuit 15,
The time axis is compressed to 1/2, multiplexed in units of scanning lines, and signals Y and IQK are sequentially converted. This is converted into three primary color signals R1G and BK by the Marx circuit 16, and 525H (
7) Delayed with 7V-4 memory 17 with capacity 7t3m
The color signal and the 1NT8c signal are switched in field period units by the switching circuit 18, and the output screen 19 has 525 scanning lines as shown in Figure 1C, 3 primary colors at 60 frames/sec. The f6 signal is output twice over the 17-nom period of the original NT8C signal. - FIG. 3 shows another embodiment with the same No. 18 conversion output t as in FIG. 2. In this figure, circuits with the same symbols as those in FIG. 2 have the same functions.

第2図の構成では、263Hの容量tもつ複合カラーテ
レビジョン信号を記憶するフィールドメモリ2と3原色
信gを525H記憶するフレームメ、モリ17が必費で
あった。第3図の構成はこのメモリの所要tを減らすも
ので、複合カラーテレビジョン信号を263H記憶する
フィールドメモリ2および20によりlフレーム周期に
わたる所望の信号変換全行なう。以下にその動作を述べ
る。
The configuration shown in FIG. 2 requires a field memory 2 for storing a composite color television signal having a capacity t of 263H and a frame memory 17 for storing 525H of three primary color signals g. The arrangement of FIG. 3 reduces this memory requirement, t, by providing field memories 2 and 20, which store 263H of composite color television signals, to perform all desired signal conversions over one frame period. The operation will be described below.

、  第3図において、容量263Hのフィールドメモ
リ20は2625H,と0.5Hの遅延容量をもつ2ケ
のメモリ201と202に分割されており、これとフィ
ールドメモリ2とにより、入力信号とその263H遅延
し九信号および七nらに対し丁[1フイ一ルド周期(2
6Z5H)遅延した信号とを用意する。これらをフィー
ルド周期毎に切換スイッチ21.22により切換えるこ
とにニジ、2フイ一ルド周期にわ九って、同一フレーム
内の263H111れ次走査線対の信号が得らfる。従
って、第2図と同じ回路構成によシ、加電回路8゜9、
色復調回路10の出力として第3.第4走査繍に対応す
る輝度信号Y3.Y4及び2種の色差信号IQ34が得
られる。また、第2図と同じ構成のIHM延回路11.
12、係数積和回j1813゜14、時間軸圧縮回路1
5、マトリクス回路16によp出力端子19には時間軸
が1/2に圧縮され、走査線数が倍増された525本、
順次走査、60フレ一ム/秒のテレビジョン信号が得ら
れる。
In FIG. 3, the field memory 20 with a capacity of 263H is divided into two memories 201 and 202 with a delay capacity of 2625H and 0.5H. For the delayed nine signals and seven n et al.
6Z5H) Prepare the delayed signal. By switching these with the changeover switches 21 and 22 every field period, the signals of the next scanning line pair 263H111 within the same frame are obtained every two field periods. Therefore, with the same circuit configuration as in Fig. 2, the power supply circuit 8°9,
As the output of the color demodulation circuit 10, the third. Luminance signal Y3 corresponding to the fourth scanning embroidery. Y4 and two types of color difference signals IQ34 are obtained. In addition, an IHM extension circuit 11 having the same configuration as in FIG.
12, Coefficient product-sum circuit j1813゜14, Time axis compression circuit 1
5. The time axis is compressed to 1/2 by the matrix circuit 16 to the p output terminal 19, and the number of scanning lines is doubled to 525.
A progressively scanned, 60 frames/second television signal is obtained.

なお第2図、第3図において、色復調回路lOの出力I
Q34’i第3.第4走査線の2橿の色差信号IQ3.
IQ4とすることにより、lH遅延回路12,13、係
数積和回路13,14が省略でき、回路構成を簡易化で
きる。
In addition, in FIGS. 2 and 3, the output I of the color demodulation circuit lO
Q34'i 3rd. 2nd line color difference signal IQ3 of the fourth scanning line.
By using IQ4, the lH delay circuits 12 and 13 and the coefficient product-sum circuits 13 and 14 can be omitted, and the circuit configuration can be simplified.

第2.第3図の*施例では、60フレ一ム/秒の順次走
査方式の信号にf侠する場合を述べたが、第2フイール
ドにおいては例えば変換されたRlG、B信号の走査縁
間の平均値をNTSC信号の水平走査周期Hの174た
け遅延させて出力するようにすれは、インタレース走査
方式の1049本、インタレース走査、60フイ一ルド
/秒、30フレ一ム/秒のテレビジョン信号を得ること
ができる。この場合、第1フイールドri26175H
1第2フイールドは26225Hの時間となp1垂直同
期信号もこのようにH/4たけ遅延調整させることによ
シ、モニタ上では正しくインタレースさハた1iII像
を表示することができる。また、変せば、第1.第2の
フィールド同期が等しいインタレースされた信号′t−
得ることができる。この変軸の調整を行なえは、走査線
数n本のインタレースされ九テレビジョン信号に変換可
能である。
Second. In the example shown in Fig. 3, we have described the case where the signal is scanned in a progressive scanning mode at 60 frames per second.In the second field, for example, the average between the scanning edges of the converted RlG and To output the value with a delay of 174 times the horizontal scanning period H of the NTSC signal, it is possible to output 1049 lines of interlaced scanning, 60 fields/second, 30 frames/second of interlaced scanning television. I can get a signal. In this case, the first field ri26175H
By adjusting the delay of the p1 vertical synchronizing signal by H/4 in this manner, the interlaced 1iII image can be displayed correctly on the monitor. Also, if you change it, 1. Interlaced signal 't- with equal second field synchronization
Obtainable. By adjusting this variable axis, it is possible to convert the signal into an interlaced television signal with n scanning lines.

本発明によれば、同一時刻に撮儂さnた同一フレームの
走査線の信号を利用して、フィールド間YC分1IIt
−行ない、かつ走査線補rlI11t−行なっているた
め、静止1儂のみならず、動画像においても動きに共な
う画質劣化のない高ffaのカラー1儂が得られる。ま
た、実施例にて舒述したように、動きの判定とか動きに
よる処理モードの切換等の複雑な処理回路が不要となう
、従来の静止画専用の処理回路と同じ規模で変換回路が
実現でき、変換回路の低価格化に大きな効果を発揮でき
る。
According to the present invention, by using the signals of the scanning lines of the same frame shot at the same time,
- and scanning line correction rlI11t - are performed, so that not only a still image but also a moving image can be obtained with a high ffa color image without image quality deterioration due to movement. In addition, as mentioned in the embodiment, a conversion circuit can be realized on the same scale as a conventional still image processing circuit, which eliminates the need for complex processing circuits such as motion determination and processing mode switching based on motion. This can be very effective in reducing the cost of conversion circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に本発明の詳細な説明するタイムチャート図、第
2.第3図はいずれも本発明の信号変換回路の実施例の
構成図を示す。
FIG. 1 is a time chart diagram explaining the present invention in detail, and FIG. FIG. 3 each shows a configuration diagram of an embodiment of the signal conversion circuit of the present invention.

Claims (1)

【特許請求の範囲】[Claims] NT8Cカラーテレビジョン信号の1フレームの信号を
利用して、表示画面上で隣接し九走査締すなわち同一フ
レーム内の隣接フィールドの走査縁の差信号から内矩査
線に対応する輝度信号と搬送色信号とを分離し、時間圧
縮回路にて時間軸tはy1/2に圧縮し、内矩f#の信
号1f−、i!f41率位に順次信号に変換してNTS
C信号の1フレ一ム周期にわたって走査線数が2倍のテ
レビジョン信号に変換することを特徴とするカラーテレ
ビジョン信号変換回路。
Using the signal of one frame of NT8C color television signal, the luminance signal and carrier color corresponding to the inner rectangular scanning line are determined from the difference signal of the scanning edges of adjacent fields in the same frame from nine adjacent scanning lines on the display screen. The time axis t is compressed to y1/2 by a time compression circuit, and the signals 1f-, i! of the inner rectangle f# are separated from the signals 1f-, i! Convert to f41 signal sequentially and convert to NTS
1. A color television signal conversion circuit characterized in that the circuit converts a C signal into a television signal having twice the number of scanning lines over one frame period.
JP57056602A 1982-04-07 1982-04-07 Converting circuit of color television signal Pending JPS58175379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57056602A JPS58175379A (en) 1982-04-07 1982-04-07 Converting circuit of color television signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57056602A JPS58175379A (en) 1982-04-07 1982-04-07 Converting circuit of color television signal

Publications (1)

Publication Number Publication Date
JPS58175379A true JPS58175379A (en) 1983-10-14

Family

ID=13031763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57056602A Pending JPS58175379A (en) 1982-04-07 1982-04-07 Converting circuit of color television signal

Country Status (1)

Country Link
JP (1) JPS58175379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745039U (en) * 1992-03-26 1995-12-12 株式会社日立製作所 Superimposing display device for video signals and character and graphic signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745039U (en) * 1992-03-26 1995-12-12 株式会社日立製作所 Superimposing display device for video signals and character and graphic signals

Similar Documents

Publication Publication Date Title
KR910000548B1 (en) Progressive scan television system employing vertical detail
US5475438A (en) Five field motion detector for a TV scan line doubler
US4530004A (en) Color television signal processing circuit
JP3953561B2 (en) Image signal format conversion signal processing method and circuit
KR910006293B1 (en) Tv receiver
JPS62135081A (en) Contour correcting circuit
US5001562A (en) Scanning line converting system for displaying a high definition television system video signal on a TV receiver
JPH043151B2 (en)
JP2889276B2 (en) Video signal format converter
JP2005192230A (en) Display device
KR100532021B1 (en) Method and system for single-chip integration of 3D Y/C comb filter and interlace-to-progressive converter
JPH0346479A (en) Television signal converter
JPS58175379A (en) Converting circuit of color television signal
JPH0722400B2 (en) Motion compensation method
JPH02224488A (en) Picture transmission system
KR100222971B1 (en) Apparatus for high definition image scanner using 3 sensor
US4616251A (en) Progressive scan television system employing a comb filter
JP2735621B2 (en) Television system converter
JP2938092B2 (en) High-definition television signal processor
JPH03179890A (en) Television receiver
JPH0693774B2 (en) How to reduce the number of scanning lines
JPH0225600B2 (en)
JP3603393B2 (en) Television circuit
JPS63171091A (en) Video signal processing circuit
JPS63171086A (en) Television signal processing circuit