JPS58174906A - Method for preventing surface reflection of optical element - Google Patents

Method for preventing surface reflection of optical element

Info

Publication number
JPS58174906A
JPS58174906A JP5754182A JP5754182A JPS58174906A JP S58174906 A JPS58174906 A JP S58174906A JP 5754182 A JP5754182 A JP 5754182A JP 5754182 A JP5754182 A JP 5754182A JP S58174906 A JPS58174906 A JP S58174906A
Authority
JP
Japan
Prior art keywords
grating
incident
light
optical element
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5754182A
Other languages
Japanese (ja)
Other versions
JPH0370201B2 (en
Inventor
Kiyoshi Yokomori
横森 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5754182A priority Critical patent/JPS58174906A/en
Publication of JPS58174906A publication Critical patent/JPS58174906A/en
Publication of JPH0370201B2 publication Critical patent/JPH0370201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To eliminate the surface reflection of an optical element virtually by providing a diffraction grating of which the lattice space satisfies the specific relation with the wavelength of incident light, an incident angle, the refractive index of the medium on the incident side of the grating and the refractive index of the medium of the diffraction grating to the incident and exit face of light of an optical element such as a lens or the like. CONSTITUTION:A diffraction grating 2 is formed on, for example, the incident and exit face for light of an optical element 1 (shown by an arrow) of a lens, a prism or the like in such a way that the lattice space D satisfies the equation (lambda is the wavelength of the incident light to the optical element, thetai is the incident angle of light to the element 1, nO is the refractive index of the medium on the incident side of the grating, ng is the refractive index of the medium of the diffraction grating). The grating 2 is formed by forming a triangular diffraction grating wherein the depth (h) of the grating is roughly lambda/4 by coating or vapor deposition of a light transmittable resin or transmittable inorg. material then cutting the same with a diamond cutter or forming the grating by a holographic technique. The surface reflection of the element 1 is thus eliminated virtually.

Description

【発明の詳細な説明】 本発明は、回折格子間隔用した、光学素子υ軒現な表面
反射防止法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing surface reflection of optical elements using diffraction grating spacing.

従来、レンズ、プリズム、ビームスプリッタ等々O光学
素子の貴重反射つ防止りためVCは、暎噛または二層つ
透明薄膜tそつ懺面に蒸着することにより、反射防止膜
を形成している。ガえば二層機では、各112)屈折率
をnl、れ2、そり厚みをd、、d2とすれば、光がζ
y)薄膜に垂直に入射するとき −2 n011n2− n、 ng          ・・
・・・・11)λ n  d =fi211 d2= 。
Conventionally, in order to prevent valuable reflections from optical elements such as lenses, prisms, beam splitters, etc., VC has been formed by coating or depositing a two-layer transparent thin film on the surface thereof. For example, in a two-layer machine, if the refractive index is nl, 2, and the warp thickness is d, d2, then the light is ζ
y) When incident perpendicularly to the thin film -2 n011n2- n, ng...
...11) λ n d = fi211 d2= .

11.            ・・・・・・′2)た
だし no:光学素子に入射する@D媒質、例えは空気
り屈折率 ng:光学素子の屈折率λ:光学素子に入射
する光り波長 7)関係を満すようにすれば反射率を殆んど岑にするこ
とが出来る。
11.・・・・・・'2) However, no: @D medium incident on the optical element, for example, air refractive index ng: refractive index of the optical element λ: wavelength of light incident on the optical element 7) so as to satisfy the relationship By doing so, the reflectance can be reduced to almost nothing.

しかし、こO屈折−nl、n27)条件を完全に満す材
料けなく、喚厚d1、d27)コントロールも技術的に
かなり困難である。その上、普通は入射大は一色光でな
く、入射角が垂直からずれることが多いつで完全な反射
防止効果を望むことは出来ない。現状では、飼えば入射
光り波長幅が2tlUnm、入射角質つ幅20の場合、
反射率121以下にすることはかなり困離である。
However, it is technically quite difficult to control the thickness d1, d27) because there is no material that completely satisfies the refraction conditions (nl, n27). Moreover, the incident light is usually not monochromatic, and the angle of incidence often deviates from the vertical, making it impossible to expect a perfect antireflection effect. Currently, if the incident light wavelength width is 2tlUnm and the incident horny wavelength width is 20,
It is quite difficult to achieve a reflectance of 121 or less.

さらに、光学素子の屈折率、入射角等に応じてそυつど
反射防しヒ@D設計・作成全行なわなければならない等
、多くの間隔を含むもつであったO 本発明け、透過製の回折格子り格子間隔カニ小となり、
0次回新党しか存在しないようになれば、0次光以外つ
方向へり光の伝播がなくなり、結局反射光も消滅するこ
とを利用し、波長、入射角等にある程健7)幅のある場
合でも有効に作用する反射防止法を提供するもつであ2
・。
Furthermore, depending on the refractive index of the optical element, the angle of incidence, etc., anti-reflection must be designed and created in each case, and the present invention involves many gaps. The grating spacing of the diffraction grating is small,
If only the 0th-order new party exists, there will be no propagation of light in any direction other than the 0th-order light, and the reflected light will eventually disappear.Using this fact, we can use Motsutsu 2 provides an effective anti-reflection method
・.

以下1図面を参照して詳細に説明する。A detailed explanation will be given below with reference to one drawing.

本発明O方法り原!aは次υようである。嬉1図は、回
折格子O拡大断lを示し、媒質17)屈折率をn□、レ
リーフ謔υ回折格子ケ形成してあル11’j![n D
屈折率fngとし、4媒質■から媒質nへ波梃λD光が
入射角θl で入射するものとする。こつとき1回折格
子で(ロ)折され、媒質8中へ進入する回折光′f)次
数tl−m1出射角健を0mとすれば次式が成立つ (ngk)2−(n、)ksinθi+m!#)2= 
(ngkeO8θ、、l  ・・・・−・13)ただし
、k=2“/λ D:回折格子間隔ところで、格子間隔
りを波長λに比べて短かくすると上式はm=o  Oo
次次回先光対してD本成立し、m=±1、±2・・・等
の高次回折光に対しては成立しなくなる。こD状態にな
ると、入射光DエネルギーViO次光に集中し、他の高
次回折光は存在しなくなる。
This invention O method original! a is as follows υ. Figure 1 shows an enlarged cross section of the diffraction grating, the medium 17) has a refractive index of n□, and the relief of the diffraction grating is 11'j! [nD
It is assumed that the refractive index is fng, and the wave λD light is incident from the four mediums (2) to the medium (n) at an incident angle θl. When the diffraction light is (b) broken by one diffraction grating and enters the medium 8, the following formula holds (ngk)2-(n,)ksinθi+m ! #)2=
(ngkeO8θ,,l...-13) However, k=2''/λ D: Diffraction grating spacing By the way, if the grating spacing is made shorter than the wavelength λ, the above equation becomes m=o Oo
D holds true for the next-next-order light, and does not hold true for higher-order diffracted light such as m=±1, ±2, . . . . When the D state is reached, the D energy of the incident light is concentrated on the ViO-order light, and other higher-order diffraction light ceases to exist.

上式を変形して m=±1、±2・・・p高次(ロ)新
党が存在しなくなる条?!l−を求めると次式となる。
Modifying the above formula, m = ±1, ±2... p High order (b) Clause where the new party ceases to exist? ! The following equation is obtained when calculating l-.

D〈λ/ (no sin eH+ ng )   −
!4)第2図は上記O回折格子による反射防止を行った
光学素子7)1例を示す概念図で、立方体型ビームスプ
リッタ1つ光つ入射面に形成した三―形伏しIJ−7f
liD直線回折格子2を誇張して示しである。
D〈λ/ (no sin eH+ ng) −
! 4) Figure 2 is a conceptual diagram showing an example of an optical element 7) in which reflection is prevented by the above-mentioned O diffraction grating, in which a three-shaped beam splitter is formed on the incident surface of the three-shaped IJ-7f.
The LiD linear diffraction grating 2 is shown in an exaggerated manner.

回折格子7)深さをhとし、こ′7)深さhを変化さぜ
たときD反射率変化を理論的に算出した結果を第3図に
示す。ただし、ビームスプリッタD屈折率を1.52と
し、これに貼着された回折m子v媒質v屈折liIcn
gを1.5.空気O屈折率n0tl、入射光波長λを0
.550μm、格子間隔りを05λとし、入射光は格子
に平行な直@偏光と1.7た1これによれば、格子v9
さがほぼ偽で反射*elll程蜜に抑えることが出来る
The diffraction grating 7) has a depth of h, and FIG. 3 shows the results of theoretically calculating the D reflectance change when the depth h is changed. However, the refractive index of the beam splitter D is 1.52, and the diffraction m-ton v medium v refraction liIcn attached to this
g to 1.5. Air O refractive index n0tl, incident light wavelength λ is 0
.. 550 μm, and the grating spacing is 05λ, and the incident light is directly polarized light parallel to the grating.According to this, the grating v9
It's almost false and the reflection *ell can be suppressed to a very low level.

第2図に示すような三角形状回折格子は光の入射面に透
光註慟脂あるいは透光上無機材′Prを塗布あるいけ蒸
着し、周知りようにルーリングエンジンによってグイモ
ンドカッターによって切ることが出来る。第1図に示す
ような正弦波状レリーフ型回折格子は、ホトレジスト等
り感光材料を塗布し、2つD千向波O干渉光で1!元・
現像するという公知Dホログラフインク技術によって容
易に作成しつる。第4図はそっためD光学配置の1例を
示し、光学素子ll上VC塗布されたフォトレジスト等
υ感光材料12に図示しないレーザからO平行光13を
ビームスプリッタ14によって2つ′f)平行光来15
.16に分割し、それぞれ反射鏡17.18で反射さぜ
、その干渉光を入射させる。いま、2つD平行光来が感
光材料12に入射する角度をそれぞれφo1φ几 とす
れば、感光材料12には次式で示される間隔りの干渉縞
が生ずる。
A triangular diffraction grating as shown in Fig. 2 is produced by coating or vapor-depositing a transparent resin or an inorganic material 'Pr' on the light incident surface, and then cutting it with a Guimond cutter using a ruling engine as is well known. I can do it. A sinusoidal relief type diffraction grating as shown in Fig. 1 is made by coating a photosensitive material such as photoresist, and transmitting 2 D, 1,000,000 waves and 1! Former
It can be easily created using the known D holographic ink technology. FIG. 4 shows an example of the D optical arrangement, in which an O-parallel beam 13 from a laser (not shown) is sent to a photosensitive material 12 such as a photoresist coated with VC on an optical element ll by a beam splitter 14. Korai 15
.. The beam is divided into 16 beams, each reflected by a reflecting mirror 17 and 18, and the interference light is made incident. Now, if the angles at which two D parallel beams are incident on the photosensitive material 12 are respectively φo1φ, interference fringes are generated on the photosensitive material 12 at intervals shown by the following equation.

D=λ0 / (II l nφo−4−stnφkL
)  =  (5)ただし λ0:記録する光り波長 このDが光学素子11’7)筺用粂件つ範囲内で14)
式の条件を満すようにλ0、φ0、φRを選んでやれば
よい。
D=λ0/(II l nφo−4−stnφkL
) = (5) However, λ0: Recording wavelength of light D is the optical element 11'7) Within the range of the housing 14)
λ0, φ0, and φR may be selected so as to satisfy the conditions of the equation.

本発明υ反射防止効果を従来02層つ反射防止膜と比較
して与る。第5図は入射光り波長つ変化に対する反射率
り変化を示したもので、実線Vitm折格子V#さh=
0.24μm、格子間隔D=9.25μm、格子り媒質
り屈折率i1g= 1.50とした場合りもつであり、
破線は2層反射防止映で’:t)L2>式に従い中心波
長λ= 0.55 (Jμm1J” 1.39  n2
= 1.714、d1= 93.9 n m 。
The antireflection effect of the present invention is compared to that of the conventional antireflection film with two layers. Figure 5 shows the change in reflectance with respect to the change in the wavelength of incident light, and the solid line Vitm grid V # h =
0.24 μm, lattice spacing D = 9.25 μm, and the refractive index of the lattice medium i1g = 1.50.
The broken line is a two-layer anti-reflection film, and the center wavelength λ = 0.55 (Jμm1J” 1.39 n2 according to the formula ':t)L2>
= 1.714, d1 = 93.9 nm.

dε80.2 fl mとしである。共に光学素子υ屈
折率は152.入射角ViOである。2層膜でti04
〜0.8μm 7)[!に範囲で反射率け0チから5−
と大きく変化しているが1本発明の回折格子を用いた場
合は同じ波長範囲で0.4%〜0,9優と波長変化によ
る反射率り変動が殆んど見られない0 第6図Vi本発明の反射防止(ロ)折格子へり入射内1
01つ変化に伴う反射率り変動を示す。
dε80.2 fl m. The refractive index of both optical elements υ is 152. The angle of incidence is ViO. ti04 with double layer film
~0.8μm 7) [! Reflectance ranges from 0 to 5-
However, when the diffraction grating of the present invention is used, the reflectance changes in the same wavelength range from 0.4% to 0.9%, with almost no change in reflectance due to wavelength change. Vi anti-reflection of the present invention (b) inside the incident side of the folded grating edge 1
01 shows the change in reflectance due to a change in reflectance.

格子の深さh = 0.3λ及びh=04λD2つつ場
合を示し、格子間隔D = 0.5λ、格子礫質り屈折
率は1.50である。入射角変化が30にも及ぶ範囲で
反射率は高々1チに抑えることが出来る。
The case is shown in which the grating depths h = 0.3λ and h = 04λD2, the grating spacing D = 0.5λ, and the grating grain refractive index is 1.50. In a range where the angle of incidence changes as much as 30 degrees, the reflectance can be suppressed to at most 1 inch.

上記の説明°では回折格子は直線格子としたが、使用目
的によって同心円烙子衿、aつ形状7)格子でもよく、
光学素子からD光O出射rjnVr、ついても四様り効
*が生ずることは云う迄もない。
In the above explanation, the diffraction grating was a linear grating, but depending on the purpose of use, it may be a concentric circular grating or a square grating.
Needless to say, a four-way effect* occurs even when the D light O is emitted rjnVr from the optical element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明O反射防止法O原哩説明図、第2図はビ
ームスプリッタに応用した嚇17)概念図、槙3図は格
子つ深さと反射率り関係を示す曲線図、@4図はホログ
ラム′D記録党学系つ配置図、第5図、第6図は入射党
波兼及び入射角7)変化に伴う反射率り変動を示す曲桝
図である。 l:ビームスプリッタ 2:回折格子 ll:光学素子 12:感光材料 13:入射ビーム 
14:ビームスブリツタ 17.18:反射鏡 特詐出験人 法式会社 リコー 格r深さh/λ 第、(図 0.4   0.5   0.6  0.7    0
.Fl波長≠m) 111(1,20コ3() 入射角11i f度)
Figure 1 is an explanatory diagram of the anti-reflection method of the present invention, Figure 2 is a conceptual diagram of the anti-reflection method applied to a beam splitter, and Figure 3 is a curve diagram showing the relationship between grating depth and reflectance. The figure is a layout diagram of a hologram 'D recording system, and FIGS. 5 and 6 are curved diagrams showing changes in reflectance due to changes in the incident wave and incident angle. l: Beam splitter 2: Diffraction grating ll: Optical element 12: Photosensitive material 13: Incident beam
14: Beam splinter 17.18: Reflector Special Fraud Examiner Legal Company Ricoh rating r depth h/λth, (Fig. 0.4 0.5 0.6 0.7 0
.. Fl wavelength ≠ m) 111 (1,20 co3() incident angle 11i f degrees)

Claims (1)

【特許請求の範囲】 光学素子の光り人出射面に回折格子を設け。 該回折格子間隔りが D〈λ/ (no ainθi+ng’)ただし λ:
光学素子ヘリ入射光波長 θt:光学素子へり入射角%
”O:格子の入射11117)媒質υ屈折率、n、:回
折格子υ媒質0屈折率の関係を満すことを特徴とする光
学素子O懺面反射防止法
[Claims] A diffraction grating is provided on the light output surface of the optical element. The diffraction grating spacing is D〈λ/ (no ainθi+ng') where λ:
Wavelength of light incident on the edge of the optical element θt: Incident angle on the edge of the optical element %
"O: incidence of grating 11117) Medium υ refractive index, n: Diffraction grating υ medium 0 refractive index" optical element O surface reflection prevention method characterized by satisfying the relationship:
JP5754182A 1982-04-07 1982-04-07 Method for preventing surface reflection of optical element Granted JPS58174906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5754182A JPS58174906A (en) 1982-04-07 1982-04-07 Method for preventing surface reflection of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5754182A JPS58174906A (en) 1982-04-07 1982-04-07 Method for preventing surface reflection of optical element

Publications (2)

Publication Number Publication Date
JPS58174906A true JPS58174906A (en) 1983-10-14
JPH0370201B2 JPH0370201B2 (en) 1991-11-06

Family

ID=13058618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5754182A Granted JPS58174906A (en) 1982-04-07 1982-04-07 Method for preventing surface reflection of optical element

Country Status (1)

Country Link
JP (1) JPS58174906A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252902A (en) * 1988-04-01 1989-10-09 Kuraray Co Ltd Low reflection diffraction grating and its production
US5115423A (en) * 1988-01-07 1992-05-19 Ricoh Company, Ltd. Optomagnetic recording/reproducing apparatus
US5995285A (en) * 1996-07-09 1999-11-30 Canon Kabushiki Kaisha Multilevel optical diffraction device with antireflection film and exposure apparatus
US6191890B1 (en) * 1996-03-29 2001-02-20 Interuniversitair Micro-Elektronica Centrum Vzw Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity
WO2003052467A1 (en) * 2001-12-17 2003-06-26 Canon Kabushiki Kaisha Optical element and scanning optical system having the same, and image forming apparatus
US6661830B1 (en) 2002-10-07 2003-12-09 Coherent, Inc. Tunable optically-pumped semiconductor laser including a polarizing resonator mirror
US6690684B1 (en) 1998-10-01 2004-02-10 Canon Kabushiki Kaisha Optical element and optical apparatus provided with the same
US6927917B2 (en) 2001-05-25 2005-08-09 Canon Kabushiki Kaisha Optical element, scanning optical system having the same, and image forming apparatus
US7256947B2 (en) 2003-08-13 2007-08-14 Canon Kabushiki Kaisha Optical element having minute periodic structure
JP2008116965A (en) * 2007-11-07 2008-05-22 Canon Inc Scanning optical system and image forming apparatus having the same
US20170179667A1 (en) * 2015-12-16 2017-06-22 Yusuke OKURA Optical window member, laser device, ignition system, and internal combustion engine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115423A (en) * 1988-01-07 1992-05-19 Ricoh Company, Ltd. Optomagnetic recording/reproducing apparatus
JPH01252902A (en) * 1988-04-01 1989-10-09 Kuraray Co Ltd Low reflection diffraction grating and its production
US6191890B1 (en) * 1996-03-29 2001-02-20 Interuniversitair Micro-Elektronica Centrum Vzw Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity
US5995285A (en) * 1996-07-09 1999-11-30 Canon Kabushiki Kaisha Multilevel optical diffraction device with antireflection film and exposure apparatus
US6327086B1 (en) 1996-07-09 2001-12-04 Canon Kabushiki Kaisha Optical diffraction device and exposure apparatus
US6690684B1 (en) 1998-10-01 2004-02-10 Canon Kabushiki Kaisha Optical element and optical apparatus provided with the same
US6927917B2 (en) 2001-05-25 2005-08-09 Canon Kabushiki Kaisha Optical element, scanning optical system having the same, and image forming apparatus
WO2003052467A1 (en) * 2001-12-17 2003-06-26 Canon Kabushiki Kaisha Optical element and scanning optical system having the same, and image forming apparatus
US7149016B2 (en) 2001-12-17 2006-12-12 Canon Kabushiki Kaisha Optical element and scanning optical system having the same and image forming apparatus
US6661830B1 (en) 2002-10-07 2003-12-09 Coherent, Inc. Tunable optically-pumped semiconductor laser including a polarizing resonator mirror
WO2004038877A3 (en) * 2002-10-07 2004-07-08 Coherent Inc Tunable optically-pumped semiconductor laser including a polarizing resonator mirror
US7256947B2 (en) 2003-08-13 2007-08-14 Canon Kabushiki Kaisha Optical element having minute periodic structure
JP2008116965A (en) * 2007-11-07 2008-05-22 Canon Inc Scanning optical system and image forming apparatus having the same
US20170179667A1 (en) * 2015-12-16 2017-06-22 Yusuke OKURA Optical window member, laser device, ignition system, and internal combustion engine

Also Published As

Publication number Publication date
JPH0370201B2 (en) 1991-11-06

Similar Documents

Publication Publication Date Title
US4746202A (en) Polarization preserving reflector and method
JP3453836B2 (en) Hologram manufacturing method
EP1109164B1 (en) Optical head apparatus for different types of disks
US3675990A (en) Reflective-type narrow band filter
JPS60142305A (en) Reflecting grid
JPS58174906A (en) Method for preventing surface reflection of optical element
US5071210A (en) Sandwich reflection hologram
EP0007268B1 (en) Optical radiation source for producing a divergent radiation beam with a uniform angular aperture
US5377291A (en) Wavelength converting optical device
US7639718B1 (en) Output coupler for external cavity laser
US4595261A (en) Phase retardation element and prism for use in an optical data storage system
JPH023482B2 (en)
WO1999049339A1 (en) Hologram polarized light separator
US5189532A (en) Edge-illuminated narrow bandwidth holographic filter
JP2000137109A (en) Reflection preventive device using diffraction grating
US5473470A (en) Polarization detector
JPS58223101A (en) Production of polygonal mirror
JPH031641B2 (en)
US5555108A (en) Holographic exposure prism
US6222651B1 (en) Holographic resonant system and method
US20090201967A1 (en) Laser device comprising a diffraction grating and coupled laser resonators
SU1097563A1 (en) Concentrator of light radiation and method for making hologram therefor
Woodcock Volume phase holograms and their application to avionic displays
JP3431253B2 (en) Hologram recording method
JPS63147140A (en) Acoustooptic element