JPS58174286A - Treatment of waste water containing heavy metal complex salt - Google Patents

Treatment of waste water containing heavy metal complex salt

Info

Publication number
JPS58174286A
JPS58174286A JP5377682A JP5377682A JPS58174286A JP S58174286 A JPS58174286 A JP S58174286A JP 5377682 A JP5377682 A JP 5377682A JP 5377682 A JP5377682 A JP 5377682A JP S58174286 A JPS58174286 A JP S58174286A
Authority
JP
Japan
Prior art keywords
heavy metal
waste water
added
hydrogen peroxide
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5377682A
Other languages
Japanese (ja)
Other versions
JPS643552B2 (en
Inventor
Masaharu Koshiba
小柴 正治
Shuzo Kakimoto
柿本 脩三
Hitoshi Kihara
均 木原
Norio Murotani
室谷 憲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Sanki Industrial Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Sanki Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Sanki Industrial Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP5377682A priority Critical patent/JPS58174286A/en
Publication of JPS58174286A publication Critical patent/JPS58174286A/en
Publication of JPS643552B2 publication Critical patent/JPS643552B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To remove heavy metal complex salt in a short time with high efficiency, by adding a specific amt. of ferrous ion to org. waste water contg. a high concn. of metallic complex salt controlled to <=5pH, adding hydrogen peroxide thereto at a specific temp. and cooling the waste water then controlling the pH to 6-8. CONSTITUTION:An inorg. acid such as sulfuric acid or hydrochloric acid is added to waste water contg. heavy metal salt formed stably of heavy metal such as copper, chromium and cadmium and the org. material such as ethylene diamine tetraacetate, thiourea or the like to control the pH thereof to 5.0. Ferrous ion such as ferrous sulfate, nitrate or the like is added thereto at 0.1-2.0 times the total molar number of the above-described heavy metal ion in the waste water, whereafter the liquid temp. is controlled to 80-100 deg.C. Hydrogen peroxide is added to the waste water at 1.0-2.9 times the theoretical amt. required for oxidation of the complex salt in the waste water and after cooling, an alkali is added to the waste water to control the pH to 6-8 and the flocculated material contg. the heavy metal formed by said addition is separated.

Description

【発明の詳細な説明】 本発明は、重金属が有機物と共に安定な錯塩を形成した
状態にある高濃度の重金属錯塩含有廃水の処理方法の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for treating wastewater containing a high concentration of heavy metal complex salts, in which heavy metals form stable complex salts together with organic substances.

一般に、メソキ工場等の各種産業廃水や研究所廃水など
においては、重金属がエチレンジアミン四酢酸塩、チオ
尿素、クエン酸アンモニウム、ジメチルグリオキシム等
の有機物と共に安定な重金属錯塩を形成しているため、
重金属の除去は容易ではない。
In general, in various industrial wastewater such as Mesoki factory and laboratory wastewater, heavy metals form stable heavy metal complex salts with organic substances such as ethylenediaminetetraacetate, thiourea, ammonium citrate, and dimethylglyoxime.
Removing heavy metals is not easy.

従来より遊離の重金属イオンの除去法としては、PH調
整により水酸化物を生成させ、硫酸アルミニウムやポリ
塩化アルミニウムなどの無機凝集剤やポリアクリルアミ
ドなどの高分子凝集剤を添加して行なう凝集沈澱処理法
、硫化ソーダなどによる硫化物法、吸着法、イオン交換
樹脂法等が一般的に採用されているが、これらの方法で
は安定な金属錯塩を形成している重金属の場合には、そ
の除去効率が極めて低い欠点があった。そこで、その除
去効率を高める″ためには安定な重金属錯塩を酸化分解
し、遊離の重金属イオンにする必要があり、このため酸
化処理法として紫外線処理や塩素、塩素化合物、オゾン
、過酸化水素等の酸化剤処理の単独あるいはこれらを適
宜組合わせた各種処理法が実用化されている。しかしな
がら、反応速度、反応効率、設備費、運転費、未反応酸
化剤の後処理、操作の複雑さ、設置スペース等の反応性
、操作性、経済性を考慮するとき、満足する処理法は見
あたらないのが現状である。
Conventional methods for removing free heavy metal ions include coagulation-sedimentation treatment, which involves generating hydroxides by adjusting the pH and adding an inorganic flocculant such as aluminum sulfate or polyaluminum chloride, or a polymer flocculant such as polyacrylamide. Generally, methods such as sulfide method using sodium sulfide, adsorption method, and ion exchange resin method are adopted, but these methods have limited removal efficiency in the case of heavy metals that form stable metal complexes. There was a drawback that the value was extremely low. Therefore, in order to increase the removal efficiency, it is necessary to oxidize and decompose stable heavy metal complex salts into free heavy metal ions.For this reason, oxidation treatment methods include ultraviolet treatment, chlorine, chlorine compounds, ozone, hydrogen peroxide, etc. A variety of treatment methods have been put into practical use, including treatment with an oxidizing agent alone or in appropriate combinations of these treatments. At present, no satisfactory treatment method has been found when considering reactivity, operability, and economic efficiency such as installation space.

本発明は、かかる現状に鑑み、高濃度の重金属錯塩を含
有する有機性廃水−1PH5以下に調整した後、廃水中
の重金属イオンの総モル数に対して01〜20倍量の第
一鉄イオン全添加し、液温を80〜100℃とした状態
で過酸化水素を少量ずつ連続的に添加し、冷却し、PH
”f6〜8に調整し、生成した重金属含有凝集物質を分
離することにより、高濃度の重金属錯塩含有廃水中の有
機物を分解すると共に、遊離した重金属イオンを鉄イオ
ンと共沈せしめて重金属錯塩を短時間で、しかも高効率
で除去し得る重金属錯塩含有廃水の処理方法の提供を可
能ならしめたものであって、以下本発明の詳細な説明す
ることとする。
In view of the current situation, the present invention provides organic wastewater containing a high concentration of heavy metal complex salts - After adjusting the pH to 1 PH or less, ferrous ions are added in an amount of 01 to 20 times the total number of moles of heavy metal ions in the wastewater. After complete addition, hydrogen peroxide was continuously added little by little while the liquid temperature was 80 to 100°C, cooled, and the pH was adjusted.
By adjusting f6 to f8 and separating the produced heavy metal-containing flocculated substances, organic matter in wastewater containing high concentrations of heavy metal complex salts can be decomposed, and the free heavy metal ions can be co-precipitated with iron ions to form heavy metal complex salts. The present invention has been made possible to provide a method for treating wastewater containing heavy metal complex salts that can be removed in a short time and with high efficiency, and the present invention will be described in detail below.

本発明における廃水は、銅、クロム、カドミウム等の重
金属とエテレノジア1ミン四酢酸塩、チオ尿素、クエン
酸アンモニウムミ ジメチルグリオキンム、オキシン、
グリシン、アセチルアセトン等の有機物とで安定に形成
された重金属錯塩を高濃度に含有する廃水であって、こ
れらの低濃度の廃水や容易に酸化され易い有機物含有廃
水の場合には経済的見地から好適とはいえない。
The wastewater in the present invention includes heavy metals such as copper, chromium, and cadmium, eterenodiaminetetraacetate, thiourea, ammonium citrate, dimethylglyoquine, oxine,
From an economical point of view, it is suitable for wastewater containing high concentrations of heavy metal complex salts stably formed with organic substances such as glycine and acetylacetone, such as wastewater with low concentrations or wastewater containing organic substances that are easily oxidized. I can't say that.

本発明においては、先ず高濃度の重金属錯塩含有廃水に
硫酸、塩酸等の無機酸を添加し、PHを5.0以下に調
整する。廃水のPHが中性、アルカリ性の場合には、後
述の重金属錯塩中の有機物の酸化分解が充分ではない。
In the present invention, first, an inorganic acid such as sulfuric acid or hydrochloric acid is added to wastewater containing a high concentration of heavy metal complex salts to adjust the pH to 5.0 or less. When the pH of the wastewater is neutral or alkaline, the oxidative decomposition of organic substances in the heavy metal complex salts described below is not sufficient.

次に、第一鉄イオンを廃水中の重金属イオンの5 モ/
l/数に対して01〜20倍量添加した後、液温を80
〜100℃に調整する。第一鉄イオンは硫酸塩、硝酸塩
、塩化物等のいずれでも良い。また、その効果について
は、過酸化水素と共存した場合、生成するヒドロキシル
ラジカル(・0H)Kよる酸化力は過酸化水素単独の場
合より大きいことは既に報告されているが、本発明の如
く高温における酸化反応の場合、過酸化水素が廃水中の
被酸化物質を酸化するのに十分な酸化力をもっているた
め、第一鉄イオンの存在による酸化力の増大は、常温の
場合におけるほど顕著ではない。第一鉄イオン添加の効
果は、過酸化水素の酸化力の増大よりも酸化処理後の凝
集沈澱処理を行なった場合における共沈現象による重金
属イオンの除去率の向上にある。
Next, ferrous ions were added to the 5 mo/mol of heavy metal ions in the wastewater.
After adding 01 to 20 times the amount of l/number, the liquid temperature was lowered to 80
Adjust to ~100°C. The ferrous ion may be a sulfate, a nitrate, a chloride, or the like. Regarding its effect, it has already been reported that when it coexists with hydrogen peroxide, the oxidizing power of the generated hydroxyl radical (.0H)K is greater than that of hydrogen peroxide alone; In the case of the oxidation reaction at room temperature, the increase in oxidizing power due to the presence of ferrous ions is not as pronounced as in the case of room temperature, because hydrogen peroxide has sufficient oxidizing power to oxidize the oxidized substances in wastewater. . The effect of the addition of ferrous ions lies in the improvement of the removal rate of heavy metal ions due to the coprecipitation phenomenon when the coagulation and precipitation treatment is performed after the oxidation treatment, rather than the increase in the oxidizing power of hydrogen peroxide.

上述のようにして、液温を80〜100℃に調整された
廃水に過酸化水素を廃水中の錯塩を酸化するに必要な理
論量の10〜12倍量添加する。
Hydrogen peroxide is added to the wastewater whose liquid temperature has been adjusted to 80 to 100°C as described above in an amount of 10 to 12 times the theoretical amount required to oxidize the complex salt in the wastewater.

過酸化水素は通常、過酸化水素水として廃水に添加し、
その添加量は廃水中の被酸化性物質を酸化分解するに必
要な理論量以上ではあるが、あまりに過剰に添加すると
、過酸化水素の浪費となるばかりでなく、処理水中に残
存し、二次公害を招く恐れがある。本発明における条件
下では過酸イヒ水素の反応効率が極めて良好なためミ必
要理論量の12倍を越える添加量は必要でない。過酸化
水素を添加する時間としては、処理の迅速化を図るため
には短時間であるほど良いのであるが、極端な短時間で
は反応が急激に進みすぎ、危険であり、また反応効率も
低下するので、好ましくない。過酸化水素は少量ずつ連
続的に添加し、添加時間は05〜2時間が適当である。
Hydrogen peroxide is usually added to wastewater as a hydrogen peroxide solution;
Although the amount of hydrogen peroxide added is more than the theoretical amount required to oxidize and decompose oxidizable substances in wastewater, adding too much hydrogen peroxide will not only waste hydrogen peroxide, but also cause it to remain in the treated water and cause secondary There is a risk of causing pollution. Under the conditions of the present invention, the reaction efficiency of hydrogen peroxide is extremely good, so it is not necessary to add more than 12 times the theoretical amount required. The shorter the time for adding hydrogen peroxide, the better in order to speed up the process, but if the time is too short, the reaction will proceed too rapidly, which is dangerous, and the reaction efficiency will also decrease. Therefore, it is not desirable. Hydrogen peroxide is added continuously in small amounts, and the addition time is suitable for 0.5 to 2 hours.

上記の処理により、廃水中の重金属錯塩における有機物
は、酸化分解され、生成した遊離の重金属イオンの一部
は鉄イオンと共に共沈し、一部は液中に残存しているの
で、さらに廃水を放冷等により冷却し、必要に応じ沈澱
物を分離した後、アルカIJ を加えてPH’i6〜8
に調整する。このPHの調整により、沈澱物の一部が再
溶解する場合があるので、PHの調整に先立って沈澱物
を分離しておくことが望捷しい。上記のPHの調整にょ
シ、液中に光分な凝集物質が生成する場合には凝集剤を
添加しなくても充分に重金属イオンを凝集沈澱せしめる
ことができるので、凝集物質を分離すれば、直ちに重金
属錯塩を高効率で除去することができる。上記のPH調
整だけでは凝集物質の生成が不充分な場合には、さらに
硫酸バンド、ポリ塩化アルミニウムなどの無機凝集剤や
ポリアクリルアミド等の高分子凝集剤を添加することが
望ましい。上記のPH調整にさいしては、除去すべき重
金属の種類によってPH値を適切に選定する必要がある
Through the above treatment, the organic matter in the heavy metal complex salts in the wastewater is oxidized and decomposed, and some of the generated free heavy metal ions are co-precipitated with iron ions, and some remain in the liquid, so that the wastewater can be further processed. After cooling by standing to cool, etc. and separating the precipitate as necessary, add Alka IJ to PH'i6-8.
Adjust to. Since some of the precipitates may be redissolved by this pH adjustment, it is desirable to separate the precipitates prior to adjusting the pH. When the above-mentioned PH adjustment is performed, if a light flocculating substance is generated in the liquid, the heavy metal ions can be sufficiently coagulated and precipitated without adding a flocculant, so if the flocculating substance is separated, Heavy metal complex salts can be immediately removed with high efficiency. If the above pH adjustment alone is insufficient to produce flocculants, it is desirable to further add an inorganic flocculant such as aluminum sulfate or polyaluminum chloride, or a polymer flocculant such as polyacrylamide. In the above pH adjustment, it is necessary to appropriately select the pH value depending on the type of heavy metal to be removed.

本発明においては、過酸化水素の添加前に行なうPHの
調整、第一鉄イオンの添加および液温の調整の順序はい
かなる順序であっても良く、また過酸化水素による酸化
処理後のPH調整、あるいは凝集物質の分離は連続して
行なう必要はなく、別の処理工程を交えた後に行なって
も良いことは勿論である。
In the present invention, the order of pH adjustment before addition of hydrogen peroxide, addition of ferrous ions, and adjustment of liquid temperature may be any order, and pH adjustment after oxidation treatment with hydrogen peroxide may be carried out in any order. Alternatively, the separation of aggregated substances need not be carried out continuously, and may of course be carried out after another treatment step.

実施例1 エチレンジアミン四酢酸塩等の錯塩形成性有機物が有機
炭素(TOC)量として4,000■/lを含有し、か
つ重金属としてCu イオン700m9/lf含有する
廃水1 tIKHct’fz添加してPHk2.Oとし
、次いで硫酸第1鉄i 2 f//を添加し、液温を2
0.40,65,80.95℃とした。次に、30チH
2O2113F(必要理論量の約10倍)を少量ずつ連
続的に120分かけて添加し、放冷後、PHを70に調
整し、5m9/lの高分子凝集剤を添加して凝集分離し
た後、処理水のTOC除去率およびCu除去率を測定し
た。その結果を第1図および第2図に示す。
Example 1 Wastewater containing a complex salt-forming organic substance such as ethylenediaminetetraacetate in an amount of organic carbon (TOC) of 4,000 μ/l and a heavy metal of Cu ion 700 m9/lf was added to PHk2 .. O, then ferrous sulfate i 2 f// was added, and the liquid temperature was lowered to 2
The temperatures were 0.40, 65, and 80.95°C. Next, 30 inches H
2O2113F (approximately 10 times the theoretical amount required) was continuously added in small portions over 120 minutes, left to cool, the pH was adjusted to 70, and 5 m9/l of polymer flocculant was added to coagulate and separate. , TOC removal rate and Cu removal rate of treated water were measured. The results are shown in FIGS. 1 and 2.

第1図から明らかなように、80℃以上でTOC除去率
は格段に上昇する。また、Cuの除去率も第2図に示す
ように80℃以上で著しく良好な値を示す。
As is clear from FIG. 1, the TOC removal rate increases markedly at temperatures above 80°C. Further, as shown in FIG. 2, the Cu removal rate shows a significantly good value at temperatures of 80° C. or higher.

実施例2 過酸化水素の添加の液温を80℃とし、PH’(i7種
々に変化させる以外は実施例1と同様にして廃水を処理
した。処理水のTOC除去率はPH5,0以下で良好な
結果を示した。PHが中性、アルカリ性となるにつれて
TOC除去率は低下しているが、これは過酸化水素が廃
水中の被酸化性物質と反応することなく、自己分解して
酸素ガスを放出してしまうためと考えられる。なお、C
uの除去率もTOC除去率と同様の傾向全示す。
Example 2 Wastewater was treated in the same manner as in Example 1 except that the liquid temperature for hydrogen peroxide addition was 80°C and the pH' (i7) was varied.The TOC removal rate of the treated water was below PH5.0. Good results were shown.The TOC removal rate decreased as the pH became neutral or alkaline, but this was because hydrogen peroxide self-decomposed and released oxygen without reacting with oxidizable substances in the wastewater. This is thought to be due to the release of gas.In addition, C
The u removal rate also shows the same tendency as the TOC removal rate.

実施例3 PHk3.5とし、Cuイオンに対する硫酸第一鉄のモ
ル比を種々に変化させた以外は実施例1と同様にして廃
水を処理した。TOC除去率は第4図に示す如く第一鉄
イオンの如何にかかわらず、良好な値を示しておシ、第
一鉄イオンが過酸化水素の酸化力の増大にほとんど寄与
していないことを意味している。一方、Cu 除去率は
第5図に示すように第一鉄イオンが01モル(’Cuの
モル数に対して)以上存在するときには明らかに増加し
ており、第一鉄イオンがCuと化合物を形成すると共に
共沈作用を示すなどのCuO責集沈澱に重要な作用をし
ていることがわかる。
Example 3 Wastewater was treated in the same manner as in Example 1, except that the pHk was set to 3.5 and the molar ratio of ferrous sulfate to Cu ions was varied. As shown in Figure 4, the TOC removal rate showed good values regardless of the presence of ferrous ions, indicating that ferrous ions hardly contributed to the increase in the oxidizing power of hydrogen peroxide. It means. On the other hand, as shown in Figure 5, the Cu removal rate clearly increases when ferrous ions are present at 0.1 mole or more (relative to the number of moles of Cu), and ferrous ions combine with Cu. It can be seen that CuO plays an important role in the formation and co-precipitation of CuO.

実施例4 エチレンジアミン四酢酸塩、チ十尿素等の錯塩形成性有
機物をTOC量として5 、I C10m9/を含有し
、かつ重金属としてCu620m・ノ/l ’fc含有
するメッキ工程から排出される廃水11 (PH: 9
5)k採取し、HC1’を加えてP H’e 3.0と
し、次いで硫酸第一鉄をFeとして400m9添加し、
液温を80℃とした。次に、30チH2O2113りを
少量ずつ連続的に100分かけて添加し、放冷後、PH
後の上澄液の水質分析を行なったところ、TOCが19
 !IA//l、 Cuが6m9/lであった。
Example 4 Waste water 11 discharged from a plating process containing complex salt-forming organic substances such as ethylenediaminetetraacetate and thiodeurea as TOC amount of 5 ml, IC 10 m9/, and heavy metal as Cu 620 m·n/l'fc (PH: 9
5) Sample k, add HC1' to make P H'e 3.0, then add 400 m9 of ferrous sulfate as Fe,
The liquid temperature was 80°C. Next, 30 liters of H2O2 were continuously added in small portions over 100 minutes, and after cooling, the PH
When the water quality of the supernatant liquid was analyzed, the TOC was 19.
! IA//l, Cu was 6m9/l.

比較のために、他の条件は全く同様にして、30% H
2O2の添加を一括添加とし、反応時間1100分間と
して廃水の処理を行なったところ、上澄液のTOCは4
84mg/1XCuは67m9/lであった。この場合
、H2O2’kl O0分間にわたって添加した場合に
比較してTOC除去率およびCu除去率が大巾に低下し
ている。この原因は一括添加の場合には添加直後から急
激なガスの発生が見られるところから、反応によって生
成されるCO2ガスと共にH2O2の分解による02ガ
スが逃げて行くためであり、それだけ浪費されたと考え
てよい。
For comparison, 30% H
When 2O2 was added all at once and the reaction time was 1100 minutes, the wastewater was treated, and the TOC of the supernatant was 4.
84mg/1XCu was 67m9/l. In this case, the TOC removal rate and Cu removal rate are significantly lower than when H2O2'kl O is added for 0 minutes. The reason for this is that in the case of bulk addition, rapid gas generation is observed immediately after addition, so it is thought that 02 gas due to decomposition of H2O2 escapes together with the CO2 gas generated by the reaction, and that much is wasted. It's fine.

実施例5 30%H2O2の添加量’i12’5fとし、添加の時
間を120分とする以外は実施例4と同様に廃水の処理
を行なったところ、凝集処理後の上澄液の水質はTOC
が80”’9/l、Cuが1m9/lであった。
Example 5 Wastewater was treated in the same manner as in Example 4, except that the amount of 30% H2O2 added was 'i12'5f and the addition time was 120 minutes.The water quality of the supernatant after flocculation treatment was TOC
was 80'''9/l, and Cu was 1 m9/l.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1の処理を施した場合における処理温度
と有機炭素(TOC)量の除去率との関係を示すグラフ
、第2図は実施例1の処理を施した場合における処理温
度と銅イオンの除去率との関係を示したグラフ、第3図
は実施例2の処理を施した場合における廃水のPHとT
OC除去率との関係を示すグラフ、第4図は実施例3の
処理を施した場合における重金属イオンに対する硫酸第
一鉄のモル比とTOC除去率との関係を示すグラフ、第
5図は実施例3の処理を施した場合における重金属イオ
ンに対する硫酸第一鉄のモル比と重金属イオンの除去率
との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the treatment temperature and the removal rate of organic carbon (TOC) when the treatment of Example 1 is applied, and Figure 2 is a graph showing the relationship between the treatment temperature and the removal rate of organic carbon (TOC) when the treatment of Example 1 is applied. A graph showing the relationship with the removal rate of copper ions, Figure 3 shows the PH and T of wastewater when treated in Example 2.
A graph showing the relationship between the OC removal rate and FIG. 4. A graph showing the relationship between the molar ratio of ferrous sulfate to heavy metal ions and the TOC removal rate when the treatment of Example 3 was applied. FIG. 3 is a graph showing the relationship between the molar ratio of ferrous sulfate to heavy metal ions and the removal rate of heavy metal ions when the treatment of Example 3 is performed.

Claims (1)

【特許請求の範囲】[Claims] 高濃度の重金属錯塩全含有する有機性廃水全PH5以下
に調整し、廃水中の重金属イオンの総モル数に対して0
1〜20倍量の第一鉄イオンを添加し、液温を80〜1
00℃とした状態で過酸化水素を少量ずつ連続的に添加
し、冷却し、PHを6〜8に調整し、生成した重金属含
有凝集物質を分離することを特徴とする重金属錯塩含有
廃水の処理法。
The total pH of organic wastewater containing high concentration of heavy metal complex salts is adjusted to 5 or less, and the pH is adjusted to 0 with respect to the total number of moles of heavy metal ions in the wastewater.
Add 1 to 20 times the amount of ferrous ions and lower the liquid temperature to 80 to 1
Treatment of wastewater containing heavy metal complex salts, characterized by continuously adding hydrogen peroxide little by little at a temperature of 00°C, cooling, adjusting pH to 6 to 8, and separating generated heavy metal-containing aggregated substances. Law.
JP5377682A 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt Granted JPS58174286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5377682A JPS58174286A (en) 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5377682A JPS58174286A (en) 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt

Publications (2)

Publication Number Publication Date
JPS58174286A true JPS58174286A (en) 1983-10-13
JPS643552B2 JPS643552B2 (en) 1989-01-23

Family

ID=12952211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5377682A Granted JPS58174286A (en) 1982-04-02 1982-04-02 Treatment of waste water containing heavy metal complex salt

Country Status (1)

Country Link
JP (1) JPS58174286A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104299A (en) * 1984-10-26 1986-05-22 日揮株式会社 Method of disposing radioactive decontaminated waste liquor
US4724084A (en) * 1986-03-28 1988-02-09 The Boeing Company System for removing toxic organics and metals from manufacturing wastewater
JP2000202461A (en) * 1999-01-11 2000-07-25 Kurita Water Ind Ltd Treatment of heavy metal complex-containing waste liquid
AT412470B (en) * 2003-04-30 2005-03-25 Dauser Industrieanlagen Und Ab METHOD FOR CLEANING WASTE WATER
KR100613727B1 (en) 2004-10-27 2006-08-22 한국전력공사 The continuous disposal method and apparatus of chemical cleaning waste water by non-catalytic oxidant treatment
JP2010240587A (en) * 2009-04-07 2010-10-28 Taiheiyo Cement Corp Wastewater treatment method
WO2015129541A1 (en) * 2014-02-27 2015-09-03 三菱レイヨン株式会社 Treatment method and treatment device for waste water containing heavy metal
CN105000652A (en) * 2015-07-30 2015-10-28 奉化市腾远计时器厂 Heavy metal treatment device of water purifier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051901A2 (en) 2007-08-30 2009-04-23 Pepex Biomedical, Llc Electrochemical sensor and method for manufacturing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104299A (en) * 1984-10-26 1986-05-22 日揮株式会社 Method of disposing radioactive decontaminated waste liquor
JPH0454917B2 (en) * 1984-10-26 1992-09-01 Jgc Corp
US4724084A (en) * 1986-03-28 1988-02-09 The Boeing Company System for removing toxic organics and metals from manufacturing wastewater
JP2000202461A (en) * 1999-01-11 2000-07-25 Kurita Water Ind Ltd Treatment of heavy metal complex-containing waste liquid
AT412470B (en) * 2003-04-30 2005-03-25 Dauser Industrieanlagen Und Ab METHOD FOR CLEANING WASTE WATER
KR100613727B1 (en) 2004-10-27 2006-08-22 한국전력공사 The continuous disposal method and apparatus of chemical cleaning waste water by non-catalytic oxidant treatment
JP2010240587A (en) * 2009-04-07 2010-10-28 Taiheiyo Cement Corp Wastewater treatment method
WO2015129541A1 (en) * 2014-02-27 2015-09-03 三菱レイヨン株式会社 Treatment method and treatment device for waste water containing heavy metal
JP6061024B2 (en) * 2014-02-27 2017-01-18 三菱レイヨン株式会社 Method and apparatus for treating wastewater containing heavy metals
CN105000652A (en) * 2015-07-30 2015-10-28 奉化市腾远计时器厂 Heavy metal treatment device of water purifier

Also Published As

Publication number Publication date
JPS643552B2 (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JP2008036608A (en) Method and apparatus for treating cyanide-containing wastewater
JPS58174286A (en) Treatment of waste water containing heavy metal complex salt
JP2007260586A (en) Treatment method of waste water generated in coke oven
JPH11314094A (en) Method for treating drainage containing arsenic and other heavy metals
CN107129018A (en) The method for concentration of arsenic in a kind of arsenic-containing waste water
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP6597349B2 (en) Blast furnace wastewater treatment method
JPS5834195B2 (en) Method for removing arsenic and silicic acid contained in industrial wastewater
JP3840656B2 (en) Purification method of aqueous solution and purified aqueous solution
CN114524553A (en) Process for treating heavy metal wastewater by using alkaline-boiling tungsten slag
JPH08141579A (en) Drainage treatment method
JPS59196796A (en) Treatment of liquid waste
JP2002079003A (en) Inorganic flocculant using highly purified ferric salt and manufacturing method thereof and processing apparatus in water-purification processing
JPH0975954A (en) Method of removing seleno sulfate ion in selenium-containing waste solution
JP2923757B2 (en) Reduction method of hexavalent selenium
JP2001187391A (en) Method for removing manganese ion in iron(iii) salt aqueous solution
JPH07165427A (en) Purification of iron chloride solution
KR800000190B1 (en) Treating method for waste plating-water
JPH04341393A (en) Removal of iron-cyano complex ion in aqueous solution
JP5252545B2 (en) Reduction method of heavy metal sludge
JP3905933B2 (en) Treatment of selenium-containing wastewater
JPS58216778A (en) Treatment of water containing cyano-complex
JP3282452B2 (en) How to remove selenium from wastewater
JPH0128629B2 (en)
JP5024643B2 (en) Method and apparatus for reducing permanganate-containing water