JPS58163095A - Optical type multiple load centralized controller - Google Patents

Optical type multiple load centralized controller

Info

Publication number
JPS58163095A
JPS58163095A JP57044689A JP4468982A JPS58163095A JP S58163095 A JPS58163095 A JP S58163095A JP 57044689 A JP57044689 A JP 57044689A JP 4468982 A JP4468982 A JP 4468982A JP S58163095 A JPS58163095 A JP S58163095A
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
load
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57044689A
Other languages
Japanese (ja)
Other versions
JPH0255838B2 (en
Inventor
透 手島
内山 美憲
岸 康徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP57044689A priority Critical patent/JPS58163095A/en
Publication of JPS58163095A publication Critical patent/JPS58163095A/en
Publication of JPH0255838B2 publication Critical patent/JPH0255838B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/246Home appliances the system involving the remote operation of lamps or lighting equipment

Landscapes

  • Feedback Control In General (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、光学式複数負荷集中制御装置に関する。[Detailed description of the invention] The present invention relates to an optical multiple load centralized control device.

住宅、建物などの各室に設けられている照明器具などの
電気器具の集中制御回路としては、従来第1図に示され
るようなものがある。図において、Lは例えば電灯、R
は動作記憶リレー、ACは交流電源、Pは人体に危険の
ない程度の低電圧の制御電源、C−1,C−2は居間、
管理人室などに設置られるコントロールボックス、Sl
〜f9a 、 f31’〜S3′はブツシュオンスイッ
チ、SlOは電灯りの近くに設けられる現場スイッチで
あり、各電灯りをコントロールボックスの設置場所で、
集中的に点滅制御することができる。
2. Description of the Related Art Conventionally, there is a centralized control circuit for electric appliances such as lighting equipment installed in each room of a house, building, etc. as shown in FIG. In the figure, L is, for example, an electric light, R
is an operation memory relay, AC is an alternating current power supply, P is a low voltage control power supply that is not dangerous to the human body, C-1 and C-2 are living rooms,
Control box, SL, installed in the manager's room, etc.
~f9a, f31'~S3' are push-on switches, SlO is an on-site switch installed near the electric light, and each electric light is installed at the location where the control box is installed.
Flashing can be controlled centrally.

しかし、このように制御全電気的信号によって行ってい
るので、次のような欠点がある。
However, since the control is performed entirely using electrical signals, there are the following drawbacks.

(1)  制御線の電圧は低圧であっても、その配線数
は集中制御全行なわない場合に比較して3倍以上となり
、資材面でも、工数面でも高価なものとなる。
(1) Even if the voltage of the control line is low, the number of wiring lines is more than three times that of the case where no centralized control is performed, and it is expensive in terms of materials and man-hours.

(2)制御線は常に交流電源線からの漏電の危険性を考
えた構成を採る必要があり、配線上や設計上の制約全党
ける。
(2) Control lines must always be constructed in consideration of the risk of leakage from AC power lines, and all wiring and design restrictions must be met.

(3)制御線の数の多いのに比例して、接続個所や接続
器具(コネクター)の数量も増え、信頼性が低下する。
(3) As the number of control lines increases, the number of connection points and connection devices (connectors) also increases, reducing reliability.

この発明はこの点に鑑み、制御線として光学ファイバー
を、また制御信号として光を用いたもので、第2図は第
1図の回路と対応するこの発明の集中制御回路であり、
第3図は第2図における1つの回路についての説明図で
ある。両図において、1〜1//は発光ダイオード、レ
ザーダイオードのような発光素子、2〜2“は光学ファ
イバー、 31       はCdS、ホト・トラン
ジスタのような光電素子(受光素子)で、1本の光学フ
ァイバー2の両端に、発光素子1からの光が効率よく受
光素子3に到着するように、発光素子1と受光素子3と
が光学的に接続される。81〜83″  等は光スィッ
チ(後述)で、光学ファイバー2〜2″の途中に設けら
れ、1回路中で1つの元スイッチが操作(例えば抑圧)
されると、光学ファイバー中の通過光量を遮断または低
下せしめるように機能する。C−1、C−2は夫々光ス
ィッチ81〜81″、82〜82″ヲ1個所に集中して
設けたコントロールボックスで、従来と同様に管理人室
などに設置される。l(、、R//ハリレーユニットで
、 光学ファイバー2〜2 /Ide t。
In view of this point, the present invention uses an optical fiber as a control line and light as a control signal, and FIG. 2 shows a centralized control circuit of the present invention corresponding to the circuit in FIG. 1.
FIG. 3 is an explanatory diagram of one circuit in FIG. 2. In both figures, 1 to 1// are light emitting elements such as light emitting diodes and laser diodes, 2 to 2'' are optical fibers, 31 are photoelectric elements (light receiving elements) such as CdS and phototransistors, and one The light emitting element 1 and the light receiving element 3 are optically connected to both ends of the optical fiber 2 so that the light from the light emitting element 1 efficiently reaches the light receiving element 3. 81 to 83'' etc. are optical switches ( (described later) is installed in the middle of the optical fiber 2~2'', and one source switch is operated in one circuit (for example, suppression).
When this occurs, it functions to block or reduce the amount of light passing through the optical fiber. C-1 and C-2 are control boxes in which optical switches 81 to 81'' and 82 to 82'' are concentrated in one place, respectively, and are installed in a manager's room or the like as in the conventional case. l(,,R//Harry unit, optical fiber 2~2/Idet.

伝送される光信号にしたがって動作し、負荷(例えば電
灯)L−L’/への給電を制御する。リレーユニツl−
R’/は負荷L −L″の近傍に設置される。
It operates according to the transmitted optical signal and controls the power supply to the load (for example, electric light) LL'/. Relay Units l-
R'/ is installed near the load L-L''.

第3図のりンーユニッ)Ttにおいて、光学ファイバー
2により伝送されてきた強弱の光信号S(第9図に示す
ように、信号の低下している部分が、光スィッチが操作
されて発生したパルス状信号を示す。)は、受光素子3
により電気信号に変−3= 換され、増幅回路4で増幅され、記憶回路(例えば双安
定マルチバイブレータ−)5を経てパワーリレー6を制
御し、第9図の2曲線のように、その接点Cの開閉全パ
ルス信月毎に切替え制御し、電灯り全点滅する。なおパ
ワーリレー6としては、電磁式リレーの外に、現イリス
タのような半導体スイッチを用いることができ、またリ
ン−ユニット全体全半導体回路で構成し、IC化或いは
ハイプリツ)・IC化して、小型軽量にすることができ
る。
At Tt (Fig. 3), a strong and weak optical signal S transmitted by the optical fiber 2 (as shown in Fig. 9, the part where the signal decreases is a pulse-like signal generated by operating an optical switch). ) indicates the light receiving element 3
It is converted into an electrical signal by -3=, amplified by an amplifier circuit 4, passed through a memory circuit (for example, a bistable multivibrator) 5, and controls a power relay 6, and its contact points are The opening and closing pulses of C are switched and controlled every month, and the lights are all blinking. In addition to the electromagnetic relay, a semiconductor switch such as the current Iristor can be used as the power relay 6.Also, the entire Rin unit is composed of all semiconductor circuits, and it can be made into an IC or Hypritz) to make it smaller. It can be made lightweight.

次に前出の光スィッチf3s−83′’について、その
原理を説明する。先ず光学ファイバー2の拡大図を示す
第6図において、イは外気(屈折率no )、口はコア
のクラッド(屈折率n1)、ハはコア(屈折率nz)で
、各部の屈折率はfi2 > Hl) noの関係にあ
る11通常の場合光学ファイバー2の内部では大部分の
光はθ3で示すようにコア八とクラッド口の間の全反射
角内の角度で伝送されるので、クララドロ全部分的に取
り去る以外に、その部分において、外部からは光学ファ
イバーの内部の光音コ4− ントロールできないとされていた、 しかし第5図に示すように比較的小半径で光学ファイバ
ー2を屈曲させることによって、クラッド口を取りつけ
たままで、外部から光のコントロールをできるようにし
た。例えばy5=o、s〜2.0簡の場合、rl−r2
==5x$前後、d−(0〜30)×0(但し、d=0
は実際的でない。)とする。
Next, the principle of the optical switch f3s-83'' mentioned above will be explained. First, in FIG. 6 showing an enlarged view of the optical fiber 2, A is the outside air (refractive index no), the mouth is the cladding of the core (refractive index n1), C is the core (refractive index nz), and the refractive index of each part is fi2. > Hl) No 11 Normally, most of the light inside the optical fiber 2 is transmitted at an angle within the total reflection angle between the core 8 and the cladding opening, as shown by θ3, so It was said that it was impossible to control the optical sound inside the optical fiber from the outside at that part other than removing it partially. However, as shown in Figure 5, the optical fiber 2 was bent at a relatively small radius. This made it possible to control the light from the outside without leaving the cladding port attached. For example, if y5=o, s~2.0, rl-r2
==around 5x$, d-(0~30)x0 (however, d=0
is not practical. ).

今、プラスチックの光学ファイバーについてみると、コ
ア八はアクリル系でHz =1.55 、クラッド口は
ポリエチレン系でnt=1.20.空気はHO=160
であるので、外部に光がでる角度d!中400、コア八
とクラッド口の面で全反射する角度03キ56.5゜で
あり、この間の角度範囲40〜56.5°では、光はコ
ア八からクラッド口に移行し、クラッド口と大気イの面
で全反射して、再びコア八に戻る。この発明で用いる光
スィッチは、上記の再びコア八に戻る光を遮断或いは低
減するために、第7図(2)に示すように、クララドロ
表面にクラッドの屈折率n2より大きな屈折率をもった
液体、軟質ゴム、プラスチックなどの軟質材10′Jk
接触させて、光全吸収するようにしたものであシ、光学
ファイバー2の内部全通過する光量はその分だけ少くな
る。
Now, looking at plastic optical fibers, the core 8 is acrylic and has a frequency of 1.55 Hz, and the cladding is polyethylene and has a nt of 1.20. Air is HO=160
Therefore, the angle at which the light exits is d! In the middle 400 degrees, the angle of total reflection between the core 8 and the cladding opening is 03° and 56.5°, and in the angle range between 40 and 56.5°, the light moves from the core 8 to the cladding opening, and is reflected between the cladding opening and the cladding opening. It is totally reflected on the surface of the atmosphere and returns to Core 8. The optical switch used in this invention has a refractive index larger than the refractive index n2 of the cladding on the surface of the cladding, as shown in FIG. 7(2), in order to block or reduce the light returning to the core 8. Soft materials such as liquids, soft rubber, and plastics 10'Jk
Since they are brought into contact with each other to absorb all of the light, the amount of light that passes through the entire interior of the optical fiber 2 is reduced accordingly.

光学ファイバー2の屈曲は1個所だけでは充分でないの
で、第5図のようにS字状にし、さらに第8図のような
形状にするのが望ましく、屈曲は例えば熱的加工によっ
て行うことができる。
Since it is not enough to bend the optical fiber 2 at just one place, it is desirable to make it into an S-shape as shown in Fig. 5, and further into a shape as shown in Fig. 8, and the bending can be done, for example, by thermal processing. .

第4図は上記のように屈曲加工した光学ファイバー2の
部分に構成した光スィッチ81〜S3“ の原理図を示
し、屈曲部全体を上下の両面から覆う大きさの軟質材1
0を、光学ファイバー2に接触しないように配線する。
FIG. 4 shows a principle diagram of the optical switches 81 to S3'' constructed on the optical fiber 2 which has been bent as described above.
0 is wired so that it does not come into contact with the optical fiber 2.

この状態、即ち第7図(1)の状態では、光学ファイバ
ー2を通過する光量は変化しないが、軟質材10を押圧
して光学ファイバー2に接触させると、軟質材10は光
を吸収し。
In this state, that is, the state shown in FIG. 7(1), the amount of light passing through the optical fiber 2 does not change, but when the soft material 10 is pressed and brought into contact with the optical fiber 2, the soft material 10 absorbs the light.

通過光jill−’を低減させる。押圧する毎に通過光
量が低減するので、前述のように第9図で示すSのよう
な信号が光学ファイバー2の末端の受光素子3に入力す
ることになる。これが光スィッチの原理であり、光量の
低減は1程度で実用化できる。軟質材10としては、黒
色ゴムのような光吸収率の7− 大きいものが適する。なお光スィッチとしては、上記の
ように光学ファイバーの一部全そのまま構成素子とした
ものに限らず、上記の原理を用いて光スィッチを単独に
構成し、これに光学ファイバーi光学的に接続するよう
にしてもよい。例えば、樹脂又は金属板に屈曲して設け
た7字状溝に透明な高屈折率の樹脂を充てんし、その上
を低屈折率の透明樹脂で覆い、これらの上面に、操作時
に黒色の軟質ゴムを密着させることにより、透明樹脂内
の通過光量を迩断或いは低減させることができる(本出
願人の別の出願参照)。
The transmitted light jill-' is reduced. Since the amount of passing light decreases each time it is pressed, a signal such as S shown in FIG. 9 is input to the light receiving element 3 at the end of the optical fiber 2, as described above. This is the principle of an optical switch, and it can be put to practical use by reducing the amount of light by about 1. As the soft material 10, a material having a light absorption coefficient of 7-1, such as black rubber, is suitable. Note that the optical switch is not limited to one in which part or all of the optical fiber is used as a constituent element as described above, but it is also possible to construct an optical switch independently using the above principle and optically connect the optical fiber i to this. You can do it like this. For example, a 7-shaped groove bent in a resin or metal plate is filled with a transparent resin with a high refractive index, and then covered with a transparent resin with a low refractive index. By bringing the rubber into close contact, the amount of light passing through the transparent resin can be cut off or reduced (see another application by the present applicant).

このようなリレーユニットR−R’/と光学ファイバー
2〜2″、光スィッチS1〜Sa” @用いた第2図の
装置において、各負荷L 、 L″は対応するいずれか
の光スィッチを操作する毎に、光学ファイバーの内部の
通過光量tn断或いは低減し、これにより生ずる光量の
変化を制御信号として利用し、リレーユニツ)k介して
、負荷への給電を接・断し、例えば電灯を点滅する。即
ちF31f操作して電灯が点灯すれば、次にSl又はS
2或いは83を操作する8− と、電灯は消灯する。
In the apparatus shown in Fig. 2 using such a relay unit R-R'/, optical fibers 2-2'', and optical switches S1-Sa'', each load L, L'' operates one of the corresponding optical switches. Each time, the amount of light passing through the optical fiber is cut off or reduced, and the resulting change in light amount is used as a control signal to connect/disconnect the power supply to the load via the relay unit, for example to turn on and off a light. In other words, if you operate F31f and the light turns on, then press Sl or S.
If you operate 2 or 83 (8-), the light will turn off.

以上のようにこの発明の集中制御装置は、従来のものと
同様にコントロールボックスの設置されている場所にお
いて各党スイッチS、 、、、 S2//=i、操作す
ることにより、複数の負荷を集中的に制御することがで
き、また負荷の近傍に設けた光スィッチ83〜83″に
よっても、個々に負荷を制御することができ、従来のも
のに比較しての効果は次のとおシである。
As described above, the centralized control device of the present invention centralizes multiple loads by operating each party switch S, , , S2//=i at the location where the control box is installed, similar to the conventional device. It is possible to control the loads individually, and the loads can also be controlled individually by optical switches 83 to 83'' installed near the loads.The advantages compared to conventional ones are as follows. .

(1)従来のものに比較して配線(光学ファイバーを含
めて)の数を50チ程度まで少なくできるので、配線工
事費と資材費の両面から、低価格化が計れる。
(1) Compared to conventional systems, the number of wiring (including optical fibers) can be reduced to about 50, so costs can be reduced in terms of both wiring work costs and material costs.

(2)光学ファイバーを配設するに当っては、絶縁の問
題を考慮する必要がなく、そのための作業が極端に簡略
化されるので、コストダウンになる。
(2) When installing optical fibers, there is no need to consider insulation problems, and the work involved is extremely simplified, resulting in cost reduction.

(3)光学式であるので、電磁誘導、クロストーク(混
信)等がなく、安定性、信頼性が高い。
(3) Since it is an optical type, there is no electromagnetic induction, crosstalk (interference), etc., and it is highly stable and reliable.

(4)  光学ファイバーを用いているので、感電事故
がなく、漏電火災もないので、安全性が高い。
(4) Since optical fibers are used, there is no electric shock accident and no electric leakage fires, so safety is high.

(5)外部雑音に対して強いので、信号レベルが低くて
もよく、省エネギ化が計れる。
(5) Since it is resistant to external noise, the signal level may be low and energy saving can be achieved.

(6)低レベルの信号回路中に用いる光スィッチは接点
スイッチに比較して、信頼性が高い。
(6) Optical switches used in low-level signal circuits have higher reliability than contact switches.

(7)光源として可視光を用いた場合には、信号回路の
確認が目視できるので、検査等のメンテナンスが容易で
ある。
(7) When visible light is used as a light source, the signal circuit can be checked visually, making maintenance such as inspection easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の負荷集中制御回路、第2図はこの発明
の光学式負荷集中制御回路、第3図は第2図の複数回路
の1つの回路についての説明図、第4図は光スィッチの
概略断面図、第5図は光学ファイバ−6s字状に屈曲し
た図、第6図は光学ファイバー内部の光の屈折状態を示
す図、第7図は光学ファイバー内部の通過光を吸収する
か否かを示す図、第8図は光学ファイバーの他の屈曲例
を示す図、第9図は光信号と負荷開閉信号の対応関係を
示す図である。 1・・・発光素子 2・・・光学ファイバー 3・・・・・・・・・・・・受光(光電)素子R・・・
・・・・・・・・・動作記憶りV−ユニットL〜L//
 ・・・・・・負荷 5x−−33”・・・・・・接点スイッチまたは光スイ
ッチC−1,C−2・・・コントロールボックス11− 特開昭58−163095(5)
FIG. 1 is a conventional load concentration control circuit, FIG. 2 is an optical load concentration control circuit of the present invention, FIG. 3 is an explanatory diagram of one of the plurality of circuits in FIG. 2, and FIG. 4 is an optical load concentration control circuit. A schematic cross-sectional view of the switch, Figure 5 is a diagram of the optical fiber bent into an S-shape, Figure 6 is a diagram showing the state of refraction of light inside the optical fiber, and Figure 7 is a diagram showing how the light passing through the optical fiber is absorbed. FIG. 8 is a diagram showing another example of bending the optical fiber, and FIG. 9 is a diagram showing the correspondence between the optical signal and the load switching signal. 1... Light emitting element 2... Optical fiber 3... Light receiving (photoelectric) element R...
......V-unit with operation memory L~L//
...Load 5x--33" ...Contact switch or optical switch C-1, C-2...Control box 11- JP-A-58-163095 (5)

Claims (3)

【特許請求の範囲】[Claims] (1)複数の負荷を、任意の1個所または複数個所にお
いて集中的に制御するようにした装置において、各負荷
毎に、その動作記憶リレーユニット内の受光素子(光電
素子)と発光素子との開音光学ファイバーにより光学的
に接続し、光学ファイバーの任意の1個所または複数個
所に、操作時に光学ファイバー内の通過光量を遮断或い
は低減可能の光スィッチを設け、各負荷の光スィッチを
任意の1個所または複数個所に設けたコントロールボッ
クス内に一括して配設して成る光学式複数負荷集中制御
装置。
(1) In a device that centrally controls multiple loads at one or more locations, for each load, the light receiving element (photoelectric element) and light emitting element in the operation memory relay unit are Optical connections are made using open optical fibers, and an optical switch that can cut off or reduce the amount of light passing through the optical fiber during operation is provided at one or more arbitrary locations on the optical fiber, and the optical switch for each load can be Optical multiple load centralized control device that is installed all at once in a control box installed in one or multiple locations.
(2)動作記憶リン−ユニットは、受光素子、増幅回路
、記憶回路、パワーリL/−より成る特許請求の範囲第
1項記載の光学的複数負荷集中制御装置0
(2) The operation memory unit includes a light receiving element, an amplifier circuit, a memory circuit, and a power supply L/-.
(3)光スィッチは、発光素子と受光素子との間の単一
の光学ファイバーの任意の一部全屈曲した部分と、その
両側に配設された光吸収性の軟質材により構成されて成
る特許請求の範囲第1項または第2項のいずれかに記載
の光学式複数負荷集中制御装置。
(3) An optical switch consists of a bent part of a single optical fiber between a light-emitting element and a light-receiving element, and a light-absorbing soft material placed on both sides of the bent part. An optical multiple load centralized control device according to claim 1 or 2.
JP57044689A 1982-03-23 1982-03-23 Optical type multiple load centralized controller Granted JPS58163095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57044689A JPS58163095A (en) 1982-03-23 1982-03-23 Optical type multiple load centralized controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044689A JPS58163095A (en) 1982-03-23 1982-03-23 Optical type multiple load centralized controller

Publications (2)

Publication Number Publication Date
JPS58163095A true JPS58163095A (en) 1983-09-27
JPH0255838B2 JPH0255838B2 (en) 1990-11-28

Family

ID=12698388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044689A Granted JPS58163095A (en) 1982-03-23 1982-03-23 Optical type multiple load centralized controller

Country Status (1)

Country Link
JP (1) JPS58163095A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119412A (en) * 2019-01-28 2020-08-06 ソニー株式会社 Information processor, information processing method, and program
WO2021059771A1 (en) * 2019-09-25 2021-04-01 ソニー株式会社 Information processing device, information processing system, information processing method, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115104A (en) * 1977-03-18 1978-10-07 Toshiba Corp Operation switch device for plural systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53115104A (en) * 1977-03-18 1978-10-07 Toshiba Corp Operation switch device for plural systems

Also Published As

Publication number Publication date
JPH0255838B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
CA1297157C (en) Closed loop, programmable power and communication system
KR900008351A (en) Building technology management controller with two conductor data and power transmission lines
JP2003534645A (en) Apparatus and method for optical isolation
TR26678A (en) HIGH STRENGTH CORD WITH A SHEATH AND A SHEATH OF STRIPED YARNS.
DE68916464T2 (en) Transmission system with AC coupling receiver circuit.
ITRM930704A0 (en) COMPLEX TO VISUALLY INDICATE THE SIGNALS GENERATED BY AN ELECTRIC CIRCUIT AND RELATED LIGHT DIFFUSER INTERFACE DEVICE.
JPS58163095A (en) Optical type multiple load centralized controller
DE68913364T2 (en) Modular roof cladding with electrical wiring.
EP0361312A3 (en) Light energy transmitting optical fiber cable
GB2133137A (en) Fibre optic light switch
DE50014438D1 (en) Compact luminaire with hollow fiber optic cable
DE9321083U1 (en) Power transmission cable with fiber optic element
CN213524980U (en) Face lid subassembly and cleaning robot
HU186317B (en) Switch
EP0147097A3 (en) Fiber optic switching device
RU2133537C1 (en) Device for time limiting of burning of electric arc in electric plants
JPH03505962A (en) Power control method and device
JPS56147490A (en) Signal sending and receiving system of semiconductor integrated circuit
JPS56138346A (en) Control system for multipoint line
RU94035342A (en) Device for checking ice mass on high-voltage conductors of power transmission lines
JPS60227486A (en) Optical wiring system
JPS62147695A (en) Load control method
JPH03266805A (en) Signal detecting system
JPS6428445A (en) Air conditioner
CN2907167Y (en) Automatic lighting circuit controller in lecture room