JPS58152201A - Fabry-perot type optical modulator - Google Patents

Fabry-perot type optical modulator

Info

Publication number
JPS58152201A
JPS58152201A JP3604682A JP3604682A JPS58152201A JP S58152201 A JPS58152201 A JP S58152201A JP 3604682 A JP3604682 A JP 3604682A JP 3604682 A JP3604682 A JP 3604682A JP S58152201 A JPS58152201 A JP S58152201A
Authority
JP
Japan
Prior art keywords
laminated piezoelectric
elements
fabry
optical modulator
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3604682A
Other languages
Japanese (ja)
Other versions
JPS628764B2 (en
Inventor
Kunio Nakamura
中村 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3604682A priority Critical patent/JPS58152201A/en
Publication of JPS58152201A publication Critical patent/JPS58152201A/en
Publication of JPS628764B2 publication Critical patent/JPS628764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To reduce the number of lead wires by holding the respective circumferential edge parts of two sheets of transparent flat plates with annular laminated piezoelectric elements, and disposing the respective laminated piezoelectric elements concentrically. CONSTITUTION:Transparent flat plates 11, 12 are fixed to a holding table 15 by means of annular laminated piezoelectric elements 13, 14 in the circumferential edge parts. The two elements 13, 14 are connected to each other electrically and are connected respectively to an electric power source 16. Electricity is applied to the elements 13, 14 in such a way as to fluctuate synchronously in opposite directions from each other when conducted thereto. Thus, the space between the parallel faces is the sum of the displacements of the respective planes and the degree of modulation increases eventually if the impressed voltage is the same and the laminated number of sheets is the same. The errors owing to the fluctuation in the thickness of the elements 13, 14 are offset to each other since both plates 11, 12 are mounted on the similar elements 13, 14, whereby the errors are made nearly zero.

Description

【発明の詳細な説明】 本発明はファブリペロ型光学変調器に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fabry-Perot optical modulator.

一般にファブリペロ型光学変調器は、第1−図(&)(
b)に示すように、2枚の透明平板1,2のうち1枚の
平板2を積層圧電素子3で3点保持し、面間隔をその積
層圧電素子3の厚さ変動で変調する構成になっている。
In general, Fabry-Perot optical modulators are shown in Figure 1 (&) (
As shown in b), one of the two transparent flat plates 1 and 2, the flat plate 2, is held at three points by the laminated piezoelectric element 3, and the interplanar spacing is modulated by the thickness variation of the laminated piezoelectric element 3. It has become.

ここで、4は保持台、6は電源である。しかしこの構造
では、各積層圧電素子3からの3組のリード線を引きま
わす必要があり、また平板1,2は平行平面を形成する
ため、直径の%以上の厚さが必要になる。
Here, 4 is a holding stand, and 6 is a power source. However, in this structure, it is necessary to route three sets of lead wires from each laminated piezoelectric element 3, and since the flat plates 1 and 2 form parallel planes, the thickness must be greater than % of the diameter.

本発明はこのような欠点を解消するためになされたもの
で、積層圧電素子を環状にし、透明平板の周縁すべてを
固定するようにして、リード線の数を減らすとともに、
透明平板の厚さも薄くして重量2寸法を小さくすること
が可能なファブリペロ型光学変調器を提供するものであ
る。
The present invention was made in order to eliminate such drawbacks, and the laminated piezoelectric element is made into an annular shape, and the entire periphery of the transparent flat plate is fixed, thereby reducing the number of lead wires.
The object of the present invention is to provide a Fabry-Perot optical modulator that can reduce the thickness of a transparent flat plate and reduce two dimensions of weight.

以下図面を用いてその一実施例を詳細に説明する。第2
図は本発明によるファブリペロ型光変調器の一実施例を
示す。図において11.12は透明平板で、各々その周
縁部においてリング状の積層圧電素子13t14により
保持台16に固定さ、れる。2つのリング状積層圧電素
子13+14はqいに電気的に接続され、各々電源16
に接続される。各リング状積層圧電素子13114への
通電は通電時に互いに反対方向に同期して変動するよう
に加えられる。したがって平行面間隔は各平面の変位の
和になり、変調度は、同一印加電圧、同一積層枚数であ
れば当然大きくなる。又周囲温度変化により圧電素子1
3114の厚さ変動による誤差は両平板11.12とも
同じような積層圧電素子13.14にマウントされてい
るので、互に相殺され、両者のバランスをとることによ
り、はソ温度による誤差をゼロに近づけることが可能で
ある。
One embodiment will be described in detail below with reference to the drawings. Second
The figure shows an embodiment of a Fabry-Perot optical modulator according to the present invention. In the figure, reference numerals 11 and 12 denote transparent flat plates, each of which is fixed to the holding table 16 at its peripheral edge by a ring-shaped laminated piezoelectric element 13t14. The two ring-shaped laminated piezoelectric elements 13+14 are electrically connected to each other, and each is connected to a power source 16.
connected to. The energization of each ring-shaped laminated piezoelectric element 13114 is applied so as to fluctuate synchronously in opposite directions when energized. Therefore, the parallel plane spacing is the sum of the displacements of each plane, and the degree of modulation will naturally increase if the applied voltage is the same and the number of laminated layers is the same. Also, due to changes in ambient temperature, piezoelectric element 1
Since both flat plates 11 and 12 are mounted on the same laminated piezoelectric element 13 and 14, the errors due to thickness variations of 3114 are canceled out, and by balancing both, the error due to temperature can be eliminated. It is possible to get close to.

第3図は積層圧電素子13.14を構成する一枚のリン
グ状圧電素子の電極構造を示す図で、(2L)(b)は
各々表裏面に相当する。図において、21はリング状圧
電材料、22は表面電極、23は裏面電極である。各電
極22.23はリング状圧電材料21の表裏面にほぼ全
面に形成され、一部に切欠部24.25が形成され、こ
の切欠部の側面には反対側の電極が延長している。電極
22.23は蒸着、メッキその他種々の方法で形成可能
である。
FIG. 3 is a diagram showing the electrode structure of one ring-shaped piezoelectric element constituting the laminated piezoelectric elements 13 and 14, and (2L) and (b) correspond to the front and back surfaces, respectively. In the figure, 21 is a ring-shaped piezoelectric material, 22 is a front electrode, and 23 is a back electrode. Each electrode 22, 23 is formed almost entirely on the front and back surfaces of the ring-shaped piezoelectric material 21, and a notch 24, 25 is formed in a part, and the opposite electrode extends from the side surface of this notch. The electrodes 22, 23 can be formed by vapor deposition, plating, or other various methods.

このように圧電材料21の表裏両面に電極22゜23を
形成したリング状の圧電素子を第4図に示すように多数
積層して積層圧電素子を構成する。
As shown in FIG. 4, a large number of ring-shaped piezoelectric elements having electrodes 22 and 23 formed on both sides of the piezoelectric material 21 are laminated to form a laminated piezoelectric element.

ムは接着前の状態、Bは接着した状態を示す。第4図の
各圧電素子は第3図のx −XZ線断面から見た図であ
る。重ね合わせは接着剤で行ない、両側面に出ている電
極を一括して第5図に示すようにリードに電気的接続を
行なう。
B shows the state before adhesion, and B shows the state after adhesion. Each piezoelectric element in FIG. 4 is a view seen from the x-XZ line cross section in FIG. 3. Overlapping is performed using adhesive, and the electrodes protruding from both sides are collectively electrically connected to the leads as shown in FIG.

第5図に示すように、各圧電素子を交互に重ね合わせ、
各々の圧電素子1枚毎に並列に電圧を印加することによ
り各層が同時に摩さが縮むが増大するように動作する。
As shown in Figure 5, the piezoelectric elements are stacked alternately,
By applying a voltage in parallel to each piezoelectric element, each layer is operated to simultaneously reduce and increase the friction.

したがって、この積層圧電素子を第2図に示すように2
つの透明平板11゜12に対して互いに逆方向に接続す
れば、平板11112は互いに逆方向に移動する。
Therefore, as shown in FIG.
If two transparent flat plates 11 and 12 are connected in opposite directions, the flat plates 11112 move in opposite directions.

ところで、この積層圧電素子の製法において、各電圧ウ
ェハが薄い場合、例えば0.1朋程度の場合環状に打ち
抜いたものを重ね合わせするのは、かなり困難である。
By the way, in this method of manufacturing a laminated piezoelectric element, if each voltage wafer is thin, for example, about 0.1 mm thick, it is quite difficult to overlap the annularly punched wafers.

その場合、円板状のウェハの周辺部に第3図に示すよう
にリング状の形状に電極を形成し、しかるのち接着剤で
重ね合わせて、積層状態を実現したあと、環状に打ち抜
くことにより容易に、環状積層圧電素子を製造できる。
In that case, electrodes are formed in a ring shape around the periphery of a disc-shaped wafer as shown in Figure 3, and then stacked with adhesive to achieve a laminated state, and then punched into a ring shape. An annular laminated piezoelectric element can be easily manufactured.

ト記構成の本発明においては、電極からのリード線の数
を減らすことができ、かつ平板を周縁部て固定している
ので、平板の厚さが1/12程度でも平行度(λ/1α
1 λは対象とする光の波長)を達成することができ、
従来の約捧の厚さの平板ですむので、重量2寸法各々約
2割〜3割削減できることになる。
In the present invention having the above configuration, the number of lead wires from the electrodes can be reduced, and since the flat plate is fixed at the peripheral edge, even if the thickness of the flat plate is about 1/12, the parallelism (λ/1α) can be reduced.
1 λ is the wavelength of the target light),
Since a flat plate with the thickness of a conventional plate is sufficient, the weight can be reduced by about 20% to 30% in each of the two dimensions.

この効果は、遠赤外領域では更に吸収による光損失の軽
減、高価な光学材料の節約につながり、本発明の効果は
更に大きくなる。
This effect further reduces optical loss due to absorption in the far-infrared region and saves expensive optical materials, making the effects of the present invention even greater.

以上のように、本発明は同心円状に配置された環状積層
圧電素子の各々に透明平板を保持固定させ、両平板のな
す平行面間隔を変調するようにしたファブリペロ型光学
変調器であり、従来型にくらべ、リードの本数−が−少
くてすみ、重量2寸法が削減でき、温度変化による誤差
が少く、かつ、赤外領域で使用する場合高価な光学材料
が節約でき吸収による光学損失も少ないという優位性を
有する。
As described above, the present invention is a Fabry-Perot optical modulator in which a transparent flat plate is held and fixed to each of annular laminated piezoelectric elements arranged concentrically, and the distance between parallel planes between the two flat plates is modulated. Compared to molds, the number of leads is smaller, the weight can be reduced by two dimensions, there are fewer errors due to temperature changes, and when used in the infrared region, expensive optical materials can be saved and optical loss due to absorption is reduced. It has this advantage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b)は従来のファブリペロ型光変調器
の断面側面図および平面図、第2図(a)(b)は本発
明の一実施例におけるファブリペロ型光変調器の断面側
面図および平面図、第3図(IL)(b)は本発明に使
用される圧電素子の平面図および底面図、第4図(a)
(b)は本発明に使用される積層圧電素子の製造方法を
説明する断面図、第6図は本発明に使用される積層圧電
素子の電気的結線図である。 11112・・・・・・透明平板、13.’14・・・
・・・積層圧電素子、16・・・・・・保持台、16・
・・・・・電源、21・・・・・・圧電材料、22.2
3・・・・・・電極、24. 25・・・・・切欠。 第1図 ((スー)                    
      (bン第3図 (α)(トノ
FIGS. 1(a) and 1(b) are cross-sectional side views and plan views of a conventional Fabry-Perot optical modulator, and FIGS. 2(a) and (b) are cross-sectional side views of a Fabry-Perot optical modulator according to an embodiment of the present invention. Figure 3 (IL) (b) is a plan view and bottom view of the piezoelectric element used in the present invention, Figure 4 (a)
(b) is a sectional view illustrating a method of manufacturing a laminated piezoelectric element used in the present invention, and FIG. 6 is an electrical connection diagram of the laminated piezoelectric element used in the present invention. 11112...Transparent flat plate, 13. '14...
...Laminated piezoelectric element, 16...Holding stand, 16.
...Power source, 21...Piezoelectric material, 22.2
3... Electrode, 24. 25... Notch. Figure 1 ((Sue)
(b Figure 3 (α) (Tono)

Claims (3)

【特許請求の範囲】[Claims] (1)2枚の透明な平板の各周縁部を環状積層圧電素子
で保持し、各環状積層圧電素子を同心円状に配置させた
ことを特徴とするファブリペロ型光学変調器。
(1) A Fabry-Perot optical modulator characterized in that each peripheral edge of two transparent flat plates is held by an annular laminated piezoelectric element, and the annular laminated piezoelectric elements are arranged concentrically.
(2)各環状積層圧電素子を互に反対方向に同期して振
動するより通電させた特許請求の範囲第1項記載のファ
ブリペロ型光学変調器。
(2) The Fabry-Perot optical modulator according to claim 1, wherein the annular laminated piezoelectric elements are energized by vibrating in synchronization in opposite directions.
(3)環状積層圧電素子を構成する一枚の圧電素子は、
環状の圧電材料の一方の面に形成された第1の電極と、
他方の面′に形成された第2の電極とを有し、第1の電
極および第2の電極の一部は前記圧電材料の側面に延び
ており、この側面に延びた電極部分よりリードをとり出
すことを特徴とする特許請求の範囲第1項記載のファブ
リペロ型光学変調器。
(3) One piezoelectric element constituting the annular laminated piezoelectric element is
a first electrode formed on one surface of the annular piezoelectric material;
a second electrode formed on the other surface, and a portion of the first electrode and the second electrode extend to the side surface of the piezoelectric material, and a lead is formed from the electrode portion extending to the side surface. The Fabry-Perot optical modulator according to claim 1, wherein the optical modulator is taken out.
JP3604682A 1982-03-08 1982-03-08 Fabry-perot type optical modulator Granted JPS58152201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3604682A JPS58152201A (en) 1982-03-08 1982-03-08 Fabry-perot type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3604682A JPS58152201A (en) 1982-03-08 1982-03-08 Fabry-perot type optical modulator

Publications (2)

Publication Number Publication Date
JPS58152201A true JPS58152201A (en) 1983-09-09
JPS628764B2 JPS628764B2 (en) 1987-02-24

Family

ID=12458764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3604682A Granted JPS58152201A (en) 1982-03-08 1982-03-08 Fabry-perot type optical modulator

Country Status (1)

Country Link
JP (1) JPS58152201A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116878A (en) * 1990-09-07 1992-04-17 Ricoh Co Ltd Semiconductor laser element with heater
JPH0786829A (en) * 1993-09-17 1995-03-31 Nec Corp Reflector antenna
JP2005274834A (en) * 2004-03-24 2005-10-06 Murata Mfg Co Ltd Fabry-perot type variable wavelength filter and multi-channel fabry perot type variable wavelength filter
US7280145B2 (en) 2002-07-30 2007-10-09 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
JP2007307279A (en) * 2006-05-22 2007-11-29 Olympus Corp Optical apparatus for observing spectroscopic image
US7324148B2 (en) 2002-04-26 2008-01-29 Olympus Optical Co., Ltd. Camera and image pickup device unit used therefor having a sealing structure between a dust proofing member and an image pick up device
US7324149B2 (en) 2002-05-20 2008-01-29 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
US7339623B2 (en) 2002-05-27 2008-03-04 Olympus Optical Co., Ltd. Camera and image pickup device unit which reduce influence of dust image quality
JP2013505471A (en) * 2009-09-18 2013-02-14 シンテフ Actuators for moving micromechanical elements
CN109884837A (en) * 2019-04-26 2019-06-14 昆山锐芯微电子有限公司 Lightwave filter
CN110032020A (en) * 2019-04-26 2019-07-19 昆山锐芯微电子有限公司 The frequency stabilization lightwave filter and its working method of temperature self-adaptation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116878A (en) * 1990-09-07 1992-04-17 Ricoh Co Ltd Semiconductor laser element with heater
JPH0786829A (en) * 1993-09-17 1995-03-31 Nec Corp Reflector antenna
US7589780B2 (en) 2002-04-26 2009-09-15 Olympus Optical Co., Ltd. Camera and image pick-up device unit used therefor having a sealing structure between a dust-proofing member and an image pick-up device
US7324148B2 (en) 2002-04-26 2008-01-29 Olympus Optical Co., Ltd. Camera and image pickup device unit used therefor having a sealing structure between a dust proofing member and an image pick up device
US7324149B2 (en) 2002-05-20 2008-01-29 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
US7339623B2 (en) 2002-05-27 2008-03-04 Olympus Optical Co., Ltd. Camera and image pickup device unit which reduce influence of dust image quality
US7280145B2 (en) 2002-07-30 2007-10-09 Olympus Optical Co., Ltd. Camera and image pick-up device unit having an optical member that is vibrated to remove dust
US7591598B2 (en) 2002-07-30 2009-09-22 Olympus Optical Co., Ltd. Camera having a dust-proofing member that is vibrated to remove dust, the dust-proofing member being pressed by a spring pressing member toward a sealing part that seals a space between the dust-proofing member and an image pickup-device
US7686524B2 (en) 2002-07-30 2010-03-30 Olympus Optical Co., Ltd. Image pick-up device unit having a dust-proofing member that is vibrated to remove dust, the dust-proofing member being pressed by a spring pressing member toward a sealing structure that seals an interval between the dust-proofing member and an image pick-up device
JP2005274834A (en) * 2004-03-24 2005-10-06 Murata Mfg Co Ltd Fabry-perot type variable wavelength filter and multi-channel fabry perot type variable wavelength filter
JP2007307279A (en) * 2006-05-22 2007-11-29 Olympus Corp Optical apparatus for observing spectroscopic image
JP2013505471A (en) * 2009-09-18 2013-02-14 シンテフ Actuators for moving micromechanical elements
CN109884837A (en) * 2019-04-26 2019-06-14 昆山锐芯微电子有限公司 Lightwave filter
CN110032020A (en) * 2019-04-26 2019-07-19 昆山锐芯微电子有限公司 The frequency stabilization lightwave filter and its working method of temperature self-adaptation

Also Published As

Publication number Publication date
JPS628764B2 (en) 1987-02-24

Similar Documents

Publication Publication Date Title
JPS58152201A (en) Fabry-perot type optical modulator
JPS5927520B2 (en) Piezoelectric ceramic multilayer element and its manufacturing method
JP2006290668A (en) Anode joining device, method for joining anode, and method for manufacturing acceleration sensor
JPS59205747A (en) Manufacture of semiconductor device
JP6142429B2 (en) Etalon and etalon equipment
JPH0740613B2 (en) Method for manufacturing laminated piezoelectric material
JPS6310594B2 (en)
JPH1131854A (en) Laminated actuator and method for manufacturing its piezoelectric element
JPH0381132B2 (en)
JPH0132371Y2 (en)
JP5589371B2 (en) Manufacturing method of semiconductor sensor
JPS62153765A (en) Laminated type piezoelectric ceramic element
JPS62235921A (en) Optical shutter element
JPH05242788A (en) Electrostatic relay
JPS6340354A (en) Insulating spacer
JP2023179048A (en) piezoelectric module
JPH0316798B2 (en)
JPH08316543A (en) Piezoelectric transformer
JPH07170762A (en) Layered expansion actuator and manufacture thereof
JPH07176806A (en) Manufacture of piezoelectric laminated material
JPH09148640A (en) Laminated piezoelectric actuator
JPS63299384A (en) Layer-built type piezoelectric actuator
JPH03206419A (en) Optical shutter array
JPH06318746A (en) Laminated piezoelectric actuator
JPS61103398A (en) Laminated ceramic oscillating body