JPS5814634A - Monitoring system of optical relay transmission line - Google Patents

Monitoring system of optical relay transmission line

Info

Publication number
JPS5814634A
JPS5814634A JP56112861A JP11286181A JPS5814634A JP S5814634 A JPS5814634 A JP S5814634A JP 56112861 A JP56112861 A JP 56112861A JP 11286181 A JP11286181 A JP 11286181A JP S5814634 A JPS5814634 A JP S5814634A
Authority
JP
Japan
Prior art keywords
signal
acoustic wave
surface acoustic
circuit
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112861A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hayashi
林 義博
Ichiro Yamashita
一郎 山下
Nobuyuki Tokura
戸倉 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56112861A priority Critical patent/JPS5814634A/en
Publication of JPS5814634A publication Critical patent/JPS5814634A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To simplify the constitution of a circuit and at the same time to reduce power consumption, by using a surface acoustic wave element for discrimination of a reproduction repeater. CONSTITUTION:A circuit is provided to each reproduction repeater and discriminates a monitoring discriminating signal to be transmitted in a time division way along with a main signal given from a transmitting terminal are addressed to the own device. The surface electrodes more than bit numbers are set to the above-mentioned circuit, and a surface acoustic wave element 11 containing a winding formed on the surface electrode is set in accordance with the discriminating signal of each device. The selection of the own device is discriminated by the output signal of the element 11. In such a way, the constitution of a circuit is greatly simplified with extreme reduction of power consumption com- pared with the case when a memory element is used with an ordinary digital logical circuit for discrimination of selection of the own device.

Description

【発明の詳細な説明】 本発明はディジタル光信号を光ファイバ・ケーブルと再
生中継器とが交互に接続された光中継伝送路に伝送する
方式の監視方式に関する。特に、伝送路の運用中に各再
生中継器を個別に職別選択してその状態を監視する方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a monitoring system for transmitting digital optical signals to an optical repeater transmission line in which optical fiber cables and regenerative repeaters are alternately connected. In particular, the present invention relates to a method of individually selecting each regenerative repeater according to its function and monitoring its status during operation of a transmission line.

光中継伝送路が高速多重の通信路として実用化されるに
伴い、伝送路を高い品質に維持するための監視方式が重
要な課題となっている。従来からこのための監視方式は
多く提案されている。その代表的な例を挙げると、特開
昭55−152434号公報、昭和55年度電子通信学
会総合全国大会No。
As optical relay transmission lines are put into practical use as high-speed multiplex communication lines, monitoring methods to maintain high quality transmission lines have become an important issue. Many monitoring methods for this purpose have been proposed in the past. Typical examples include JP-A-55-152434, No. 1983 National Institute of Electronics and Communication Engineers General Conference No.

2234等で纏る。Wear it with 2234 etc.

これらの技術によれば、伝送路に配置され九再生中継器
の状態を送信端または受信端から遠方監視を行うことが
できるが、いずれ亀監視社非這用時に行うものである。
According to these techniques, it is possible to remotely monitor the status of a regenerative repeater placed on a transmission path from either the transmitting end or the receiving end, but this is only done when the monitor is not in use.

すなわち、伝送路の監視を行うには、伝送路に流れてい
る通信信号を他回線に切替えてから、送信端から特別の
監視用信号を送信しなけれにならない。したがって監視
を行うことのできる時間が制約されて、次第に劣化して
ゆく再生中継器があって本、これを障害になる前に発見
することが困難であるとともに、運用中の回線を一時的
にせよ切替える九めの通信路および切替装置を設備しな
ければならない。
That is, in order to monitor the transmission path, it is necessary to switch the communication signal flowing through the transmission path to another line, and then transmit a special monitoring signal from the transmitting end. Therefore, the time that can be monitored is limited, and some regenerative repeaters gradually deteriorate, making it difficult to detect them before they become a failure. However, a ninth communication channel and switching device must be installed.

一方、光中継伝送路を運用状態のまま監視を行う方式と
して、光ファイバ・ケーブルの中心に抗張力線として挿
入される鋼線を用いる方式が知られている( Proc
、工xmz、 70168. No 10.1tpsa
 )。
On the other hand, a known method for monitoring optical relay transmission lines while in operation is to use a steel wire inserted into the center of the optical fiber cable as a tensile strength wire (Proc.
, Engineering xmz, 70168. No 10.1tpsa
).

しかしこの方式は鋼線を信号線として利用するので伝送
損失が大きく、長距離伝送路には不向きである。これを
長距離方式に適用するには、多数の中継増幅器を配置し
なければならず、中継器の規模が大きくなるとともに、
これらの中継増幅器に供給する電源の送電方式が必要に
なり複雑化して経済性が悪くなる。
However, since this method uses steel wire as a signal line, transmission loss is large, making it unsuitable for long-distance transmission lines. To apply this to a long-distance system, it is necessary to arrange a large number of repeater amplifiers, which increases the scale of the repeaters and increases the
A power transmission system for supplying power to these relay amplifiers is required, which complicates the system and makes it uneconomical.

ま友、通信用の主信号を伝送するディジタル光信号に、
時分割的に監視用信号を伝送して、運用時の監視を行う
ことが考えられる。しかしこのためには、各再生中継器
に、主信号と監視用信号と“を正しく分岐し、これに応
答して状態を表わす情報信号を送信するための設備を設
けることが必要である。これを通常の集積回路により構
成すると、中継器の回路規模が大きくなるとともに、中
継器の消費電力が増大して現実的な設計を行うことがで
きない。
Mayu, the digital optical signal that transmits the main signal for communication,
It is possible to perform monitoring during operation by transmitting monitoring signals in a time-division manner. However, in order to do this, it is necessary to provide each regenerative repeater with equipment for correctly branching the main signal and the monitoring signal and for transmitting an information signal indicating the status in response. If the repeater is configured using a normal integrated circuit, the circuit scale of the repeater will increase and the power consumption of the repeater will increase, making it impossible to carry out a realistic design.

本発明はこのような背景に行われたものであって、 (1)運用状態の11中継伝送路の監視を行うことがで
きる、 (2)各再生中継器に配置する回路規模が小さい、(3
)  各再生中継器の消費電力が小さい、(4)長距離
多中継の場合にも適用できる、光中継伝送路の監視方式
を提供することを目的とする。
The present invention was made against this background, and has the following features: (1) It is possible to monitor 11 relay transmission lines in operation, (2) The scale of the circuit arranged in each regenerative repeater is small, ( 3
(4) It is an object of the present invention to provide an optical repeater transmission line monitoring method that consumes less power in each regenerative repeater and (4) can be applied to long-distance multiple repeaters.

本発明の第一点は、各再生中継器に配置され、送信端か
ら主信号と共に時分割的に伝送される監視用の識別信号
が自装置に宛てたものであることを識別するための回路
に、識別信号のビット数以上の表面電極が設けられ、各
装置別の識別信号に対応してその表面電極に配線が施さ
れた弾性表面波素子を含み、この弾性表面波素子の出力
信号により自装置が選択されたことを識別するように構
成され喪ことを特徴とする。
The first aspect of the present invention is a circuit disposed in each regenerative repeater to identify whether a monitoring identification signal transmitted from the transmitting end in a time-division manner together with the main signal is addressed to the own device. includes a surface acoustic wave element provided with surface electrodes equal to or greater than the number of bits of the identification signal, and whose surface electrodes are wired in accordance with the identification signal of each device, and the output signal of this surface acoustic wave element The device is characterized in that it is configured to identify that its own device has been selected.

また、本発明の第二点は、上記構成に加えて、各装置の
状態を表わす情報信号のビット数以上の表面電極が設け
られた第二の弾性表面波素子と、この素子の各表面電極
にその装置の状態を表わす信号に対応して電位を4える
回路と1この素子の出力ビツト信号列を主信号の間に時
分割的に挿入する回路とを備えたことを特徴とする。
A second aspect of the present invention is that, in addition to the above configuration, a second surface acoustic wave element is provided with surface electrodes whose number is equal to or greater than the number of bits of an information signal representing the state of each device, and each surface electrode of this element. The device is characterized in that it includes a circuit that increases the potential in response to a signal representing the state of the device, and a circuit that time-divisionally inserts the output bit signal string of this device between the main signals.

弾性表面波素子(8AW)については、−例七して、日
本音響学会誌第30巻筒10号、P、551〜540 
、1974年に詳しい記載がある。
Regarding the surface acoustic wave element (8AW), see Example 7, Journal of the Acoustical Society of Japan, Vol. 30, No. 10, P, 551-540.
, 1974 has a detailed description.

以下、実施例図面を用いて詳しく説明する。Hereinafter, a detailed explanation will be given using embodiment drawings.

第1図は本発明一実施例方式の再生中継器要部ブロック
図である。
FIG. 1 is a block diagram of the main parts of a regenerative repeater according to an embodiment of the present invention.

光ファイバ・ケーブル1は、光電fi変換器2に結合さ
れ、その電気出力は等化器3を経て、復号器4に与えら
れる。この出力はさらに、NR2信号をRZ倍信号変換
する復号変換器5を経由して取出される。さらにこの出
力は結合器6から駆動器7で増幅され、電気光変換器8
から次の区間の光ファイバ・ケーブル9に送出される。
The fiber optic cable 1 is coupled to an opto-electrical FI converter 2 whose electrical output is applied to a decoder 4 via an equalizer 3. This output is further taken out via a decoding converter 5 which converts the NR2 signal into an RZ signal. Further, this output is amplified by a coupler 6 and a driver 7, and then an electro-optical converter 8
from there to the next section of optical fiber cable 9.

タイミング回路10は、等化器3の出力信号からタイミ
ング信号を分離し、復号器4を制御する。
Timing circuit 10 separates a timing signal from the output signal of equalizer 3 and controls decoder 4 .

ここで、本発明の特徴とする構成は、符号変換器5の出
力信号が分岐されて、第一の弾性表面波素子(EIAV
)11に与えられ、この素子11により自装置の選択を
識別するところにある。この弾性表面波素子11の出力
は、波形成形回路12を介して、さらに遅延回路13を
介して、制御回路15に与えられる。一方、タイミング
回路10で得られるタイミング信号は分周回路16で分
周されて、この制御回路15に与えられる。
Here, in the configuration that characterizes the present invention, the output signal of the code converter 5 is branched and the first surface acoustic wave element (EIAV
) 11, and this element 11 identifies the selection of the own device. The output of this surface acoustic wave element 11 is given to a control circuit 15 via a waveform shaping circuit 12 and further via a delay circuit 13. On the other hand, the timing signal obtained by the timing circuit 10 is frequency-divided by the frequency divider circuit 16 and given to the control circuit 15.

端子18は、この再生中継器の装置内の状態を表わす信
号の入力端子である。この内容は、例えば、電気光変換
器8のバイアス状態、電気光変換器8の温度状態、光電
気変換器2のバイアス状態、等化器3に含まれる自動利
得制御電圧の状態等である。これらは、それぞれ1個以
上のビット信号、あるいはアナログ信号であって、これ
が端子18からマルチプレクサ20に与えられて多重化
される。マルチプレクサ20の出力は、サンプル保持回
路21で順次標本化され、AD変換回路22でディジタ
ル化されて、保持回路23に入力される。
Terminal 18 is an input terminal for a signal representing the internal state of the regenerative repeater. The contents include, for example, the bias state of the electro-optic converter 8, the temperature state of the electro-optic converter 8, the bias state of the opto-electric converter 2, the state of the automatic gain control voltage included in the equalizer 3, etc. Each of these is one or more bit signals or analog signals, which are supplied from a terminal 18 to a multiplexer 20 and multiplexed. The output of the multiplexer 20 is sequentially sampled by a sample holding circuit 21, digitized by an AD conversion circuit 22, and input to a holding circuit 23.

マルチプレクサ20、サンプル保持回路21.ムD変換
回路22および保持回路23は制御回路15により制御
される。
Multiplexer 20, sample holding circuit 21. The memory D conversion circuit 22 and the holding circuit 23 are controlled by the control circuit 15.

保持回路23の内容は、ゲート回路25により第二の弾
性表面波素子(8ムW)26に与えられ、直列信号とな
ってその出力に送出される。この直列信号祉波形成形回
路28を経て同期回路29で、タイミング回路10の信
号に同期をとって、結合器6でディジタル信号列に情報
信号として時分割的に挿入される。
The contents of the holding circuit 23 are given to the second surface acoustic wave element (8mmW) 26 by the gate circuit 25, and sent as a serial signal to its output. The serial signal passes through the waveform shaping circuit 28, is synchronized with the signal from the timing circuit 10 in the synchronization circuit 29, and is inserted into the digital signal train as an information signal in a time division manner in the coupler 6.

第2図はこの光中継伝送路のディジタル信号列を示す図
である。輩は主信号で通信内容で変調されたビット信号
列である。8vは監視用に割当てたタイムスロットで、
そのうちIDは識別信号、qは情報信号の位置を表わす
。−例として、主信号Mは508ビツト、識別信号より
#′i6ビツト、情報信号GIFilOビットで構成さ
れ、フレーム毎に繰返して伝送される。
FIG. 2 is a diagram showing a digital signal train of this optical relay transmission line. The main signal is a bit signal sequence modulated according to the communication content. 8v is the time slot allocated for monitoring,
Among them, ID represents an identification signal, and q represents the position of an information signal. - As an example, the main signal M is composed of 508 bits, #'i6 bits from the identification signal, and the information signal GIFilO bits, and is repeatedly transmitted every frame.

i別信号は図外の送信端からこの光中継伝送路に送信さ
れる信号であって、監視を行う再生中継器を識別するた
めの信号である。上述のように6ビツト構成であるとす
れば、 2’ = 64個 の再生中継器を識別することができる。
The i-specific signal is a signal transmitted from a transmission end (not shown) to this optical relay transmission line, and is a signal for identifying the regenerative repeater to be monitored. Assuming a 6-bit configuration as described above, 2' = 64 regenerative repeaters can be identified.

情報信号qは、再生中継器で発生され受信端に向けて伝
送される信号である。この情報信号qは上記識別信号I
Dで識別された再生中継器が、この識別信号に応答して
送信する。主信号MFi送信端から受信端に伝送される
通信内容で変調される信号である。
The information signal q is a signal generated by the regenerative repeater and transmitted toward the receiving end. This information signal q is the above-mentioned identification signal I.
The regenerative repeater identified by D transmits in response to this identification signal. Main signal MFi is a signal modulated by the communication content transmitted from the transmitting end to the receiving end.

第5図紘弾性表面波素子11の構成例を示す図である。FIG. 5 is a diagram showing an example of the configuration of the Hiro surface acoustic wave element 11.

この弾性表面波素子11は符号応答形であって、この図
の例は入カニNに符号 1 1 0 1、 0 1 が入力したときに限9出力0■〒に信号が送出されるよ
うに構成されたものである。各電極位置または電極に、
配線が施されたものはビット信号「1」に対応し、配線
の施されていない本のはビット信号「0」に対応する。
This surface acoustic wave element 11 is of a code response type, and the example shown in this figure is such that when the code 1 1 0 1, 0 1 is input to the input crab N, a signal is sent to the limited output 0. It is constructed. For each electrode position or electrode,
A book with wiring corresponds to a bit signal "1", and a book without wiring corresponds to a bit signal "0".

各再生中継器毎に、この配線をその識別信号に合わせて
設定しておく。
This wiring is set for each regenerative repeater according to its identification signal.

これにより自装置の識別信号を受信したときに限り、出
力OUTに信号が送出される。
As a result, a signal is sent to the output OUT only when the identification signal of the own device is received.

第4図は、ディジタル信号列−)に対して、弾性表面波
素子11が応答する信号波形(1))を示す図である。
FIG. 4 is a diagram showing a signal waveform (1)) in which the surface acoustic wave element 11 responds to the digital signal sequence -).

第5図蝶弾性表面波素子の別の構造例を示す図である。FIG. 5 is a diagram showing another structural example of the butterfly surface acoustic wave element.

前述の構造のものは簡単であるが、主信号Mあるいは情
報信号Qの中に、偶然に自装置の識別信号IQと同一の
ディジタル信号列の組合せ−があると、これに反応して
出力を送出して誤動作する可能性がある。第5図はこれ
を避けるためのもので、弾性表面波素子11をディジタ
ル信号列の2フレーム(2fR)以上の長さに設定し、
識別信号工Qが2目以上繰返して検出されるときに出力
信号を送出するように構成したものである。
The structure described above is simple, but if the main signal M or information signal Q happens to have the same combination of digital signal strings as the identification signal IQ of the own device, the output will be activated in response to this combination. There is a possibility that the data will be sent and malfunction. In order to avoid this, FIG. 5 shows that the surface acoustic wave element 11 is set to have a length of two frames (2fR) or more of the digital signal train.
It is configured to send an output signal when the identification signal Q is repeatedly detected two or more times.

第6図はその動作説明図で、ディジタル信号列に)の1
フレーム繰返し周期がTRであると、時間T8後に識別
信号IDで再び同一の識別符号が送出されたときに限り
、弾性表面波素子11に出力信号体)が送出される。
Figure 6 is an explanatory diagram of its operation.
When the frame repetition period is TR, the output signal body) is sent to the surface acoustic wave element 11 only when the same identification code is sent again as the identification signal ID after time T8.

第7図は同様の操作をロジック回路で実現する例で、弾
性表面波素子11の出力を分肢して、一方は遅延回路3
3で時間TRだけ遅延させ、ゲート回路32で遅延のな
い信号との論理積をとって検出出力とするものである。
FIG. 7 shows an example in which a similar operation is implemented using a logic circuit, in which the output of the surface acoustic wave element 11 is divided into two parts, and one is connected to the delay circuit 3.
3, the signal is delayed by the time TR, and a gate circuit 32 performs an AND operation with a signal without delay to obtain a detection output.

、同様に誤検出の可能性が小さくなる。, the possibility of false detection is similarly reduced.

第8図線ゲート回路25および第二の弾性表面波素子2
6の構成例を示す図である。弾性表面波素子26は情報
信号qのビット数以上の表面電極があり、この各電極に
はゲート回路25から電位が与えられる。ゲート回路2
5の各開閉回路は、そのときの再生中継器の状態を表わ
す信号に従って開閉される。これにより、状態を表わす
信号がディジタル信号列として弾性表面波素子26の出
力に送出される。
FIG. 8 Line gate circuit 25 and second surface acoustic wave element 2
6 is a diagram showing a configuration example of No. 6; FIG. The surface acoustic wave element 26 has surface electrodes whose number is equal to or greater than the number of bits of the information signal q, and a potential is applied to each electrode from the gate circuit 25. Gate circuit 2
Each of the switching circuits 5 is opened and closed in accordance with a signal representing the state of the regenerative repeater at that time. As a result, a signal representing the state is sent to the output of the surface acoustic wave element 26 as a digital signal train.

第9図はその動作説明図であって、入力のトリガ信号←
)が与えられると、それに応答して、弾性表面波素子2
6から出力ディジタル信号列(b)が、11000  
・・・・・・・・・ 1のように送出された状態を示す
。この信号列のパルス間隔は、ちょうど伝送路のディジ
タル信号列のパルス間隔に適合するように構成されてい
る。
Figure 9 is an explanatory diagram of its operation, and shows the input trigger signal ←
) is given, in response, the surface acoustic wave element 2
The output digital signal sequence (b) from 6 is 11000
・・・・・・・・・ Indicates the sent state as shown in 1. The pulse interval of this signal train is configured to exactly match the pulse interval of the digital signal train of the transmission line.

第1図に戻って、この出力信号列は、波形成形回路28
で波形成形され、同期回路29で情報信号Q   ゛の
タイミングをとって、結合器6から送出される。
Returning to FIG. 1, this output signal train is generated by the waveform shaping circuit 28.
The information signal Q' is shaped into a waveform by the synchronizing circuit 29, and then sent out from the coupler 6.

保持回路23の内容は遅延回路13の出力によってリセ
ットされ、制御回路15の制御によって新しい内容に更
新される。
The contents of the holding circuit 23 are reset by the output of the delay circuit 13 and updated to new contents under the control of the control circuit 15.

第10図は本発明実施例装置の全体の動作を示すタイム
チャートである。第10図−)〜(e)Fi第1図にX
印を付して示す(、)〜(e)の点の動作波形を示す。
FIG. 10 is a time chart showing the overall operation of the apparatus according to the embodiment of the present invention. Figure 10-) to (e)FiX in Figure 1
The operating waveforms of points (,) to (e) shown with marks are shown.

すなわち、第10図(a)F1弾性表面波素子110入
力信号であり、その識別信号よりに応答して、出力伽)
が信号81.82・・・・・・を送出している。保持回
路23の内容はこれに同期してセラ) (8)またはリ
セットに)される。前記した動作により、第二の弾性表
面波素子26から、情報信号@)が送出される。これは
、結合器6を経由してディジタル信号列の中に、第10
図(e)に示すように情報信号qとして挿入される。
That is, FIG. 10(a) is the input signal to the F1 surface acoustic wave element 110, and the output signal is output in response to the identification signal.
is sending out signals 81, 82... The contents of the holding circuit 23 are reset (8) or reset in synchronization with this. By the above-described operation, the information signal @) is sent out from the second surface acoustic wave element 26. This is passed through the coupler 6 into the digital signal train.
It is inserted as an information signal q as shown in Figure (e).

以上説明したように、本発明によれば、再生中継器の識
別のために、弾性表面波素子を利用する。
As described above, according to the present invention, surface acoustic wave elements are used to identify regenerative repeaters.

これは、一般のディジタル論理回路でこの識別のための
メモリ素子を用意する場合に比べると、回路構成は著し
く簡単化されるとともに、このための消費電力量を極め
て小さくすることのできる優れた特長がある。また、再
生中継器は、単にこの弾性表面波素子の接続のみを個別
に設定すれば他との識別ができるので、量産に適してい
る。
This is an excellent feature in that the circuit configuration is significantly simplified compared to the case where a memory element for this identification is provided in a general digital logic circuit, and the power consumption for this purpose is extremely small. There is. Furthermore, regenerative repeaters are suitable for mass production because they can be distinguished from others by simply setting the connections of the surface acoustic wave elements individually.

さらに、情報信号の送出にも弾性表面波素子を利用する
ことにより、との友めの論理回路が簡単化され、消費電
力量が小さくなる。
Furthermore, by using surface acoustic wave elements for sending out information signals, the companion logic circuit can be simplified and power consumption can be reduced.

本発明を実施することにより、運用中に再生中継器を遠
方から個別に識別して監視することが可能に匁るので、
予備回線の設定が不要となり、方式の稼動率が向上する
等、方式設計および運用上にきわめて有利となる。
By implementing the present invention, it becomes possible to individually identify and monitor regenerative repeaters from a distance during operation.
This eliminates the need to set up a backup line, improves the operating rate of the system, and is extremely advantageous in terms of system design and operation.

本発明の方式は海底光ファイバ方式に実施して特にその
効果が大きい。
The system of the present invention is particularly effective when implemented in a submarine optical fiber system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例方式の再生中継器ブロック構成図
。 第2図はディジタル信号列の構成例を示す図。 第3図は弾性表面波素子の構造例を示す図。 第4図は弾性表面波素子の動作説明図。 第5図は弾性表面波素子の別の構造例を示す図。 第6図はその動作説明図。 第7図は誤動作を防止する喪めの回路例を示す図。 第8図は第二の弾性表面波素子およびゲート回路の構成
例を示す図。 第9図社その動作説明図。 第10図は本発明実施例方式の再生中継器動作を説明す
るタイムチャート。 1.9・・・光ファイバ・ケーブル、11・・・第一の
弾性表面波素子、25・・・ゲート回路、26・・・第
二の弾性表面波素子。 特許出願人日本電信電話公社 代理人 弁理士弁 出 直 孝 ′M 2 回 ji3  回 児 4 回 譲  1  口 1 FI 月 5 図 、PIi!36  図 1 亮 7 口 ′JP38  圏 晃 9 口 亮10  図
FIG. 1 is a block diagram of a regenerative repeater according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of the configuration of a digital signal string. FIG. 3 is a diagram showing an example of the structure of a surface acoustic wave element. FIG. 4 is an explanatory diagram of the operation of the surface acoustic wave element. FIG. 5 is a diagram showing another structural example of a surface acoustic wave element. FIG. 6 is an explanatory diagram of the operation. FIG. 7 is a diagram showing an example of a circuit for preventing malfunction. FIG. 8 is a diagram showing a configuration example of a second surface acoustic wave element and a gate circuit. Figure 9 is an explanatory diagram of its operation. FIG. 10 is a time chart illustrating the operation of the regenerative repeater according to the embodiment of the present invention. 1.9... Optical fiber cable, 11... First surface acoustic wave element, 25... Gate circuit, 26... Second surface acoustic wave element. Patent Applicant Nippon Telegraph and Telephone Public Corporation Representative Patent Attorney Attorney Takashi M 2 times ji 3 times 4 times transferred 1 mouth 1 FI month 5 Figure, PIi! 36 Figure 1 Ryo 7 Kuchi'JP38 Ken Akira 9 Kuchi Ryo 10 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)  光7アイパ・ケーブルと再生中継器とが交互
に複数個縦続接続され、ディジタル光信号を伝送する光
中継伝送路で、この伝送路の送信端に、前記再生中継器
を個別に識別する複数ビットのディジタル符号列からな
る識別信号を送信する手段を備え、前記再生中継器に、
前記識別信号のうち自装置に宛てた信号を識別する第一
の手段と、この手段の出力に応答してその再生中継器の
状態を表わす複数ビットのディジタル符号列からなる情
報信号を送出する第二の手段とを備え、前記伝送路の受
信端に1前記情報信号を受信する手段を備えた1視方弐
において、 前記第一の手段に、前記識別信号のビット数以上の電極
位置が設叶られ各装置別の識別信号に対応して前記電極
位置に配線が施された弾性表面波素子を含み、この弾性
表面波素子の出力信号により自装置が選択されたことを
識別するように構成され九ことを特徴とする光中継伝送
路の監視方式。
(1) An optical relay transmission line in which a plurality of optical 7-IPA cables and regenerative repeaters are alternately connected in cascade to transmit digital optical signals, and the regenerative repeaters are individually identified at the transmitting end of this transmission line. comprising means for transmitting an identification signal consisting of a multi-bit digital code string to the regenerative repeater;
a first means for identifying a signal addressed to the own device among the identification signals; and a first means for transmitting an information signal consisting of a multi-bit digital code string representing the state of the regenerative repeater in response to the output of the means. and a means for receiving the information signal at the receiving end of the transmission path, wherein the first means is provided with electrode positions equal to or greater than the number of bits of the identification signal. The device includes a surface acoustic wave element wired to the electrode position in response to an identification signal for each device, and is configured to identify that the device itself has been selected by the output signal of the surface acoustic wave device. A method for monitoring an optical relay transmission line, which is characterized in that:
(2)  光ファイバ・ケーブルと再生中継器とが交互
に複数個縦続接続され、ディジタル光信号を伝送する光
中継伝送路で、この伝送路の送信端に、前記再生中継器
を個別に識別する複数ビットのディジタル符号列からな
る識別信号を送信する手段を備え、前記再生中継器に、
前記識別信号のうち自装置に宛てた信号を識別する第一
の手段と、この手段の出力に応答してその再生中継器の
状態を表わす複数ビットのディジタル符号列からなる情
報信号を送出する第二の手段とを備え、前記伝送路の受
信端に、前記情報信号を受信する手段を備えた監視方式
において、 前記第一の手段に、前記識別信号のビット数以上の電極
位置が設けられ各装置別の識別信号に対応して前記電極
位置に配線が施され九弾性表面皺素子を含み、この弾性
表面波素子の出力信号により自装置が選択されたことを
識別するように構成され、 前記第二の手段に、前記情報信号のビット数以上の表面
電極が設けられ危第二の弾性表面波素子と、前記状態を
表わす複数ビットに対応してこの表面電極に電位を与え
るように構成されたゲート回路とを含むことを特徴とす
る光中継伝送路の監視方式。
(2) An optical repeater transmission line in which a plurality of optical fiber cables and regenerative repeaters are alternately connected in cascade to transmit digital optical signals, and the regenerative repeater is individually identified at the transmitting end of this transmission line. The regenerative repeater includes means for transmitting an identification signal consisting of a digital code string of multiple bits,
a first means for identifying a signal addressed to the own device among the identification signals; and a first means for transmitting an information signal consisting of a multi-bit digital code string representing the state of the regenerative repeater in response to the output of the means. and a means for receiving the information signal at the receiving end of the transmission path, wherein the first means is provided with electrode positions equal to or greater than the number of bits of the identification signal, and each Wiring is provided to the electrode position in response to an identification signal for each device, and includes nine elastic surface wrinkle elements, and is configured to identify that the own device has been selected by the output signal of this surface acoustic wave element, The second means is configured to include surface electrodes whose number is equal to or greater than the number of bits of the information signal, and to apply a potential to the surface electrodes corresponding to the second surface acoustic wave element and the plurality of bits representing the state. 1. A monitoring method for an optical relay transmission line, comprising: a gate circuit;
JP56112861A 1981-07-17 1981-07-17 Monitoring system of optical relay transmission line Pending JPS5814634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112861A JPS5814634A (en) 1981-07-17 1981-07-17 Monitoring system of optical relay transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112861A JPS5814634A (en) 1981-07-17 1981-07-17 Monitoring system of optical relay transmission line

Publications (1)

Publication Number Publication Date
JPS5814634A true JPS5814634A (en) 1983-01-27

Family

ID=14597359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112861A Pending JPS5814634A (en) 1981-07-17 1981-07-17 Monitoring system of optical relay transmission line

Country Status (1)

Country Link
JP (1) JPS5814634A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192066A (en) * 1984-10-12 1986-05-10 Nec Corp Trouble monitor system of communication system
US7728238B2 (en) 2007-04-12 2010-06-01 Yamaichi Electronics Co., Ltd. Data setter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121337A (en) * 1975-04-01 1976-10-23 Xerox Corp Period termination logic system for duplicator
JPS5287952A (en) * 1976-01-19 1977-07-22 Matsushita Electric Ind Co Ltd High-frequency circuit unit using elastic surface wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121337A (en) * 1975-04-01 1976-10-23 Xerox Corp Period termination logic system for duplicator
JPS5287952A (en) * 1976-01-19 1977-07-22 Matsushita Electric Ind Co Ltd High-frequency circuit unit using elastic surface wave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192066A (en) * 1984-10-12 1986-05-10 Nec Corp Trouble monitor system of communication system
JPH0553095B2 (en) * 1984-10-12 1993-08-09 Nippon Electric Co
US7728238B2 (en) 2007-04-12 2010-06-01 Yamaichi Electronics Co., Ltd. Data setter

Similar Documents

Publication Publication Date Title
US4278850A (en) Monitoring system for optical transmission line repeaters
IT8224613A1 (en) NUMERICAL MULTIPLEX COMMUNICATIONS SYSTEM OF THE DISCONNECTION AND CHANNEL INSERTION TYPE
US4398290A (en) Process and apparatus for digital data communication using packet switching
JPS6352535A (en) Apparatus and method for transmitting digital subscriber line
CA1062372A (en) Digital data signalling systems and apparatus therefor
US4551830A (en) Apparatus for providing loopback of signals where the signals being looped back have an overhead data format which is incompatible with a high speed intermediate carrier overhead format
JPS5814634A (en) Monitoring system of optical relay transmission line
US4558317A (en) Digital communication link monitoring device
US3939307A (en) Arrangement for utilizing all pulses in a narrow band channel of a time-division multiplex, pulse code modulation system
US4191857A (en) Digital trunk supervisory decoder multiplexor for ground start or E&M signalling on a common T1 span
US4939729A (en) Process for the switching of asynchronous digital signals and device for the implementation of this process
US7729615B1 (en) Method for transmitting overhead information for wavelength division multiplex networks for fibre-optic information transmission
US3883690A (en) Junction unit alternatively providing branch line broadcasting of data and branch line selection
JPS6194426A (en) Transfer system for repeater monitor information
US3965309A (en) Test system for a T carrier type telephone PCM communications system
JPS5831632A (en) Data transmission line
JPS58148548A (en) Monitoring system of digital relay transmission line
JP2956391B2 (en) Subscriber line interface of optical subscriber transmission equipment
JP3102406B2 (en) Optical interface failure detection device
WO1987001006A1 (en) Circuit arrangement to align the pcm groups entering a communication branch point with another
JPS5962237A (en) Error rate monitoring system of digital relay transmission line
JPH1041908A (en) Digital transmitter
SU1690205A1 (en) Fiber optical data transmission system
JPH0541697A (en) Multiplexing system
JPH10276162A (en) Information transmitting method