JPS58142684A - Automatic controlling method and controlling circuit for beam current - Google Patents

Automatic controlling method and controlling circuit for beam current

Info

Publication number
JPS58142684A
JPS58142684A JP57024446A JP2444682A JPS58142684A JP S58142684 A JPS58142684 A JP S58142684A JP 57024446 A JP57024446 A JP 57024446A JP 2444682 A JP2444682 A JP 2444682A JP S58142684 A JPS58142684 A JP S58142684A
Authority
JP
Japan
Prior art keywords
image pickup
beam current
current
grid
pickup tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57024446A
Other languages
Japanese (ja)
Inventor
Kunio Imai
今井邦雄
Kazuhiko Nakamura
中村和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP57024446A priority Critical patent/JPS58142684A/en
Publication of JPS58142684A publication Critical patent/JPS58142684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/40Circuit details for pick-up tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

PURPOSE:To prevent occurrence of ''oscillation'' and stabilize operation even when a subject having brightness range of above 8 is photographed by feeding back signal current obtained by the target of an image pickup tube to the grid electrode of the image pickup tube through a circuit having compressed characteristic. CONSTITUTION:Assuming the represent voltage of an input terminal of an amplifier that constitutes a beam current controlling circuit as Vin, and the represent voltage obtained at the output terminal as Vout. The grid electrode of the image pickup tube is controlled to become Vout=A.Vin<x>, x<=1/r (where r is an index when beam current of an image pickup tube is indicated by voltage between the grid and cathode) or using a beam current controlling amplifier having similar characteristics. That is, DC is cut off from the input terminal 41 of a beam current controlling amplifier 4 through a condenser 43, and led to a diode 45 restricting the current by a resistance 44. Voltage on both end of the diode 45 is amplified through a linear amplifier 46 and grid current of the image pickup tube 1 is controlled from an output terminal 42.

Description

【発明の詳細な説明】 この発明はヒデオカメラのビーl・電流値イぐ映像信号
の電流値に従属l〜て制御する回路に関するイ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit that controls the current value of a video camera depending on the current value of a video signal.

のである。It is.

画像の・・イライ1・都が尾を引く現象(コメノI・テ
ール)は+ ”’13像管のビーム電流がイく星する1
廟画て発生する。コメノl・テールが発生]−7ない条
it+は撮像管のタークーノ[・而から山l;)れる信
号電流18よし亀 りもビーム電流rnが小さくなること,すなわち次式で
表わされる。
The image...Irai 1. The phenomenon where the city has a tail (Komeno I/Tail) is +"'13 The beam current of the image tube is rising 1
A temple painting occurs. The line it+ without -7 is expressed by the fact that the beam current rn becomes smaller as the signal current 18 generated by the image pickup tube becomes smaller, that is, it is expressed by the following equation.

IB/■s・    ・− ・・・・・・・ 11)従
来よりこの現象を防雨するためにアンチコメノ{・テー
ル(△CT)管と吋(rIれろ撮像・1”すかIllψ
一,Nれていイ)か、こねは!侍仙り/’,C lif
tへてあろ/γ・V)Vr″高イ曲であり,1山常If
f V)le> ′I1ていicイ。A C T □i
7 /r・Ill イすに第1弐を満)tするように制
御する最も筒中な方法は、常時信号電流の鏝大値よりも
大きなビーム電流を流しておくことであるがこの方法は
ビーム径が大きくなることによる+tpr像度低下ある
いは消費電力の増ノJIl 、 さらには撮像管の寿命
を縮めろ等の問題があり採1月できない。
IB/■s・・−・・・・・・・・ 11) Conventionally, to prevent this phenomenon from rain, anticomeno{・tail (△CT) tube and 吋(rI rero imaging・1” water Illψ) were used.
1,Nreteii) or koneha! Samurai Senri/', C lif
t Hete Aro/γ・V)
f V)le>'I1teicii. A C T □i
7 /r・Ill The most practical way to control the beam so that it satisfies the first 2)t is to constantly flow a beam current larger than the maximum value of the signal current, but this method Due to the increased diameter, there are problems such as a decrease in image quality, an increase in power consumption, and the shortening of the life of the image pickup tube, so it cannot be adopted for a month.

信号電流の変化に対応I〜て、ビーム電流を常に幾分大
きく流すように:llI御するのか望せしいわけでこの
ような制御を行なうビーフ・電流最適制御回路として従
来より11・もに次の二つの方式が用いられている。
It is desirable to control the beam current so that it always flows somewhat larger in response to changes in the signal current. Therefore, as a beef current optimum control circuit that performs such control, 11. Two methods are used:

1)等価戻りビーフ、電流制御方式 11)信号電流帰還制御方式 11)の方式は1)の方式に比べて2回路構成が簡単に
なるという利ぷはあるが、コメツトテールが生じない範
囲での、映像信号の明暗比が大きく取れないという欠点
があ−9だ。すなわち、従来の信号電流帰還制御方式は
コメツトテールが生じない映像信号の明暗IL、はぜい
ぜい6倍稗度であった。これよりも人きくすると゛′発
振°”等の不安定現象が生、しろ。この明暗11Sは太
きくII”Zfろほどよく、/1ノくとも8倍の明暗1
b斗で安′、トシて動作することが望まれる。
1) Equivalent return beef, current control method 11) Signal current feedback control method 11) has the advantage of simplifying the two-circuit configuration compared to method 1), but as long as comet tails do not occur, The drawback is that the brightness ratio of the video signal cannot be maintained at -9. That is, in the conventional signal current feedback control system, the brightness/darkness IL of the video signal, which does not produce a comet tail, is at most 6 times as sharp. If the intensity is higher than this, unstable phenomena such as "oscillation" will occur.
It is desired that it will operate stably and stably in both directions.

゛発振”等のイく安定現象について、信弓−電1I11
ミ帰衛方式を例にと、って説明する。信弓電Mt、帰7
,17ノ代のヒーム量制御ブロック図を第1図に小す1
、この図において、1は撮像管、2ばそのターゲツト面
、3はプリアンプ、4はビー1.市流11ilHf14
1増幅器、5が撮像管1のグリッド電極、6がカソード
電極をあられしている。
Regarding stable phenomena such as "oscillation", Shinkyu-den 1I11
Let me explain using the Mi-Kei method as an example. Shinkyuden Mt, Return 7
, 17 heem amount control block diagram is shown in Figure 1.
In this figure, 1 is an image pickup tube, 2 is its target surface, 3 is a preamplifier, and 4 is a camera tube 1. City flow 11ilHf14
1 is an amplifier, 5 is a grid electrode of the image pickup tube 1, and 6 is a cathode electrode.

この回路は次のように動作する。This circuit operates as follows.

被写体(図示せず)の輝度が低い状態か1)高い状態に
変化する部分では、撮像管1のター711面2から叫ら
れる信号電流は増加し、プリーアンプ3の出力も増加す
る。この出力は人出力関係が直線関係を有するビーム電
流制御増幅器4を介して撮像管1のグリッド電極5を制
御する。l〜だが−ってグリノド−カノード間屯圧vG
Kは信号電流■sに叱倒して直線的に増加する。すなわ
ち ■GK−に1・■8  ・・・・・・・・・・・・・・
・・・・ 121−一方、 撮像管]のビーム電流値8
はグリッド−カソード間屯田VGKの2〜3乗に比例し
て増加する。
In a portion where the brightness of the subject (not shown) changes from a low state to a high state, the signal current sent from the surface 2 of the image pickup tube 1 increases, and the output of the preamplifier 3 also increases. This output controls the grid electrode 5 of the image pickup tube 1 via the beam current control amplifier 4, which has a linear output relationship. l~However, the pressure between the glinode and the canode vG
K increases linearly with the signal current ■s. In other words, ■GK-to 1・■8 ・・・・・・・・・・・・・・・
...121-On the other hand, the beam current value of the image pickup tube 8
increases in proportion to the second to third power of the grid-cathode distance VGK.

すなわちこの関係を式であられすと。In other words, this relationship can be expressed as an expression.

’B = K2・■G’K   (r=2〜3)−・・
・・・13)L、たがって、撮像管1のターゲット面2
かも得らねる信号電流■8とビーフ、電流IBの関係は
次式であられされる。
'B = K2・■G'K (r=2~3)--
...13) L, therefore, the target surface 2 of the image pickup tube 1
The relationship between the signal current (8) and the current IB can be expressed by the following equation.

■+1−に3・I8r   ・・・・・・・・・・・・
・・・・・・・・・・・・・(4+すなわち、ビーム電
流は信号電流に対して直線的に増加せず、2〜3乗に比
例して増加する。この場合1次のような理由で°°全発
振と称される現象が生じる。信号電流■8とビーフ、電
流IBの関係を示す第2図において、特性曲線T1で表
わされる信号電流−ビーム電流性+11に設定し7た場
合、ビーム電流値は信号電流値よりも大きく、ビーム電
流不足の状態にはならない。
■+1- to 3・I8r ・・・・・・・・・・・・
・・・・・・・・・・・・(4+ In other words, the beam current does not increase linearly with respect to the signal current, but increases in proportion to the second or third power. In this case, the beam current does not increase linearly with respect to the signal current. For this reason, a phenomenon called °°total oscillation occurs.In Figure 2, which shows the relationship between the signal current 8 and the beam current IB, it is set to signal current - beam current + 11, which is represented by the characteristic curve T1. In this case, the beam current value is larger than the signal current value, and there is no beam current shortage.

この様な設定条件において、ターゲット而2の照度が大
きい場合(明るい画面)、信号電流■8が増加し、これ
に対応1−7てビーム電流I8が急救に増力1けるので
ビーム径が急檄に太くなる。その結果ターゲット而2の
走査面積が増大し2て信号電流■8が増加する。信号型
* I sが増加すると捷すますビーム間流IBが増加
する。ビーム電流IBが大きくなり渦き、ビーム径が入
くなると次の走査線あるいはさらに次の走査線部分まで
走査ト2てしまうので。
Under these setting conditions, when the illuminance of the target 2 is high (bright screen), the signal current 8 increases, and in response to this, the beam current 1-7 increases by 1 to quickly increase the beam diameter. becomes thicker. As a result, the scanning area of the target 2 increases, and the signal current 2 increases. As the signal type * I s increases, the inter-beam flow IB increases. As the beam current IB becomes larger and swirls, and the beam diameter increases, the beam will scan to the next scanning line or even to the next scanning line.

次の走査時には信号電流■sが極端に小さく1.【る。During the next scan, the signal current ■s is extremely small.1. [ru.

信号電流Isが小さくなると第2図に示す特性曲線T1
に従がって、ビーム電流輸が小さくなる。ビーム電流■
Bが小さくなり、ビーム径がYell <なっても。
When the signal current Is becomes smaller, the characteristic curve T1 shown in FIG.
Accordingly, the beam current transport becomes smaller. Beam current■
Even if B becomes small and the beam diameter becomes <Yell.

既に友いビーl、て走査されている範囲では信号電流I
sが非常に小さい。さらに走査が進むと太いビーl、で
走査されていない領域に入る。明るい画面の場合、再び
、信号電流Isが増加し2.ビーム電流■8が増加する
という状態が巡って来る。
In the range that has already been scanned, the signal current I
s is very small. As the scanning progresses further, it enters an area that has not been scanned with a thick beam. In the case of a bright screen, the signal current Is increases again.2. A situation comes around in which the beam current ①8 increases.

明るい画面の場合、このような動作を繰り返すので、映
像モニタ画面−ヒで見ると白と黒の太い横線の繰り返し
の縞模様が観11111される。これが1通常゛発撮”
′と呼ばれている現象である。
In the case of a bright screen, such an operation is repeated, so when viewed on a video monitor screen, a striped pattern consisting of repeated thick horizontal lines of white and black appears. This is the first normal shooting.
This is a phenomenon called ``.

このような状態を避けるために、ビーム電流18と信号
電流I8の特性曲線を第2図に示すT2あるいはT、の
ように設定すれば゛°発振°゛現象はなくなるが前述(
1)式を満月(する信号電流の範囲が狭くなり。
In order to avoid such a situation, if the characteristic curves of the beam current 18 and the signal current I8 are set as T2 or T shown in FIG. 2, the "oscillation" phenomenon will disappear;
1) When the expression is full moon (the range of signal current becomes narrower).

コメツトテールの生じt、c、い映像の明暗比が大きく
取れない。
When comet tails occur, the brightness ratio of the image cannot be maintained at a high level.

従来より、第1図に示すビーム電流制御増幅器40人出
力特性は第3図に示すようにクリップ特1’l・をもた
ぜて、ヒーノ、′「1ス流の最大値を制限している。こ
の具体的回路例を第4図に示す。撮像管1のターゲット
面2かも?’<)られる信号電流■8け、プリアンプ;
うで増幅されたのち、コンデンサ401とトランジスタ
402で構成されろクランプ回路を通(7,エミッタフ
ォロワ段(4(1:う、404)、増幅段(405゜4
06.407 )ざらにエミッタフォロワ段(408,
409)を介して、最終増幅段(4]5,41.6,4
17.418 )で増幅されたのち、撮像管1のグリッ
ド電極5へ帰還される。
Conventionally, the output characteristics of the beam current control amplifier shown in Fig. 1 have a clipping characteristic of 1'l as shown in Fig. 3, and the maximum value of the 1st current is limited. A concrete example of this circuit is shown in Fig. 4. The signal current generated by the target surface 2 of the image pickup tube 1 ■ 8 digits, preamplifier;
After being amplified by
06.407) Rough emitter follower stage (408,
409), the final amplification stage (4]5,41.6,4
17.418) and then fed back to the grid electrode 5 of the image pickup tube 1.

クリップ回路420は最終増幅段トランジスタ415の
ベース端子に接続されるダイオード412.トランジス
タ413.抵抗411およびril−変抵抗414で構
成される。このクリップ回路420は出力トランジスタ
I ’I5のエミッタ電流の最大値を制限するものであ
る。出力トランジスタ415のベース端、’r 423
 +” イー。
The clip circuit 420 includes a diode 412 . connected to the base terminal of the final amplifier stage transistor 415 . Transistor 413. It is composed of a resistor 411 and a ril-variable resistor 414. This clip circuit 420 limits the maximum value of the emitter current of the output transistor I'I5. Base end of output transistor 415, 'r 423
+” E.

のエミッタ↓]モ抗416の電源(IllI端子・12
1の間の電1■=を制限することによりこれを実現し−
2でいる3゜この回路において端子421 −・123
間の?1i)下は用変抵抗414の摺動端子422と′
電源端子421の間の電圧vthに等し7い。
emitter ↓] power supply of resistor 416 (IllI terminal 12
This is achieved by limiting the electric current 1■= between 1 and −
2 3゜ In this circuit, terminal 421 - 123
Among? 1i) Below is the sliding terminal 422 of the variable resistor 414 and '
It is equal to the voltage vth between the power supply terminals 421.

クランプトランジスタ402のベース・エミッタ飽和電
圧な■。F、s+ プリアンプ3の出力端子41(ビー
ム電流制御増幅器4の入力端子)の電圧を■であられす
と。
The base-emitter saturation voltage of the clamp transistor 402 (■). F, s+ If the voltage at the output terminal 41 of the preamplifier 3 (input terminal of the beam current control amplifier 4) is .

のときのビーム電流制御増幅器4の人出力特性は次式で
表わされる。
The output characteristics of the beam current control amplifier 4 when

だだL−9R406,R407,R4]6.R417は
それぞれ抵抗406゜407.416,417の抵抗値
を表わ[7ている。
Dada L-9R406, R407, R4]6. R417 represents the resistance values of the resistors 406, 407, 416 and 417, respectively.

寸だv418は端子418の電圧を表わし2−(いる。418 represents the voltage at terminal 418.

のときは でクリップされる。When will be clipped.

以−に説明したように、従来の回路では、ビーム電流制
御増幅器11の人出力特性は第3図であられされる特性
を有する。この場合、信号電流■8とビーム電流■8の
関係は例えば第2図に示す特性曲線のT1(実線)とT
、(一点鎖線)であられされ、■8=I、となる直線(
破線)と交わる点に対応する信号電流ISIよりも小さ
い範囲の映像信号に対してコメツトテールを生じない。
As explained above, in the conventional circuit, the output characteristics of the beam current control amplifier 11 have the characteristics shown in FIG. In this case, the relationship between signal current ■8 and beam current ■8 is, for example, T1 (solid line) and T1 of the characteristic curve shown in FIG.
, (dot-dash line), and the straight line (
A comet tail does not occur for video signals in a range smaller than the signal current ISI corresponding to the point where the broken line intersects with the dotted line.

この値ISIは基準信号電流のせいぜい6倍程度であり
、これより大きな制御範囲を得ようとすると上記“°発
振′°現象が生じる。
This value ISI is at most about six times the reference signal current, and if a control range larger than this is attempted to be obtained, the above-mentioned "° oscillation" phenomenon occurs.

この発明は上記問題を解決するものであり簡単な構成の
信号電流帰還制御方式を用いて、8倍以−ヒの明暗比の
被写体を撮影し2だ場合でも°゛発」辰“などが起らず
安定し、て動作するような回路を提供するものである。
This invention solves the above problem and uses a signal current feedback control system with a simple configuration to photograph an object with a contrast ratio of 8 times or more. The purpose of this invention is to provide a circuit that is stable and operates smoothly.

この発明は(最像管のターゲノI・から得られる信号電
流を2人力にχ=iして出力が直線的に’Vl加ぜず。
In this invention, (the signal current obtained from the target I of the image tube is input to χ=i, and the output is linearly obtained without adding Vl.

圧縮した特性を有する回路を介し7て撮像管のグリッド
電極に帰峨し1.グリッド電圧を制御するものである。
1. Return to the grid electrode of the image pickup tube through a circuit with compressed characteristics. It controls the grid voltage.

すなわち、ビーl、電流制@1回路を構成する増幅器の
入力端子の電圧をVlnとし2.その出力端子に1叫ら
れる電圧■。utとすると (ただし、rは撮像管のビーム電流をグリッド・カソー
ド間電圧で表わした場合の指数)となるようにするか、
あるいは、この特性を工具ヒの折線で近似し、た特性を
有するビーム電流制御増幅器を用いて、映像信号を」着
幅し、2て、撮像管のグリッド電極を制御することを特
徴とする特許電流制御回路を提供するものである。
That is, let the voltage at the input terminal of the amplifier constituting the current control @1 circuit be Vln.2. ■The voltage that is output to its output terminal. ut (where r is an index when the beam current of the image pickup tube is expressed as the voltage between the grid and cathode), or
Alternatively, this patent is characterized in that this characteristic is approximated by a polygonal line of the tool, and a beam current control amplifier having the characteristic is used to control the video signal, and then the grid electrode of the image pickup tube is controlled. A current control circuit is provided.

本発明の一実施例の回路図を第6図に示す。この図にお
いて、ビーム電流制御増幅器40入力端子41からコン
デンサ4:3を介して直流分を遮断し2゜抵抗44で電
流制限し7てダイオード45に導く。ダイオ−1・・1
50両端のF! Flτを線形増幅器46を介して増幅
し、出力端子42J:り撮像管1のグリッド電極5を制
御する。こうすることによりビーム電流制御増幅器4は
対数王縮され/ζ特件が得られ、第(8)式の条件を満
足するように設定することができる。
A circuit diagram of an embodiment of the present invention is shown in FIG. In this figure, the DC component is cut off from the input terminal 41 of the beam current control amplifier 40 via a capacitor 4:3, the current is limited by a 2° resistor 44, and then led to a diode 45. Dio-1...1
F on both ends of 50! Flτ is amplified via a linear amplifier 46, and the output terminal 42J controls the grid electrode 5 of the image pickup tube 1. By doing so, the beam current control amplifier 4 is reduced to a logarithm and the /ζ special condition is obtained, and it can be set so as to satisfy the condition of equation (8).

本発明の他の実施例を第7図に不す。Another embodiment of the invention is shown in FIG.

撮像管1のターケノト面2から略られる信号電流はプリ
アンプ3で増幅されたのち、ビーム電流制御増幅器4の
入力端千羽からコンデンサ401と。
The signal current that is omitted from the main plane 2 of the image pickup tube 1 is amplified by the preamplifier 3 and then sent from the input end of the beam current control amplifier 4 to the capacitor 401.

[・ランジスタ402で構成されるクランプ回路、エミ
ッタフォロワ段(403,4071)を通りトランジス
タ405 、抵抗406.407で構成される11n幅
段に導ひかれる。この増幅段(4f)5,406,40
7 )の出力は、エミッタフォロワ段m l1lE−1
−るトランジスタ408のへ一スに導かわるが、とノ′
)と411列にダイオ−1−7130と−11−−− 可変抵抗431で構成されるオ’I is+川縮用路−
132にI〆続される。このI唐幅段(4(15,40
6,tI(17)の串ノJ(土エミ、タフォロワ段(4
(18,110411)を−+lflす、11(抗・1
田ヲ介して、トラン/スタ旧5.低抗旧6および・11
7で構成される出力11N幅段で1曽幅され、 +lt
力端子42から撮像管1のグリッド電極5をltl膿1
1すイ)。
[- A clamp circuit composed of a transistor 402 passes through an emitter follower stage (403, 4071) and is led to an 11n width stage composed of a transistor 405 and resistors 406 and 407. This amplification stage (4f) 5,406,40
The output of 7) is the emitter follower stage m l1lE-1
408, but the
) and 411 rows are diode-1-7130 and -11---- variable resistor 431.
132. This I Karabaku Dan (4 (15, 40)
6, tI (17) Kushino J (Tsuchi Emi, Taforova Dan (4)
(18, 110411) -+lfl, 11 (anti-1
Trans/Sta old 5. via Tawo. Low resistance old 6 and 11
The width is 1 in the output 11N width stage consisting of 7, +lt
Connect the grid electrode 5 of the imaging tube 1 from the power terminal 42 to the ltl.
1 Sui).

ヒ記利f輝圧縮回路432は、増幅段(405,406
,/+07)の電圧利得を二つのりf線で近似するため
に用いられている。
The optical compression circuit 432 includes an amplifier stage (405, 406
, /+07) is used to approximate the voltage gain of two f-lines.

との実1(+4例に示す回路の特性はヒーノ、屯流制介
1増幅器40人力市1」0を■1n出力電II−を■。
The characteristics of the circuit shown in the example 1 (+4) are Hino, Tonryu Sukei 1 amplifier 40 human power city 1'' 0 ■ 1n output voltage II - ■.

105.クランプトランジスタ402のコレクターエミ
ッタ飽和鴫圧を■CES + 可変抵抗431の摺動端
子422−tI6.源側端子421間の1にLモをvt
h +  ダイオード/130の順方同市i−を降下を
Vlいで表わすと、以トーのようにJ−jえもれる。
105. The collector-emitter saturation pressure of the clamp transistor 402 is determined by ■CES + the sliding terminal 422-tI6 of the variable resistor 431. Connect the L mo to 1 between the source side terminals 421 and vt
If we express the drop in the forward direction i- of h + diode/130 by Vl, J-j will be expressed as shown below.

すなわち、1)人力型[1三が。In other words, 1) Human-powered type [13.

のとき。When.

2 だだ’ 、R40fi、”4f17.”旧6. R71
17はそれぞれ抵松、/106゜4(’17.4.16
 および旧7の1」(杭値を、V418は端子−418
の電圧をあられり、ている。
2 Dada', R40fi, "4f17." Old 6. R71
17 are respectively Morimatsu, /106°4 ('17.4.16
and old 7's 1'' (the pile value, V418 is terminal -418
The voltage is high.

11)さらに人力市川が。11) Furthermore, human power Ichikawa.

のとき。When.

とあl;)わされろ3、 ここで、Rtはダイオ−ドd30のアノ−1一端イから
、可変抵抗4;う1を見だ祇抗値を示し7ており。
3. Here, Rt indicates the resistance value of the variable resistor 4;

OT変低抵抗431の端子421−アース間の全抵抗値
をR431,摺動端子122と端子421との間の抵抗
分を■t、、Tとすると21工、は次式で与えられる。
Assuming that the total resistance between the terminal 421 and the ground of the OT variable resistor 431 is R431, and the resistance between the sliding terminal 122 and the terminal 421 is t, T, 21 is given by the following equation.

l記ヒーム電流、、、、 、、611 p、’t(II
IF;1器4の人出力特性を第8図に示す。
Heem current, , , , 611 p,'t(II
Figure 8 shows the human output characteristics of IF; 1 device 4.

この」易合イ苫号′市流■8とヒーム′市流TBのl’
+54糸は第9図であl;)わされ、信号′11L流に
利し−7てヒーl、雷、流が太き・尚きろことによろ°
°発娠″現象を防雨し7.かつ信号電流の最大値■8□
は中7.Cろクリップの嚇舎」:りも大きく取ることが
できろ。実暎によると、この構成・条件において、前り
己゛′発振′”現象は起らず、安定して、8倍以1−の
明暗比の映像信弓に利してもコメツトテールが発生しな
かつプζ3゜ 本発明の他の実施例を第10図に示す。これは。
This 'Ichigoi Tomago''Ichiryu■8' and 'Heem''IchiryuTB'l'
The +54 thread is twisted (l;) in Fig. 9, and the signal '11L flow benefits -7, and the heel, thunder, flow is thick, and it depends on the angle.
7. Rainproofing the phenomenon of “°starting” and the maximum value of the signal current■8□
is a seventh grader in junior high school. "C-clip's attack house": You should be able to take a big shot. According to actual experiments, with this configuration and conditions, the phenomenon of "self-oscillation" does not occur, and comet tails occur stably even when used for video shooting with a contrast ratio of 8 times or more to 1-1. Another embodiment of the present invention is shown in FIG.

嘩像管1のターゲット面2からの信号電流■8をプリア
ンプ3で増幅し7.この出力を更にトランジスタ50:
3で反転増由畠シ2.さらにl・ランシスタ511で反
転増幅1−.て撮像管1のグリッド電極5に帰・革させ
ろ。このビーム電流制御回路4には、l・ランゾスタ5
03のコl/クタに1.゛3q値V1.タイオー 1・
5(M 。
7. The signal current 8 from the target surface 2 of the image tube 1 is amplified by the preamplifier 3. This output is further connected to transistor 50:
Reversal at 3, Masuyuki Hatakeshi 2. Further, an inverting amplification 1-. Then, return the grid electrode 5 of the image pickup tube 1. This beam current control circuit 4 includes an l.
03 Koll/Kuta 1.゛3q value V1. Taioh 1・
5 (M.

イノビーダンス505なろ回路と閾値V1.ダイ4−1
−’ !;(+7.インピーダ> Z 5081(る回
路を並’il p &’ii) −、t−ろ。このよう
にすることによりヒ−j、電流制+1li1回あられさ
れる飽和flJN i’l−が1(トられる。この場合
の信号?i流I8とヒーノ、 ′、−17.流rBの1
94j係は第12図に示すよう(lで11:す、−゛つ
の折線による近似の1易合よりも。
Innovidance 505 Naro circuit and threshold V1. die 4-1
-'! ;(+7. Impeder> Z 5081 (parallel the circuit 'il p &'ii) -, t-ro. By doing this, the saturation flJN i'l- which is generated once by heat j, current control +1li 1 (signal in this case? i stream I8 and heeno, ′, -17. 1 of stream rB
94j is as shown in FIG.

コメツトテールの起らlICい!Itll nfll範
囲は、広く取ることができろ。なお、不発明のビーム電
流制御方法の具体的回路例と17では、前;11iの谷
実施例の他に。
The origin of the comet tail is IC! Itll nfll range can be wide. In addition, in 17, the specific circuit example of the uninvented beam current control method is in addition to the valley embodiment in 11i.

既存のガンマ補iE 11.;l l烙ど同等の構成を
必用しても同じ効果が11斗られイ)ことは′容易に理
1イされることである。
Existing gamma correction iE 11. It is easy to understand that even if an equivalent configuration is used, the same effect can be obtained.

l′J、−に説明しブζごとく本発明によれば、ビーム
電流ぼ発振゛′することなく制御でき、信号電流帰還方
式の特徴である回路の簡11(さを損なわず、安定に明
暗化8借以トの映像に対して、コメツトテールを生じな
いようにすることが+j丁能となる。
According to the present invention, the beam current can be controlled without causing oscillation, and stable brightness and darkness can be achieved without sacrificing the simplicity of the circuit, which is a feature of the signal current feedback method. It is important to prevent comment tails from occurring in the 8-bit video.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来より知られている信号電流帰還方式のブロ
ック図、第2図は従来回路の信号電流とビーl、電流の
関係を表わす特性図、第3図は従来方式のビーl、電流
制4噌幅器の人出力特性図、第+5− 4:図は従来より用いられているビーム電碓部制御増嘔
器の回路図、第5図は本発明によるビーム電流噺11@
増@器の人出力特件図、第6図は本発明の一実施例を示
すブロック図、第71文は本発明の他の実施例を示す回
路図、第8図は第7図に示すビーム電流制@謂幅器の人
出力特性図、第9図は第8図に示す人出力特性ケもつビ
ーム電流制御卸回路を用いた場合の信号電流■8とビー
ム重加■8の制@特性図、第10図は不発明め朋の実施
例を示す回路図。 第11図:よその信号醍加−グリノl′−霞王等性図、
第12図1′i、第11図に示す人出力特性をもつビー
ム電流制御回路を用いた場合の信号型7’MIHとビー
ム電流■Bの制御特性図である。 1:撮像管、2:ターゲノl−i、3:プリアンプ、4
:ビーム電流制御増幅器、44:抵抗、45: ダイオ
ード、46二線形増幅器、432:利碍圧縮回路。 代理人 弁理士 薄 1)利 幸 16一
Figure 1 is a block diagram of a conventionally known signal current feedback system, Figure 2 is a characteristic diagram showing the relationship between the signal current and current of the conventional circuit, and Figure 3 is a diagram showing the relationship between signal current and current of the conventional circuit. Figure 4 shows the human output characteristics of a 4-inch width control device, No. +5-4: The figure is a circuit diagram of a conventionally used beam power section control beam increaser, and Figure 5 shows the beam current story 11 according to the present invention.
Figure 6 is a block diagram showing one embodiment of the present invention. Line 71 is a circuit diagram showing another embodiment of the present invention. Figure 8 is shown in Figure 7. Figure 9 shows the control of signal current ■8 and beam weighting ■8 when using a beam current control wholesale circuit with the human output characteristics shown in Figure 8. The characteristic diagram and FIG. 10 are circuit diagrams showing an embodiment of the invention. Figure 11: Foreign signal Daika-Gurino l'-Kasio isomorphism diagram,
FIG. 12 is a control characteristic diagram of signal type 7'MIH and beam current ■B when using a beam current control circuit having the human output characteristics shown in FIG. 1'i and FIG. 11. 1: Image pickup tube, 2: Target unit, 3: Preamplifier, 4
: beam current control amplifier, 44: resistor, 45: diode, 46 bilinear amplifier, 432: profit compression circuit. Agent Patent Attorney Susuki 1) Toshiyuki 161

Claims (1)

【特許請求の範囲】 ■)撮像管のターゲットから碍られる信号電流工。 により、上記撮像管のグリッド・カノート闇暇!t V
GKを2次式(二つ以上の折線による近(v式を含む)
であられされろような関係。 罹康をグリッド・カノート間電圧であられした場合の指
数)。 を満足するように制御することを特徴とする自動ビーム
電流制御方法。 2)撮像管のターゲットから碍られる信号電流を。 ヒ紀碍像管のグリッド電極に帰還し、該グリッド電圧を
制御する信号電流帰還制御方式のヒーム賀流制@+回路
において、上記信号電流を、入出力特性が近(+ヅ鍬7
1数田縮特1’−1t (’−″つ1コノ、トのIJ1
亮i!による近似用縮特111−を含む)を持つビーL
 ’fit f+fi制御増幅器を介してト記り1旧象
管のクリッド電極に帰還させろ構rJ17.と1−、た
ことを乍1徴どするビーム電流制御回路。
[Claims] ■) A signal current cutter from a target of an image pickup tube. Due to the above-mentioned image pickup tube grid canot dark time! tV
GK is a quadratic formula (approximation by two or more broken lines (including the v formula)
It's a relationship like that. (Exponent when the morbidity is caused by the voltage between the grid and the grid). An automatic beam current control method characterized by controlling the beam current so as to satisfy the following. 2) Signal current from the target of the image pickup tube. In the signal current feedback control system @+ circuit, which returns to the grid electrode of the Hiki image tube and controls the grid voltage, the signal current is fed back to the grid electrode of the image tube, and the input/output characteristics are close to each other.
1 number field reduction special 1'-1t ('-'' 1 piece,
Ryo i! Be L with the approximation reduction characteristic 111-)
'fit f+fi Feed back to the clid electrode of the previous quadrant tube via the control amplifier rJ17. and 1-, a beam current control circuit with one feature.
JP57024446A 1982-02-19 1982-02-19 Automatic controlling method and controlling circuit for beam current Pending JPS58142684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57024446A JPS58142684A (en) 1982-02-19 1982-02-19 Automatic controlling method and controlling circuit for beam current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57024446A JPS58142684A (en) 1982-02-19 1982-02-19 Automatic controlling method and controlling circuit for beam current

Publications (1)

Publication Number Publication Date
JPS58142684A true JPS58142684A (en) 1983-08-24

Family

ID=12138368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57024446A Pending JPS58142684A (en) 1982-02-19 1982-02-19 Automatic controlling method and controlling circuit for beam current

Country Status (1)

Country Link
JP (1) JPS58142684A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391624A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Beam current control system for television camera unit
JPS5487111A (en) * 1977-12-08 1979-07-11 Philips Nv Tv camera
JPS55128974A (en) * 1979-03-21 1980-10-06 Rca Corp Device for erasing video high light on television pickup tube
JPS55133187A (en) * 1979-01-26 1980-10-16 Philips Corp Dynamic beam current control circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391624A (en) * 1977-01-24 1978-08-11 Hitachi Ltd Beam current control system for television camera unit
JPS5487111A (en) * 1977-12-08 1979-07-11 Philips Nv Tv camera
JPS55133187A (en) * 1979-01-26 1980-10-16 Philips Corp Dynamic beam current control circuit
JPS55128974A (en) * 1979-03-21 1980-10-06 Rca Corp Device for erasing video high light on television pickup tube

Similar Documents

Publication Publication Date Title
KR0126474B1 (en) Video noise reduction circuit
JPH0691637B2 (en) Video signal display device
JPS6146675A (en) Compression circuit of image pickup signal
JPS58142684A (en) Automatic controlling method and controlling circuit for beam current
KR930002122B1 (en) Video signal processing system
US3764738A (en) Method and arrangement for limiting the output signal amplitude of a video amplifier during fly-back highlight discharge
JPS6064580A (en) Automatic aperture controller of lens for cctv camera
ES367456A1 (en) Automatic beam current limiting using reference current sources
US4241362A (en) Circuit for increasing a signal slope of a periodically occurring signal mainly near a reference level
JP2501568Y2 (en) Receiver
DE3010978A1 (en) ARRANGEMENT FOR TREATING SPOTLIGHTS IN TELEVISION IMAGE EARS
JPH10284953A (en) Feedback amplifier circuit
Oliver A rooter for video signals
JPS60126975A (en) Beam current control circuit of image pickup tube
JP4135895B2 (en) Lighting control circuit for surveillance camera
EP0014019A1 (en) Dynamic beam current control circuit for use with a television camera tube
DE2425321A1 (en) COLOR TELEVISION CAMERA
JPH0348522A (en) Optical receiver circuit
JPH02100474A (en) Automatic contrast adjustment circuit of video camera
KR200145474Y1 (en) An automatic current limit circuit of a monitor
JPH08256287A (en) Electron beam control method in image pickup tube
JP2971104B2 (en) Projection image display
US2880368A (en) Coupling network
JPH06125512A (en) Driving device of image pickup tube
KR910006192Y1 (en) Abl compensation circuit