JPS58141000A - Cyclotron - Google Patents

Cyclotron

Info

Publication number
JPS58141000A
JPS58141000A JP2299782A JP2299782A JPS58141000A JP S58141000 A JPS58141000 A JP S58141000A JP 2299782 A JP2299782 A JP 2299782A JP 2299782 A JP2299782 A JP 2299782A JP S58141000 A JPS58141000 A JP S58141000A
Authority
JP
Japan
Prior art keywords
frequency
resonator
cyclotron
oscillator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2299782A
Other languages
Japanese (ja)
Inventor
藤居 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2299782A priority Critical patent/JPS58141000A/en
Publication of JPS58141000A publication Critical patent/JPS58141000A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は特に病院内等で使用されるサイクロトロンの
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in cyclotrons used particularly in hospitals and the like.

先ず、第1図1こよって従来のサイクロトロンの概略を
述べ次に本発明を説明することとする。
First, a conventional cyclotron will be outlined with reference to FIG. 1, and then the present invention will be explained.

第1図において、2はディ電極1を含む共振器。In FIG. 1, 2 is a resonator including a di-electrode 1.

aは周波数補償機構例えば容量性周波数補償機構笠、4
・は励振器で、その内部には終段真空管5とプレー1−
測高周波信号検出器9とグリッド側高周波信号検出器1
0とを有し、終段真空管すはカップリング6を介して前
記共振器2に結合されている。  7は前置増幅器であ
り、8は信号処理系であって該信号処理系内には、11
11記高周波信号検出HA9.10からの高周波信号を
受ける位相差検出器11と発振)tH]2が設けられて
いる。 該発振器12は外部からの信号によって発信周
波数及び信号のレベルが可変である。  】3は前記位
相差検出器11と周波数補償機構3とを接続するコン1
−I:I−ル信号線である。
a is a frequency compensation mechanism, for example, a capacitive frequency compensation mechanism; 4
・ is an exciter, and inside it there is a final stage vacuum tube 5 and a playback 1-
High frequency signal detector 9 and grid side high frequency signal detector 1
0, and the final stage vacuum tube is coupled to the resonator 2 via a coupling 6. 7 is a preamplifier, 8 is a signal processing system, and the signal processing system includes 11
11. A phase difference detector 11 receiving a high frequency signal from the high frequency signal detection HA9.10 and an oscillation)tH]2 are provided. The oscillator 12 has variable oscillation frequency and signal level depending on an external signal. ] 3 is a controller 1 that connects the phase difference detector 11 and the frequency compensation mechanism 3.
-I: I-le signal line.

サイクロト1スンにおいて、粒子に加速エネルギーを4
えるために、ディ電極上に高周波高電圧を発生させるサ
イクロトロンでは、一般に、そのような高周波高電圧を
発生させる系を高周波系と呼んでいる。 高周波糸は大
きく分けてディ電極lを含めた共振器2と、共振器2t
こ注入する高周波電力を発生させる励振器4及び発振器
12を含めて小電力の高周波信号を処理する信号処理系
10から構成される。
In a cyclotron, 4 acceleration energies are applied to particles.
In a cyclotron, which generates a high frequency and high voltage on the di-electrode in order to generate high voltage, the system that generates such high frequency and high voltage is generally called a high frequency system. The high-frequency thread is roughly divided into resonator 2 including the de-electrode l, and resonator 2t.
It is comprised of a signal processing system 10 that processes a low-power high-frequency signal, including an exciter 4 that generates the injected high-frequency power and an oscillator 12.

ディ電極] J二に高周波電圧を発生させる場合、高周
波大電力が共振器2に注入されるが、この時、共振器2
の各部は、高周波損失によ−〕で熱を余生する。 これ
らは予め共振器に張りめ(゛らされている冷却管内を流
れる冷却水によって取除かれるが、電力注入時に、」(
振器の温度は変化する。
Electrode] When generating a high frequency voltage at J2, high frequency high power is injected into the resonator 2;
Each part generates residual heat due to high frequency loss. These are removed by the cooling water flowing in the cooling pipe that has been pre-filled in the resonator, but when power is injected,
The temperature of the shaker changes.

この温度変化は共振器の形状を若干変化させ、これがさ
らに、共振器の共鳴周波数を変動させていくことになる
This temperature change causes the shape of the resonator to change slightly, which in turn causes the resonant frequency of the resonator to vary.

このような周波数の変動に対して従来のサイクロ1−ロ
ンでは、共振器2の内部に機械的なIi’、l波数補償
機構3を設置して、位相差検出詣11J:リコントロー
ル信号1i1131i<介して該周波数Nlt fi′
Ii機1’flf3の変動を補償して、発振周波数が絶
えず一定の値となるようにするという方法がとられてき
た。
In response to such frequency fluctuations, in the conventional cyclo1-ron, a mechanical Ii', l wave number compensation mechanism 3 is installed inside the resonator 2, and the phase difference detection visit 11J: recontrol signal 1i1131i< via the frequency Nlt fi′
A method has been used to compensate for fluctuations in Ii machine 1'flf3 so that the oscillation frequency always remains at a constant value.

高周波系の発振周波数は、サイクロトロンによって加速
される粒子のエネルギーを決めZ)In−彎なパラメー
タの一つであって、研究用のリイク「11ロンには不可
欠のものである。
The oscillation frequency of a high-frequency system is one of the parameters that determines the energy of particles accelerated by a cyclotron, and is essential for research purposes.

しかし、そのためにサイクロトロンの共振器2には機械
的な周波数補償機構3が必要となり、サイクロトロン本
体を複雑化する一つの要因となっていた。 特に、この
部分は高周波大電流が流れる部分であり、そのためにス
ライドする接触部が高周波電流によ−)て焼損したり、
又真空容器をこ入る部分であるため、駆動部を真空漏れ
のないようにf/it密な真空シールを施こす必要があ
る。
However, for this purpose, the resonator 2 of the cyclotron requires a mechanical frequency compensation mechanism 3, which is one of the factors that complicates the cyclotron body. In particular, this part is a part where a large high-frequency current flows, so the sliding contact part may burn out due to the high-frequency current.
Furthermore, since this is a part that penetrates the vacuum container, it is necessary to apply a f/it tight vacuum seal to the drive part to prevent vacuum leakage.

さらに、ディ電圧を発生させる運転においても周波数補
償機構を機械的に細かく動かすことによって共振点を見
出す高度な運転技術操作を必要とする。
Furthermore, even when driving to generate a di-voltage, sophisticated driving techniques are required to find the resonance point by mechanically moving the frequency compensation mechanism minutely.

放射性同イ☆元素をルーチン的に製造することを目的と
するサイクロトロンにおいては、最早や、加速粒子のエ
ネルギーを精度よく決める必要はなくなってくる。 従
って、機械的な周波数補償機構を設置しても、性能」−
では何の意味もなくなるし、むしろ信頼性を低下させ、
操作性を悪くするだけである。
In a cyclotron whose purpose is to routinely produce radioactive iso-elements, it is no longer necessary to accurately determine the energy of accelerated particles. Therefore, even if a mechanical frequency compensation mechanism is installed, the performance
This would mean nothing, and would actually reduce reliability.
It only makes the operability worse.

本発明はこうした従来の問題点に対処するためになされ
たもので、その目的は、サイクロ1−11ン本体を簡略
化することによって、信頼性及び操作性を向上させると
共tこ、高度な技術運転要員を必要としないサイクロト
ロンを実現することにある。
The present invention was made to address these conventional problems, and its purpose is to improve reliability and operability by simplifying the main body of the cyclone 1-11. The objective is to realize a cyclotron that does not require technical operating personnel.

次に第2図によって本発明に係るザイクrJl・ロンの
構成を説明するが、本発明の重要な構成要部を除いた他
の構成器機は、前記第1図において説明した従来のもの
と同様であるから、第1図と同じ器機については、同一
符号をイ;1して、その説明を省略し、以下にはその異
なる部分のみについて説明する。
Next, the configuration of the ZAIK RJL Ron according to the present invention will be explained with reference to FIG. 2, but other components except for the important components of the present invention are the same as the conventional one explained in FIG. 1. Therefore, the same equipment as in FIG. 1 is designated by the same reference numeral 1, and the explanation thereof will be omitted, and only the different parts will be explained below.

本発明は従来の共振器2に設置されていた周波数補償機
構3を省略すると共に、信号処理系8内の位相差検出器
11と発振器12とを接続した点に特徴がある。
The present invention is characterized in that the frequency compensation mechanism 3 installed in the conventional resonator 2 is omitted, and the phase difference detector 11 in the signal processing system 8 and the oscillator 12 are connected.

次に作用tこついて説明する。Next, the operation will be explained.

発振器120周波数に刻して共振器2の共振周波数が同
調状態にあるかどうかは、励振器4の終段真空管すのプ
レート側高周波信号と、グリッド側高周波信号との位相
差を位相差検出器11によって検出される。 同調状態
であれば位相差はほぼ180°となる。 共振器2に電
力が注入された時、共振器の共振周波数が変動するが、
従来法では、終段真空管5のプレート側高周波信号と、
グリッド側高周波信号との位相差が略々iso°となる
ように周波数補償機構3によって共振器の共振周波数を
補正していた。
Whether the resonant frequency of the resonator 2 is tuned to the oscillator 120 frequency can be determined by using a phase difference detector to detect the phase difference between the high frequency signal on the plate side of the final stage vacuum tube of the exciter 4 and the high frequency signal on the grid side. 11. In the tuned state, the phase difference is approximately 180°. When power is injected into resonator 2, the resonant frequency of the resonator changes,
In the conventional method, the high frequency signal on the plate side of the final stage vacuum tube 5,
The resonant frequency of the resonator was corrected by the frequency compensation mechanism 3 so that the phase difference with the grid side high frequency signal was approximately iso°.

これに対し、本発明では、位相差検出器11からのコン
トロール信号線】3′は発振器12の発振周波数を変え
る端子をこ送り込まれているため、終段真空管5のプレ
ート側高周波信号と、グリッド側高周波信号との位相差
が、常時、略々180゜となるように発振器12の発振
周波数が変動してい(。 ここでは、最早や、サイクロ
トロンの高周波系の周波数は一定になり得なくなってい
る。
In contrast, in the present invention, the control signal line ]3' from the phase difference detector 11 is fed with a terminal that changes the oscillation frequency of the oscillator 12, so that the plate-side high-frequency signal of the final stage vacuum tube 5 and the grid The oscillation frequency of the oscillator 12 fluctuates so that the phase difference with the side high-frequency signal is always approximately 180 degrees (here, the frequency of the high-frequency system of the cyclotron can no longer be constant). .

しかし実際には、大きな変動が起るのは、電力投入され
た最初の3分間程度の間だけである。  この間は確か
に、共振器2は高周波電流の損失によって熱変形を受け
、共振周波数が大きく変動するため、発振器2の発振周
波数も変動するが、3分以上を経過すると、共振器2の
熱変形は落着き、その変動のl]は、共振器2を冷却し
ている冷却水の温度の変動によって決まる。 このため
、冷却水の温度を、例えば設定温度に対して±0.5で
 位に抑えるようにコントロールして略々一定に保てば
、周波数の変動も、従来と同様、5桁の精度まで抑える
ことができる。
However, in reality, large fluctuations occur only during the first three minutes or so after power is turned on. During this time, the resonator 2 will certainly undergo thermal deformation due to the loss of high-frequency current, and the resonance frequency will fluctuate greatly, so the oscillation frequency of the oscillator 2 will also fluctuate, but after 3 minutes or more, the resonator 2 will undergo thermal deformation stabilizes, and its fluctuation l] is determined by the fluctuation in the temperature of the cooling water that cools the resonator 2. For this reason, if the temperature of the cooling water is kept approximately constant by controlling it to within ±0.5 of the set temperature, for example, the frequency fluctuation can be controlled to a five-digit accuracy, as in the past. It can be suppressed.

従って、高周波系の電力投入後、3分以上経過すれば、
サイクロトロンの高周波系の周波数も一定と見做せるこ
とができ、加速粒子のエネルギーにも影響を与えること
はない。
Therefore, if more than 3 minutes have passed after powering on the high frequency system,
The frequency of the cyclotron's high-frequency system can also be considered constant, and does not affect the energy of the accelerated particles.

なお、サイクロトロンにおいて二つ以上の共振器がある
場合もあるが、これに本発明を適用した場合、夫々の共
振器で落着く先の周波数が異なった値となり、粒子を加
速することが困難となることも想定されるので、本発明
は共振器が一つの場合にのみ有効な手段である。
Note that a cyclotron may have two or more resonators, but if the present invention is applied to this, the frequencies that settle in each resonator will be different values, making it difficult to accelerate particles. Therefore, the present invention is effective only when there is only one resonator.

以上、詳述したように本発明によれば、サイクロトロン
本体から機械的な周波数補償機構3を省略すると共に共
振器の周波数の変動を、発振器の電気的な周波数の追従
によって行わせるようにしたため、従来のサイクロトロ
ンにおける問題点を解消し、信頼性の向上に寄与するこ
とができ、特にディ電極の起動時に必要とした高度の技
術操作や制御系が簡略化され、省力化、操作性の向上に
極めて有効である。
As detailed above, according to the present invention, the mechanical frequency compensation mechanism 3 is omitted from the cyclotron main body, and the frequency of the resonator is changed by following the electrical frequency of the oscillator. It solves the problems with conventional cyclotrons and contributes to improved reliability. In particular, the advanced technical operations and control system required when starting the de-electrode are simplified, resulting in labor savings and improved operability. Extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のサイクロ1−ロンの制御系統図。 第2図は本発明によるサイクロトロンの制御系統図を示
す。 l・・・ディ電極 2・・・共振器 3・・・周波数補
償機構4・・・励振器 5・・・終段真空管 6・・・
カップリング7・・・前置増幅器 8・・・信号処理系
9・・・プレート側高周波信号検出器 10・・・グリッド側高周波信号検出器 11・・・位
相差検出器 12・・・発振器 13.13’・・・コ
ントロール信号線 特許出願人 住友重機械工業株式会社
FIG. 1 is a control system diagram of a conventional Cyclo 1-ron. FIG. 2 shows a control system diagram of a cyclotron according to the present invention. l... De-electrode 2... Resonator 3... Frequency compensation mechanism 4... Exciter 5... Final stage vacuum tube 6...
Coupling 7... Preamplifier 8... Signal processing system 9... Plate side high frequency signal detector 10... Grid side high frequency signal detector 11... Phase difference detector 12... Oscillator 13 .13'...Control signal line Patent applicant Sumitomo Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] ディ電極を含めた単個の共振器と、該共振klこ注入す
る高周波電力を発生させる励振器及び全振器を含めて小
電力の高周波信号を処理する信号処理系からなる高周波
系のサイクロトロンにおいて、前記共振器に設置した周
波数補償機構を除去すると共に、信号処理系内の位相差
検出器と発振器とを互に接続して、共振器の周・波数変
動に発振器の電気的な周波数が追従しつるようにしたこ
とを特徴とするサイクロトロン。
In a high-frequency cyclotron consisting of a single resonator including a di-electrode, and a signal processing system that processes a low-power high-frequency signal including an exciter and total oscillator that generate high-frequency power to be injected into the resonant kl. In addition to removing the frequency compensation mechanism installed in the resonator, the phase difference detector and the oscillator in the signal processing system are connected to each other, so that the electrical frequency of the oscillator follows the frequency and wave number fluctuations of the resonator. A cyclotron that is characterized by a trembling structure.
JP2299782A 1982-02-16 1982-02-16 Cyclotron Pending JPS58141000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2299782A JPS58141000A (en) 1982-02-16 1982-02-16 Cyclotron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2299782A JPS58141000A (en) 1982-02-16 1982-02-16 Cyclotron

Publications (1)

Publication Number Publication Date
JPS58141000A true JPS58141000A (en) 1983-08-20

Family

ID=12098158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2299782A Pending JPS58141000A (en) 1982-02-16 1982-02-16 Cyclotron

Country Status (1)

Country Link
JP (1) JPS58141000A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106299A (en) * 1998-09-29 2000-04-11 Sumitomo Heavy Ind Ltd High-frequency accelerating method and device thereof
JP2011507151A (en) * 2007-11-30 2011-03-03 スティル・リバー・システムズ・インコーポレーテッド Match the resonant frequency of the resonant cavity to the frequency of the input voltage
JP2014175249A (en) * 2013-03-12 2014-09-22 Sumitomo Heavy Ind Ltd Cyclotron
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149595A (en) * 1976-06-09 1977-12-12 Toshiba Corp Output statilizing device for linear particle accelerator
JPS53117198A (en) * 1977-03-23 1978-10-13 Nec Corp Automatic controller of electric frequency for high frequency of standing wave type particle accelerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52149595A (en) * 1976-06-09 1977-12-12 Toshiba Corp Output statilizing device for linear particle accelerator
JPS53117198A (en) * 1977-03-23 1978-10-13 Nec Corp Automatic controller of electric frequency for high frequency of standing wave type particle accelerator

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106299A (en) * 1998-09-29 2000-04-11 Sumitomo Heavy Ind Ltd High-frequency accelerating method and device thereof
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US10279199B2 (en) 2005-11-18 2019-05-07 Mevion Medical Systems, Inc. Inner gantry
US10722735B2 (en) 2005-11-18 2020-07-28 Mevion Medical Systems, Inc. Inner gantry
US9925395B2 (en) 2005-11-18 2018-03-27 Mevion Medical Systems, Inc. Inner gantry
JP2011507151A (en) * 2007-11-30 2011-03-03 スティル・リバー・システムズ・インコーポレーテッド Match the resonant frequency of the resonant cavity to the frequency of the input voltage
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US9706636B2 (en) 2012-09-28 2017-07-11 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
US10368429B2 (en) 2012-09-28 2019-07-30 Mevion Medical Systems, Inc. Magnetic field regenerator
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
JP2014175249A (en) * 2013-03-12 2014-09-22 Sumitomo Heavy Ind Ltd Cyclotron
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
US10258810B2 (en) 2013-09-27 2019-04-16 Mevion Medical Systems, Inc. Particle beam scanning
US10456591B2 (en) 2013-09-27 2019-10-29 Mevion Medical Systems, Inc. Particle beam scanning
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US11717700B2 (en) 2014-02-20 2023-08-08 Mevion Medical Systems, Inc. Scanning system
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US10434331B2 (en) 2014-02-20 2019-10-08 Mevion Medical Systems, Inc. Scanning system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US11213697B2 (en) 2015-11-10 2022-01-04 Mevion Medical Systems, Inc. Adaptive aperture
US10646728B2 (en) 2015-11-10 2020-05-12 Mevion Medical Systems, Inc. Adaptive aperture
US11786754B2 (en) 2015-11-10 2023-10-17 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Similar Documents

Publication Publication Date Title
JPS58141000A (en) Cyclotron
US8110993B2 (en) Methods for inductively-coupled RF power source
US4275363A (en) Method of and apparatus for driving an ultrasonic transducer including a phase locked loop and a sweep circuit
CN101933406B (en) Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
JPH01302700A (en) High frequency multi-electrode linear accelerator
JP3251087B2 (en) Plasma processing equipment
JPH05157821A (en) Electron spin resonance device
JPH04200282A (en) Drive device for ultrasonic motor
US8130002B2 (en) Device and method for detecting direction of polarization of ferroelectric material
JP3634753B2 (en) Sync signal generator
JPS62109406A (en) Oscillation circuit
CA1044374A (en) Charged particle beam deflector
JPH02265681A (en) Ultrasonic converter driving circuit
JPH02245275A (en) Device for driving ultrasonic vibrator
Li et al. Development of a low-level RF control system for PET cyclotron CYCIAE-14
Fortescue Quasi-stable frequency-dividing circuits
US2956238A (en) Atomic resonance devices
JPH07303635A (en) Drive device for ultrasonic oscillator
Koscielniak Ponderomotive Instability of Two Self-Excited Cavities
Sakamoto et al. OPERATING EXPERI ENCE WITH THE RF SYSTEM
SU866714A2 (en) Charging device
JPS6050475A (en) Electric field type human body detector
JPH0715236A (en) Frequency synthesizer
JPH053268Y2 (en)
JPS613349A (en) Pwm system motor drive circuit of vtr