JPS58140628A - Inspecting device using nuclear magnetic resonance - Google Patents

Inspecting device using nuclear magnetic resonance

Info

Publication number
JPS58140628A
JPS58140628A JP57022749A JP2274982A JPS58140628A JP S58140628 A JPS58140628 A JP S58140628A JP 57022749 A JP57022749 A JP 57022749A JP 2274982 A JP2274982 A JP 2274982A JP S58140628 A JPS58140628 A JP S58140628A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
magnetic fields
gradient magnetic
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57022749A
Other languages
Japanese (ja)
Other versions
JPH0322171B2 (en
Inventor
Etsuji Yamamoto
山本 悦治
Kensuke Sekihara
謙介 関原
Munetaka Tsuda
宗孝 津田
Hideki Kono
秀樹 河野
Shinji Yamamoto
真司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57022749A priority Critical patent/JPS58140628A/en
Publication of JPS58140628A publication Critical patent/JPS58140628A/en
Publication of JPH0322171B2 publication Critical patent/JPH0322171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/12Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To correct the non-linearity of the ramp magnetic fields to be applied upon an inspecting object easily by providing means of rotating a coil which generates the ramp magnetic fields at every projection. CONSTITUTION:The output of a high frequency generator 9 is applied through an electric power amplifier 10 to a coil 11 for high frequency generating magnetic fields by the command of a control device 8. The signal detected with the coil 11 serving also as a receiver is converted to picture images with a signal processing unit 14 through an amplifier 12 and a detector 13 and the images are displayed. A coil 15 for generating the ramp magnetic fields in the Z direction and the direction perpendicular to the same are driven by electric power sources 16, 17. Static magnetic fields are generated by a coil 21 for generation of static magnetic fields driven by an electric power source 22. The coil 15 is rotated around the X axis by a motor 23 through a belt 24, and since the correction of the entire projected data is made possible with the correction data at one projection angle, the non-linearity of the ramp magnetic fields is easily corrected with high accuracy.

Description

【発明の詳細な説明】 本発明は、核磁気共鳴現象を用いた検査装置に係り、特
に傾斜磁場の非線形性に起因する再生僧の劣化の補正を
容易にし逢検査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inspection apparatus using a nuclear magnetic resonance phenomenon, and more particularly to an inspection apparatus that facilitates correction of deterioration of a regenerating monk due to nonlinearity of a gradient magnetic field.

従来、人体などの内部構造を非破壊的に検査する方法と
して、X11iCTJP超音波撮儂装置が広く利用され
て来ている。近年、これに更に、核磁気共鳴現象を利用
し同様の検査を行う試みが成功し、X線CTや超音波撮
倫装置では得られない情報を取得できることが明らかに
なってきた。
Conventionally, the X11iCTJP ultrasonic imaging device has been widely used as a method for non-destructively inspecting the internal structure of a human body or the like. In recent years, attempts to conduct similar tests using nuclear magnetic resonance phenomena have been successful, and it has become clear that information that cannot be obtained with X-ray CT or ultrasonic imaging devices can be obtained.

核磁気共鳴を用いた検査装置(以下、単に「検査装置」
という。)ハ、核磁気共鳴現象を利用して対象物体中の
核スピンの密度分布、緩和時間分布等を非破壊的に求め
ることにより、X線CTと同様の手法で対象物体の所望
の検査部位の断面儂を購成・出力するものである。この
ような検査装置においてに、検査対象物体からの信号を
核物体各部に対応させて、分離・識別する必要がある。
Inspection equipment using nuclear magnetic resonance (hereinafter simply referred to as "inspection equipment")
That's what it means. ) By non-destructively determining the nuclear spin density distribution, relaxation time distribution, etc. in the target object using nuclear magnetic resonance phenomena, the desired inspection area of the target object can be detected using a method similar to X-ray CT. This is for purchasing and outputting the cross section. In such an inspection apparatus, it is necessary to separate and identify signals from the object to be inspected in correspondence with each part of the nuclear object.

その1つに、検査対象物体に傾斜磁場會印加し、物体各
部の置かれた静磁場を異ならせ、これにより各部の共鳴
周波数を異ならせることで位置の情報を得る方法がある
。第1図はその原理を説明する友めの図である。検査対
象物体lに傾斜磁場G、を印加すると、該傾斜磁場G、
に垂直な線上にある核スピンからの信号を積分した信号
強度分布2が、静磁場Hの関数として得られる。核磁気
共鳴においては、 f=rH/(2g) の関係が成立するので、前記信号強度は共鳴周波数fの
関数であるとも言える。なお、上式において、rは核磁
気回転比であり、核スピンに固有の値である。次に、傾
斜磁場の印加方向を変えて傾斜磁場0*’に印加すると
信号強度分布3が得られる。傾斜磁場の印加方向を種々
変化させて同様な信号強度分布、すなわち射影データを
求めnば、X線CTと同様のアルゴリズムを用いて検査
対象物体中の核スビ/の密度分布あるいは緩和時間分布
などを再構成することができる。
One method is to obtain position information by applying a gradient magnetic field to the object to be inspected, varying the static magnetic field placed on each part of the object, and thereby varying the resonance frequency of each part. FIG. 1 is a companion diagram for explaining the principle. When a gradient magnetic field G is applied to the object l to be inspected, the gradient magnetic field G,
A signal intensity distribution 2 is obtained by integrating the signals from the nuclear spins on a line perpendicular to , as a function of the static magnetic field H. In nuclear magnetic resonance, the relationship f=rH/(2g) holds, so it can be said that the signal intensity is a function of the resonance frequency f. Note that in the above equation, r is the nuclear gyromagnetic ratio, which is a value specific to nuclear spin. Next, by changing the direction of application of the gradient magnetic field and applying the gradient magnetic field to 0*', signal intensity distribution 3 is obtained. If a similar signal intensity distribution, that is, projection data, is obtained by varying the direction of application of the gradient magnetic field, the density distribution or relaxation time distribution of nuclear streaks in the object to be inspected can be obtained using an algorithm similar to that of X-ray CT. can be reconfigured.

ところで、射影データを得るために印加する前記傾斜磁
場は空間的に線形ではなく、非線形の領域を含んでいる
By the way, the gradient magnetic field applied to obtain projection data is not spatially linear but includes a nonlinear region.

このように、非線形な傾斜磁場を用いて射影データを得
た場合、再構成さ扛る画像はポケたものとなり、1倫劣
化の大きな要因となっていた。この点につき、図面を用
いて、更に詳細に説明する。
In this way, when projection data is obtained using a nonlinear gradient magnetic field, the reconstructed image is distorted, which is a major cause of deterioration of the image quality. This point will be explained in more detail using the drawings.

第2図中の実線4は空間的に線形な傾斜磁場を示し、そ
の時対象物体1′から得ら扛る射影データを実線5とす
る。これに対し、破線6のように空間的に非線形でおれ
ば、その射影データは破線7となり、歪んだ射影データ
が得られる。このような歪んだ射影データを再構成する
とボケた像になり、傾斜磁場の非線形性が大きな画質劣
化をも次らす。しかしながら、この非線形性が射影の角
度によらず常に一定であれば、傾斜磁場の空間分布をあ
らかじめ求めておくことで補正することが可能である。
A solid line 4 in FIG. 2 indicates a spatially linear gradient magnetic field, and a solid line 5 represents projection data obtained from the target object 1'. On the other hand, if the projection data is spatially nonlinear as shown by the broken line 6, the projection data becomes the broken line 7, and distorted projection data is obtained. Reconstruction of such distorted projection data results in a blurred image, and the nonlinearity of the gradient magnetic field also causes significant image quality deterioration. However, if this nonlinearity is always constant regardless of the projection angle, it can be corrected by determining the spatial distribution of the gradient magnetic field in advance.

その場合、画像が例えば128X12Bのマトリックス
からなるとすれば、少なく七も16万点の補正データを
必要とする。ところが、従来のように傾斜磁場の回転を
、2組のコイルに流す電流により行なう方式では、各射
影毎に非線形性が変化するため、補正に要するデータは
%  128 xl 28X (射影数)となり、射影
数も通常128程度必要であるためメモリーを始め演算
に要する時間も膨大なものとなってしまう欠点があった
In that case, if the image consists of a 128×12B matrix, for example, correction data for at least 160,000 points is required. However, in the conventional method in which the gradient magnetic field is rotated by current flowing through two sets of coils, the nonlinearity changes for each projection, so the data required for correction is % 128 xl 28X (number of projections). Since the number of projections is usually about 128, there is a drawback that the memory and the time required for calculation are enormous.

為 本発明は、かかる点に鑑みてなされたもので、その目的
とするところは従来の検査装置の上述の如き欠点を除去
し、傾斜磁場の非線形体の補正を容易にした検査装置1
m供することにある。
Therefore, the present invention has been made in view of these points, and its purpose is to provide an inspection device 1 that eliminates the above-mentioned drawbacks of conventional inspection devices and facilitates correction of nonlinear bodies of gradient magnetic fields.
It is to serve.

かかる目的を達成するために本発明は、傾斜磁場発生用
コイルを各射影ごとに回転させることにより、上記傾斜
磁場の印加方向を変えることを特徴とする。
In order to achieve this object, the present invention is characterized in that the direction of application of the gradient magnetic field is changed by rotating the gradient magnetic field generating coil for each projection.

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第3図は本発明の一実施例である検査装置の概略構成金
示すものである。制御装置8は各装置へ種々の命令を一
定のタイミングで出力する。高周波パルス発生器9の出
力は電力増幅器10で増幅され、高周波磁場発生用コイ
ル11を励振する。
FIG. 3 schematically shows the configuration of an inspection device that is an embodiment of the present invention. The control device 8 outputs various commands to each device at constant timing. The output of the high frequency pulse generator 9 is amplified by a power amplifier 10 and excites a high frequency magnetic field generating coil 11.

該コイル11は同時に受信用コイルを兼ねており、咳コ
イル11で検出された信号成分は増幅器12を逼り、検
波器13で検波後、信号処理装置14で画像に変換、宍
示される。高周波パルス発生器9からの他の出力は、検
波器13で直角位相検波を行うときの基準信号として用
いられる。2方向及びそれに垂直な方向の傾斜磁場の発
生は傾斜磁場発生用コイル15で行ない、該コイルは電
源16.17で駆動される。電源16はZ方向の傾斜磁
場用、電源17はZ方向に垂直な方向の傾斜磁場用であ
る。検査対象である人体18はベッド19上に置かれ、
支持台20上を移動する。静磁。
The coil 11 also serves as a receiving coil, and the signal component detected by the cough coil 11 passes through an amplifier 12, is detected by a detector 13, and is converted into an image by a signal processing device 14 and displayed. The other output from the high frequency pulse generator 9 is used as a reference signal when the detector 13 performs quadrature detection. Generation of gradient magnetic fields in two directions and in a direction perpendicular thereto is performed by a gradient magnetic field generation coil 15, which is driven by power sources 16 and 17. The power source 16 is for a gradient magnetic field in the Z direction, and the power source 17 is for a gradient magnetic field in a direction perpendicular to the Z direction. A human body 18 to be examined is placed on a bed 19,
Move on the support stand 20. Magnetic.

場は静磁場発生用コイル21で発生させ、このコイルは
電源22で駆動される。前記傾斜磁場発生用コイル15
はベルト24を通じてモータ23によりzmt−中心に
回転させられる。ここで、傾斜磁場発生用コイル15の
形状について詳細に説明する。第4図はZ方向に垂直な
方向の傾斜磁場発生用コイルの1例を示しており、静磁
場hz軸に平行に印加されているものとする。なお、Z
方向傾斜磁場用コイルは図が複雑になるので第5図に別
に示すこととする。コイルへの電流の供給はコイルのベ
ース25上に巻いたスリップリング26゜27及びそれ
らに接触するブラシ28.29により行なう。このよう
にすれば、コイル15を射影毎に回転させても電流の供
給は容易である。図中矢印は電流の向きt−表わしてお
り、第4図の位置にコイルが来た時には、Y方向の傾斜
磁場が発生している。第5図は第4図に示したコイル1
5と同じものである。図を見易すくするためにZ方向の
傾斜磁場を発生するコイルの与ヲ示している。
The field is generated by a static magnetic field generating coil 21, which is driven by a power source 22. The gradient magnetic field generation coil 15
is rotated about zmt- by the motor 23 through the belt 24. Here, the shape of the gradient magnetic field generating coil 15 will be explained in detail. FIG. 4 shows an example of a gradient magnetic field generating coil in a direction perpendicular to the Z direction, and it is assumed that a static magnetic field is applied parallel to the hz axis. In addition, Z
The directional gradient magnetic field coil is shown separately in FIG. 5 because the diagram is complicated. The supply of current to the coil is carried out by means of slip rings 26, 27 wound on the base 25 of the coil and brushes 28, 29 in contact with them. In this way, it is easy to supply current even if the coil 15 is rotated for each projection. The arrow in the figure represents the current direction t-, and when the coil comes to the position shown in FIG. 4, a gradient magnetic field in the Y direction is generated. Figure 5 shows the coil 1 shown in Figure 4.
It is the same as 5. In order to make the figure easier to read, the coils that generate the gradient magnetic field in the Z direction are shown.

なおベルト24とモーター23は第4図と同じなので省
略しである。スリップリング26’、27’へ接触する
ブラシ28’ 、29’により電流を供給する機構も第
4図の場合と同様である。
Note that the belt 24 and motor 23 are the same as in FIG. 4, so they are omitted. The mechanism for supplying current by the brushes 28', 29' contacting the slip rings 26', 27' is also similar to that in FIG.

第6図にコイルの回転と射影データの取り込みのタイミ
ングを示す。モータ23としてパルスモータを用い制御
装置8からのパルス(a)により1射影毎に180/N
度回転する。ここでNfl射影の数となる。回転後1時
間経過し、コイルが完全に停止した時点で、制御装置8
からのパルス(b)により信号検出が開始さ扛る。
FIG. 6 shows the timing of the rotation of the coil and the acquisition of projection data. A pulse motor is used as the motor 23, and the pulse (a) from the control device 8 generates 180/N per projection.
Rotate degrees. This is the number of Nfl projections. When the coil has completely stopped after one hour of rotation, the control device 8
Signal detection is started by pulse (b) from .

ここでコイル15を回転させる理由について少し詳しく
述べる。先に述べたように、傾斜磁場を対象物体に印加
し、その射影データから対象物体中の核スビ/の密度分
布などを精度よく得るには、傾斜磁場として線形性の優
れたものが必要である。
Here, the reason for rotating the coil 15 will be described in a little more detail. As mentioned earlier, in order to apply a gradient magnetic field to a target object and obtain the density distribution of nuclear streaks in the target object with high precision from the projection data, a gradient magnetic field with excellent linearity is required. be.

第7図(14は第4図に示すコイルにより発生する傾斜
磁場の一例を示す等高線図であるが、コイルの中心から
離れるに従い線形からのずれが大きくなっている。この
ような傾斜磁場を用いた場合の射影32は第7図(b)
に示すが、周波数f1の信号成分は等高線30に対応す
る対射物体31中の核スピンからの信号の積分値となる
。このように積分経路がわん曲している場合、あらかじ
めその経路が知られていれば、射影データから元の核ス
ピン密度分布を再生することは可能である。例えば、バ
ックプロジェクション法により再生する場合、通常行な
われている直線経路ではなくわん曲した経路にデータを
分配すnばよい。いまxy面を128X128に分割し
て儂再生を行うとする。
Fig. 7 (14 is a contour map showing an example of the gradient magnetic field generated by the coil shown in Fig. 4, and the deviation from the linear shape increases as the distance from the center of the coil increases. The projection 32 in this case is shown in Fig. 7(b).
, the signal component of frequency f1 is the integral value of the signal from the nuclear spin in the projectile object 31 corresponding to the contour line 30. When the integral path is curved in this way, it is possible to reproduce the original nuclear spin density distribution from projection data if the path is known in advance. For example, when reproducing data using the back projection method, data may be distributed along a curved path instead of the normally used straight path. Let us now assume that the xy plane is divided into 128x128 parts for my own reproduction.

それに必要な傾斜a場分布データは約16,000点と
なる。これらのデータは1つの射影に必要な補正データ
であるが、従来のように傾斜磁場の回転を電気的に行な
おうとすると、各射影毎にこれらの補正データか必要と
なり、メモリーや演算時間が膨大となる゛。傾斜磁場を
電気的に回転させるためには、第4図に示すコイルの他
に、それをZ軸全中心に90 回転させたコイルを用い
、両者の電流値tL−It とした時、次式を満足する
ようにすればよい。
The required gradient a-field distribution data is approximately 16,000 points. These data are correction data necessary for one projection, but if we tried to electrically rotate the gradient magnetic field as in the past, these correction data would be required for each projection, which would increase memory and calculation time. It will be huge. In order to electrically rotate the gradient magnetic field, in addition to the coil shown in Figure 4, a coil rotated 90 degrees around the Z-axis is used, and when the current value of both is tL-It, the following formula is used. All you have to do is satisfy.

l8=IocoSθ I鵞=I6sinθ ここでθは傾斜磁場の回転角度である。各々のコイルに
より発生する傾斜磁場tGt −Gt とし、x、y方
向の単位ベクトルeis jとすると、両者の合成磁場
Gは G ” Gt J + G@ 1 = K (I I 
J + I t 1)=KI6 (cosi9 j+s
in# i)となる。ここでKi比例定数であり、コイ
ルの形状と巻数により決まる値である。従って、IGI
=KI。
l8 = IocoSθ I = I6sinθ Here, θ is the rotation angle of the gradient magnetic field. Assuming that the gradient magnetic field generated by each coil is tGt -Gt and the unit vector eis j in the x and y directions, the combined magnetic field G of both is G '' Gt J + G@1 = K (I I
J + I t 1) = KI6 (cosi9 j + s
in#i). Here, Ki is a proportionality constant, and is a value determined by the shape and number of turns of the coil. Therefore, I.G.I.
=KI.

となり、傾斜の大きさは常に一定で、その向きだけが変
わる磁場が得られる。ところが第7図(a)に示すよう
に各々のコイルにより発生する傾斜磁場は非線形である
ため、θが変われば合成磁場の等高線も変化することに
なる。償再生を行なう時にわん曲した経路を補正データ
として用いるためには、以上の理由により各射影毎のデ
ータが必要となるのである。しかし、本発明のように射
影角度と対応させて傾斜磁場発生用コイルを回転させれ
ば、その補正データは1つの射影だけのものでよく、2
桁程度に減少するという利点が生じる。それ放電気的な
回転に比べより精度の高い補正も可能となり、良質な再
生傷が得られるわけである。
Thus, we obtain a magnetic field in which the magnitude of the gradient is always constant and only its direction changes. However, as shown in FIG. 7(a), since the gradient magnetic field generated by each coil is nonlinear, if θ changes, the contour lines of the composite magnetic field will also change. In order to use a curved path as correction data when performing compensation reproduction, data for each projection is required for the reasons mentioned above. However, if the gradient magnetic field generation coil is rotated in correspondence with the projection angle as in the present invention, the correction data only needs to be for one projection, and two
The advantage is that it is reduced by an order of magnitude. This makes it possible to perform corrections with higher precision than with electrical discharge rotation, resulting in high-quality reproduction scratches.

以上説明し之如く本発明によれば、傾斜磁場の空間的非
線形性に起因する再生像の劣化を、1つの射影角度にお
ける補正データだけで全射影データを補正することが可
能となり、著しく再生僧ヲ向上させる効果がある。さら
に、電気的に傾斜i場を回転させる場合に比ベコイル数
が1組成るので、コイルの製作も高精度で行なえるとい
う利点もある。
As explained above, according to the present invention, it is possible to correct the deterioration of the reconstructed image due to the spatial nonlinearity of the gradient magnetic field using only the correction data at one projection angle, and the reproduction image is significantly improved. It has the effect of improving wo. Furthermore, since the number of coils is 1 when electrically rotating the gradient i-field, there is also the advantage that the coil can be manufactured with high precision.

なお、実施例には示さなかったが、コイルを回転させる
機構としては、コイルボビンに歯車で力を伝達させるこ
とも可能なことは勿論である。いずれの場合にも伝達機
構には非磁性体管用いることが必要である。
Although not shown in the embodiments, it is of course possible to transmit force to the coil bobbin using gears as a mechanism for rotating the coil. In either case, it is necessary to use a non-magnetic tube for the transmission mechanism.

また、第3図の実施例では2方向の傾斜磁場を発生する
コイルも回転させていたが、このコイルは2方向のスラ
イスを決めるためのものでl)、必ずしも回転させる必
要はない。
Further, in the embodiment shown in FIG. 3, the coil that generates gradient magnetic fields in two directions is also rotated, but this coil is used to determine slices in two directions l), and therefore does not necessarily need to be rotated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は射影データを得るための原理を説明するための
図、第2図は傾斜磁場の非線形性と射影データとの関係
を示す図、第3図は本発明の一実施例を示すブロック図
、第4.に傾斜磁場発生用コイルの構造を示す図、第6
図はコイルの回転と信号検出の関係を示すタイムチャー
ト、第7図(a)、 (b)は傾斜磁場の等高融と射影
データとの関係第1 口 vJ2  図 !A3  口 z5                    Zj第
6図
Fig. 1 is a diagram for explaining the principle of obtaining projection data, Fig. 2 is a diagram showing the relationship between the nonlinearity of a gradient magnetic field and projection data, and Fig. 3 is a block diagram showing an embodiment of the present invention. Figure 4. Figure 6 shows the structure of the gradient magnetic field generating coil.
The figure is a time chart showing the relationship between the rotation of the coil and signal detection, and Figures 7 (a) and (b) are the relationship between the contour melting of the gradient magnetic field and the projection data. A3 口z5 ZjFigure 6

Claims (1)

【特許請求の範囲】[Claims] 1、検査対象に静磁場、傾斜磁場および高周波磁場の各
磁場を印加して、上記検査対象からの核磁気共鳴信号を
検出してなる核磁気共鳴を用いた検査装置において、上
記傾斜磁場を発生するコイルを各射影ごとに回転させる
手段を設けてなることを特徴とする核磁気共鳴を用いた
検査装置。
1. In an inspection device using nuclear magnetic resonance, which applies a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field to the inspection target and detects a nuclear magnetic resonance signal from the inspection target, the gradient magnetic field is generated. An inspection device using nuclear magnetic resonance, characterized in that it is provided with means for rotating a coil for each projection.
JP57022749A 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance Granted JPS58140628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57022749A JPS58140628A (en) 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57022749A JPS58140628A (en) 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance

Publications (2)

Publication Number Publication Date
JPS58140628A true JPS58140628A (en) 1983-08-20
JPH0322171B2 JPH0322171B2 (en) 1991-03-26

Family

ID=12091335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57022749A Granted JPS58140628A (en) 1982-02-17 1982-02-17 Inspecting device using nuclear magnetic resonance

Country Status (1)

Country Link
JP (1) JPS58140628A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209637A (en) * 1987-02-27 1988-08-31 株式会社東芝 Magnetic resonance imaging apparatus
JPH0282290A (en) * 1988-09-19 1990-03-22 Toshiba Mach Co Ltd Plotting method for plotting plural arrayed graphics
DE10356219A1 (en) * 2003-11-25 2005-06-30 Rustemeyer, Peter, Dr. Nuclear magnetic resonance method for treatment of e.g. tumor in heart, involves changing antigen structure of tumor tissue by electromagnetic stimulation that depends on field intensity and direction of magnetic field gradients
EP3047292A4 (en) * 2013-09-17 2017-03-15 Synaptive Medical (Barbados) Inc. Coil assembly for magnetic resonance imaging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209637A (en) * 1987-02-27 1988-08-31 株式会社東芝 Magnetic resonance imaging apparatus
JPH0282290A (en) * 1988-09-19 1990-03-22 Toshiba Mach Co Ltd Plotting method for plotting plural arrayed graphics
DE10356219A1 (en) * 2003-11-25 2005-06-30 Rustemeyer, Peter, Dr. Nuclear magnetic resonance method for treatment of e.g. tumor in heart, involves changing antigen structure of tumor tissue by electromagnetic stimulation that depends on field intensity and direction of magnetic field gradients
EP3047292A4 (en) * 2013-09-17 2017-03-15 Synaptive Medical (Barbados) Inc. Coil assembly for magnetic resonance imaging

Also Published As

Publication number Publication date
JPH0322171B2 (en) 1991-03-26

Similar Documents

Publication Publication Date Title
US4425547A (en) Nuclear magnetic resonance apparatus having means for compensating a projecting signal
JPH0222649B2 (en)
EP0122593A2 (en) Imaging apparatus and method using nuclear magnetic resonance
US4910460A (en) Method and apparatus for mapping eddy currents in magnetic resonance imaging
JPS5853742A (en) Gradient coil system of nuclear spin resonance device
JP2019512083A (en) MRI imaging system using permanent magnet array
JPH0236260B2 (en)
JPH0747023B2 (en) Inspection device using nuclear magnetic resonance
JPS58140628A (en) Inspecting device using nuclear magnetic resonance
JPH03224538A (en) Mri device provided with process for correcting primary magnetostatic field ununiformity and executing measurement
JPS6031069A (en) Examination apparatus using nuclear magnetic resonance
JP2585278B2 (en) Inspection equipment using nuclear magnetic resonance
JP3018076B2 (en) Inspection equipment using nuclear magnetic resonance
JPS58140630A (en) Inspecting device by using nuclear magnetic resonance
EP0600355B1 (en) Magnetic resonance imaging method and apparatus
JPH0244219B2 (en)
EP0153703A2 (en) NMR imaging apparatus
JPS63109847A (en) Nuclear magnetic resonance imaging apparatus
JPS59142444A (en) Inspecting apparatus using nuclear magnetic resonance
JPS5890154A (en) Tester utilizing nuclear magnetic resonance
JPS5855741A (en) Inspecting device using nuclear magnetic resonance
JPH06254063A (en) Magnetic resonance imaging system
JPS63216551A (en) Nuclear magnetic resonance imaging apparatus
JPS61280551A (en) Magnetic resonance imaging apparatus
JP2647066B2 (en) Inspection equipment using nuclear magnetic resonance