JPS58114500A - High density mounting substrate - Google Patents

High density mounting substrate

Info

Publication number
JPS58114500A
JPS58114500A JP21086481A JP21086481A JPS58114500A JP S58114500 A JPS58114500 A JP S58114500A JP 21086481 A JP21086481 A JP 21086481A JP 21086481 A JP21086481 A JP 21086481A JP S58114500 A JPS58114500 A JP S58114500A
Authority
JP
Japan
Prior art keywords
elements
board
substrate
density mounting
high density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21086481A
Other languages
Japanese (ja)
Inventor
貴志男 横内
丹羽 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21086481A priority Critical patent/JPS58114500A/en
Publication of JPS58114500A publication Critical patent/JPS58114500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Combinations Of Printed Boards (AREA)
  • Mounting Of Printed Circuit Boards And The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は熱を発生ずる半導体素子の様な電子素子のため
の冷媒液体による熱伝達冷却の効率の高い構造を持つ回
路基板に関する0 また、電気信号の高速伝搬を素子間で必要とする電気素
子のための、素子間信号伝搬距離を短縮した構造を持つ
回路基板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit board having a highly efficient structure for heat transfer cooling using a refrigerant liquid for electronic devices such as semiconductor devices that generate heat. The present invention relates to a circuit board having a structure in which a signal propagation distance between elements is shortened for electrical elements required between the elements.

また、この基板を使用した、冷却方法、高密度実験方法
に関する。
The present invention also relates to a cooling method and a high-density experimental method using this substrate.

従来の回路基板社、1枚ごとの板であり、素子を実装し
た基板を柵状に構成して使用されている。このような構
造の基板、実装方法を用いると、これらを冷媒液体によ
って冷却しようとした場合、ユリ1(11隻にした場合
で社、遣!の・ 、  の れを け熱伝1lii1乱
旦羞杢1鷹Jさせる。また、棚状とせず輩二玖工2望摩
Iを行なえば一1jM[;6fiTする。一方、■1数
の基板を棚状に重ね、これを垂直に実装した場合、冷媒
の対流は妨げないが、水平にした場合にも言えるが、基
板上の素子間の信号伝搬距離が長く、素子の性能を改善
しても込1藍ズL遅延等により装置の処理能力が向上さ
れないなどの欠点がある。
Conventional circuit boards are made up of individual boards, and the boards on which elements are mounted are arranged in a fence-like manner. When using a board with such a structure and mounting method, if you try to cool them with a refrigerant liquid, you will have a problem with heat transfer.杢 1 hawk J.Also, if you do 11jM[;6fiT without making it into a shelf shape, you will get 11jM[;6fiT.On the other hand,■If you stack one board in a shelf shape and mount it vertically Although the convection of the refrigerant is not hindered, the signal propagation distance between the elements on the board is long, even when placed horizontally, and even if the performance of the elements is improved, the processing capacity of the equipment will be affected due to delays, etc. There are drawbacks such as the lack of improvement.

本発明は上述の点に鑑みなされたもので熱を発生する半
導体素子の様な電子素子を実装するための基板を断面が
多角形の連続しているlにカム様構造とLlこの内部に
素子を実装することにより、冷媒液体による熱伝達冷却
を行なった場合の効率を高くすることにある。また、基
板をハニカム様構造とすることにより、素子間の信号伝
搬径路を短縮し、信号を高速処理で自る装置を提供する
ものである。
The present invention has been made in view of the above points, and a substrate for mounting an electronic element such as a semiconductor element that generates heat is formed into a cam-like structure with a continuous polygonal cross section and an element inside the substrate. By implementing this, the purpose is to increase the efficiency when heat transfer cooling is performed using a refrigerant liquid. Furthermore, by forming the substrate into a honeycomb-like structure, the signal propagation path between elements is shortened, thereby providing a device capable of high-speed signal processing.

本発明は、冷媒波体を使用り走熱伝達冷却において、■
基板が鉛直方向に実装された2き最も対値、また5II
iによって生じた名り荘ね(蜆μ泉恩こと、■基板を密
に実装した場合素子を近縁して対向させると沸−によっ
て生じた気泡同志が干渉しん却効率か低下jるが、一定
収上のr&&1FI4を保ってこれを解決できること、
■信号を高速処理するためには基板上の配線長さを短縮
するため、なるべく多くの素子を短く接続で右爽基飯貞
童が必要であるが■基板を8次元構造とすることで改曹
できることを利用し、これらの点を満足するため基板を
Wh面が多角形の連続見丸構造であるハニカム様構造と
したものであるO 以下本発明の高密度実験用基板を図を参照し、    
     て詳細に説明する。1181図は高密度実装
用基板を構成する単位i&仮の斜視図である。
The present invention provides heat transfer cooling using a refrigerant wave body.
The most common value of 2 when the board is mounted vertically, and 5II
When the substrate is closely mounted and the elements are placed close to each other and face each other, the bubbles generated by boiling will interfere with each other and reduce the dissipation efficiency. Being able to solve this problem while maintaining r&&1FI4 on a constant income;
■In order to process signals at high speed, it is necessary to shorten the wiring length on the board by connecting as many elements as possible as short as possible. In order to satisfy these points, the substrate has a honeycomb-like structure in which the wh plane is a polygonal continuous circular structure. ,
This will be explained in detail. FIG. 1181 is a perspective view of a unit i and a temporary unit constituting a high-density mounting board.

単位基板ムは、素子1の実装された単位基板2を偶数リ
ード8で電気的な#&続をとって構成する。
The unit board is constructed by electrically connecting a unit board 2 on which an element 1 is mounted with an even number of leads 8.

jil:lFi単位基板ムを断面が四角形であるハニカ
ム構造となるように組立てた高密度実装用基板Bの斜視
図である。
FIG. 2 is a perspective view of a high-density packaging substrate B in which jil:lFi unit substrates are assembled to form a honeycomb structure with a square cross section.

単位基板ムの1&気的接続には、リード8をコ*11部
4で接続するかあるいは、フィルム状の配線材(図示し
ない)を5の位置にボンドして行なう、機械的な強度は
支持具6によって保たれる。
For the electrical connection of the unit board 1 and 1, connect the lead 8 at the *11 part 4, or bond a film-like wiring material (not shown) to the position 5.The mechanical strength is determined by the support. It is maintained by the tool 6.

リード端部には第6図(畠)示す如く、ハンダバンプ5
2が単位基板50上に形成されており、単体基板50.
50’ 間をフィルム状の配線材6Bをメンディングす
ることにより接続で亀る。
There are solder bumps 5 on the lead ends as shown in Figure 6 (Hata).
2 are formed on the unit substrate 50, and the unit substrate 50.2 is formed on the unit substrate 50.
The connection is made by mending the film-like wiring material 6B between the 50' and 50'.

なおフィルム状の配線材■1は亀61に示す如く、ポリ
イシド掩のフィルム54上に導体66及びボンディング
用のパット156が印刷岬で形成されたものである。
The film-like wiring material (1), as shown by the turtle 61, has a conductor 66 and a bonding pad 156 formed in the form of a printed cape on a polyester film 54.

高密度実装用基板としてのハニカム構造に支持する保持
構造としては上下から枠で単位基板を固定するなどの方
法で行うことができる。
The holding structure for supporting the honeycomb structure as a substrate for high-density mounting can be achieved by a method such as fixing the unit substrate with frames from above and below.

第2図は、断面が四角であるが、六角形等地の多角形も
もちろん可能である。
Although the cross section in FIG. 2 is square, it is of course possible to use a hexagonal polygon.

無8図は、素子の実装方法を示すが、1ます内に多数の
素子1をかたよ2て実装すると液体で冷却した場合の効
率が低下するのでなるべく分散する。
Figure 8 shows a method of mounting elements. If a large number of elements 1 are mounted in one square, the efficiency of cooling with liquid will decrease, so they should be distributed as much as possible.

これらの素子は、素子を基板する単体基板ムをハエカム
状に組立てたることにより高密度実装用基板が8次元的
な接続を持つため、配線長さ+1%短い。なお7ti配
線を示す。
In these devices, the wiring length is +1% shorter because the high-density mounting substrate has eight-dimensional connections by assembling the single substrates on which the devices are mounted in a fly cam shape. Note that 7ti wiring is shown.

第4図は、この基板Bを冷媒8に浸漬して冷却したもの
を示す。
FIG. 4 shows this substrate B immersed in a coolant 8 to be cooled.

素子1が発熱すると冷III&8#′i対流、沸雄し、
蒸気は、容器90内−でml細して液滴10とな9素子
1(D熱が外部へ伝達される。このと自、基ljBがハ
ニカム 構゛であるため気泡11の流れ、対流12が妨
けられることなく起こり、冷却効率は極めて良−0重た
、素子lは適当な間隔を持9て高密度KW4装で龜る。
When element 1 generates heat, cold III & 8 #'i convection, boiling,
The steam is narrowed by ml to form droplets 10 in the container 90, and heat is transferred to the outside.In this case, since the base ljB has a honeycomb structure, the flow of bubbles 11, the convection 12 The cooling occurs unhindered, the cooling efficiency is very good, and the elements 1 are mounted with 4 high-density KWs with appropriate spacing.

1114v1の実施例は、冷媒gKフルオロカーボンを
使用し、半導体素子を冷却したものであるが、d贅艮の
基 で100〜160個の素子が実装可能である。
In the example of 1114v1, semiconductor elements are cooled using gK fluorocarbon refrigerant, and 100 to 160 elements can be mounted on a d-luxury basis.

素子を高密度に実装することができ、液体を使用した熱
伝趨冷却を効率良く行なうことができる。また、素子間
の信号伝達経路が短いので信号の高速処理も可能である
Elements can be mounted with high density, and cooling using liquid can be performed efficiently. Furthermore, since the signal transmission path between elements is short, high-speed signal processing is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高密度実装用基板を構成する単体基板の斜視
図、 92図は、高密度実装用基板の構成斜視図、第8図は、
高密度実装用基板の平面図、第4図は、?t4vIj度
実装用基板を液体による冷却を行なりな場合の断面図、 第5図はフィルム状の配線材を用いて単体基板間を接続
する場合O斜視図、 第6図はフィルム状の配線材の平面図e)と断面図(b
)である。 tFi素子、2は単位基板、8はコネクタ用端子あるい
はリード、4はコネクタ、6は支持具9は冷却容器、s
Fi冷媒液体、12は液の対流。 lOは凝縮した[、11は気泡◇ 躬 1 図 躬 2 図 83 図 垢4 口 0
FIG. 1 is a perspective view of a single board constituting a high-density mounting board, FIG. 92 is a perspective view of the configuration of a high-density mounting board, and FIG.
What is the top view of the high-density mounting board, Figure 4? t4vIj degree Cross-sectional view when the mounting board is not cooled with liquid, Figure 5 is a perspective view when connecting single boards using film-shaped wiring material, Figure 6 is O perspective view when film-shaped wiring material is used to connect single boards. Plan view e) and cross-sectional view (b
). tFi element, 2 is a unit board, 8 is a connector terminal or lead, 4 is a connector, 6 is a support 9 is a cooling container, s
Fi refrigerant liquid, 12 is liquid convection. 1O is condensed [, 11 is a bubble ◇ Tsubo 1 Diagram 2 Figure 83 Diagram 4 Mouth 0

Claims (1)

【特許請求の範囲】[Claims] 半導体装置を実装する単位基板と、該単位基板を電気的
に接続するコネクタと、該単位基板と該コネクタとを断
面が多角形の/1ニカム構造に支持する支持具とを有す
ることを特徴とする高密度実験基板。
It is characterized by having a unit board on which a semiconductor device is mounted, a connector that electrically connects the unit board, and a support that supports the unit board and the connector in a /1 nicum structure having a polygonal cross section. A high-density experimental substrate.
JP21086481A 1981-12-28 1981-12-28 High density mounting substrate Pending JPS58114500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21086481A JPS58114500A (en) 1981-12-28 1981-12-28 High density mounting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21086481A JPS58114500A (en) 1981-12-28 1981-12-28 High density mounting substrate

Publications (1)

Publication Number Publication Date
JPS58114500A true JPS58114500A (en) 1983-07-07

Family

ID=16596359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21086481A Pending JPS58114500A (en) 1981-12-28 1981-12-28 High density mounting substrate

Country Status (1)

Country Link
JP (1) JPS58114500A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128598A (en) * 1984-11-28 1986-06-16 富士通株式会社 Cooler
JPH0210890A (en) * 1988-06-29 1990-01-16 Nec Corp High density mounting structure for integrated circuit
JPH03173199A (en) * 1989-11-22 1991-07-26 Internatl Business Mach Corp <Ibm> Three dimensonal microelectronic package and its manufacture
US6605869B2 (en) 2001-04-03 2003-08-12 Nec Electronics Corporation Semiconductor device with improved cooling efficiency and reduced electric resistance
KR100694834B1 (en) * 2005-06-01 2007-03-14 주식회사 영신알에프 Multi-face cubic type RF Amplifier Module
JP5956098B1 (en) * 2015-01-22 2016-07-20 株式会社ExaScaler Electronic device and cooling device for electronic device
EP3966661A4 (en) * 2019-05-07 2023-02-01 Stephane Gauthier Cooling a computer processing unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349474U (en) * 1976-09-29 1978-04-26
JPS5444382A (en) * 1977-09-09 1979-04-07 Interzeag Ag Method of displaying threshold value detected by automatic perimeter
JPS5649180B2 (en) * 1973-11-26 1981-11-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649180B2 (en) * 1973-11-26 1981-11-20
JPS5349474U (en) * 1976-09-29 1978-04-26
JPS5444382A (en) * 1977-09-09 1979-04-07 Interzeag Ag Method of displaying threshold value detected by automatic perimeter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128598A (en) * 1984-11-28 1986-06-16 富士通株式会社 Cooler
JPH0210890A (en) * 1988-06-29 1990-01-16 Nec Corp High density mounting structure for integrated circuit
JPH03173199A (en) * 1989-11-22 1991-07-26 Internatl Business Mach Corp <Ibm> Three dimensonal microelectronic package and its manufacture
US6605869B2 (en) 2001-04-03 2003-08-12 Nec Electronics Corporation Semiconductor device with improved cooling efficiency and reduced electric resistance
KR100694834B1 (en) * 2005-06-01 2007-03-14 주식회사 영신알에프 Multi-face cubic type RF Amplifier Module
JP5956098B1 (en) * 2015-01-22 2016-07-20 株式会社ExaScaler Electronic device and cooling device for electronic device
WO2016117098A1 (en) * 2015-01-22 2016-07-28 株式会社ExaScaler Electronic instrument and cooling apparatus for electronic instrument
EP3966661A4 (en) * 2019-05-07 2023-02-01 Stephane Gauthier Cooling a computer processing unit

Similar Documents

Publication Publication Date Title
US5050039A (en) Multiple circuit chip mounting and cooling arrangement
US7611924B2 (en) Integrated circuit package with chip-side signal connections
US5646828A (en) Thin packaging of multi-chip modules with enhanced thermal/power management
US6982869B2 (en) Folded interposer
US6900529B2 (en) Electronic module having a three dimensional array of carrier-mounted integrated circuit packages
JP2547637B2 (en) Pin grid array package structure
US6545868B1 (en) Electronic module having canopy-type carriers
JPH05275865A (en) High density package
JPH0766371A (en) Memory package of vertical chip-mount, and manufacture thereof
JPH04233268A (en) Electronic package
EP0630521A1 (en) Three dimensional, multi-chip module
JPS62123747A (en) Mounting of semiconductor chip and electrical contact device
JPH09167813A (en) Integrated circuit package
JPH07170098A (en) Mounting structure of electronic parts and mounting method
US4964019A (en) Multilayer bonding and cooling of integrated circuit devices
JPS58114500A (en) High density mounting substrate
JPS6250981B2 (en)
JPH038110B2 (en)
US5339218A (en) Surface mount device
JPS59219942A (en) Chip carrier
JPS6373694A (en) Electronic circuit board
JP3178405B2 (en) Stacked semiconductor device module with reduced thermal stress
JPS6151427B2 (en)
JPS60226149A (en) Ceramic package with heat sink
JPH0444256A (en) Semiconductor device