JPS5810717A - Optical shutter - Google Patents

Optical shutter

Info

Publication number
JPS5810717A
JPS5810717A JP10910481A JP10910481A JPS5810717A JP S5810717 A JPS5810717 A JP S5810717A JP 10910481 A JP10910481 A JP 10910481A JP 10910481 A JP10910481 A JP 10910481A JP S5810717 A JPS5810717 A JP S5810717A
Authority
JP
Japan
Prior art keywords
substrate
voltage
temperature
electrode
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10910481A
Other languages
Japanese (ja)
Inventor
Takahiro Asai
隆宏 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10910481A priority Critical patent/JPS5810717A/en
Publication of JPS5810717A publication Critical patent/JPS5810717A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To keep always the quantity of transmitted light constant, by detecting the variance of the temperature of a substrate due to an electrostrictive material and controlling the voltage applied to the electrode on the substrate on the basis of the detection signal by a voltage controller. CONSTITUTION:In the PLZT optical shutter where a substrate 3 consisting of an electrostrictive material where an electrode 4 for voltage application is formed is arranged between a pair of polarizers 1 and 2, the variance of the temperature of the substrate 3 is detected by a thermosensitive element 7. When the temperature of the substrate 3 rises more than the initial temperature of 25 deg.C, a temperature correcting circuit 8 controls a high-voltage power supply circuit 5 on the basis of a detection signal SD from the thermosensitive element 7 so that the output voltage from the high-voltage power supply circuit 5 rises. As the result, the voltage applied to the electrode 4 is raised, and the double refractive index of the substrate 3 is kept constant. When the temperature of the substrate 3 falls, the applied voltage is dropped to keep the double refractive index constant, and thus, a quantityIof transmitted light from the polarizer 2 is kept constant independently of the variance of the temperature of the substrate 3.

Description

【発明の詳細な説明】 本発明は、光シャッタに関するものである。[Detailed description of the invention] The present invention relates to an optical shutter.

従来、光シャッタの一例として第1図に示すように、一
対の偏光子(1) (2)関KPLZT基板(3)t−
配置しこのPLZT基板(3)上に設けられ次電極(4
)間にその電圧印加方向が偏光の振動面と45°となる
ように一定電圧を印加するようにしたPLZT光シャッ
タが知られている。このような構成により、電極(4)
間に電圧を印加しないと光が遮断され、電圧を印加する
と光が偏光子(1) (2) を一定光量だけ透過する
ものである。ここに、PLZTとは(P4、La ) 
(24%Tb ) Os磁器の略称であシ、その組成に
よシー次・二次の電気光学効果および光学的メモリー作
用をもつことから光シャッタやディスプレイ等の光学分
野への応用が期待されているものであり、PLZT光シ
ャッタはPLZTの二次電気効果であるいわゆるカー効
果(Kerr effect)を利用したもので、偏光
子(2)を透過する光量■は、Iax Io m”(j
・ΔV′λ)πで表わされる。この式において、1.:
光源の光量、t:PLZT基板(3)の厚さ、λ:透過
光の波長、Δ?&:複屈折率、すなわち屈折率の光軸方
向成分neとの差no −meである。
Conventionally, as an example of an optical shutter, as shown in FIG. 1, a pair of polarizers (1) (2) Seki KPLZT substrate (3) t-
The next electrode (4) is arranged on this PLZT substrate (3).
), a PLZT optical shutter is known in which a constant voltage is applied such that the voltage application direction is at 45° with respect to the vibration plane of polarized light. With this configuration, the electrode (4)
If no voltage is applied between them, light will be blocked, and if a voltage is applied, a certain amount of light will pass through the polarizers (1) and (2). Here, what is PLZT (P4, La)
(24%Tb) It is an abbreviation for Os porcelain, and due to its composition, it has a cy-order/second-order electro-optic effect and an optical memory function, so it is expected to be applied to optical fields such as optical shutters and displays. The PLZT optical shutter utilizes the so-called Kerr effect, which is a secondary electric effect of PLZT, and the amount of light transmitted through the polarizer (2) is expressed as Iax Io m''(j
・ΔV'λ) π. In this formula, 1. :
Light intensity of light source, t: thickness of PLZT substrate (3), λ: wavelength of transmitted light, Δ? &: Birefringence, that is, the difference no −me from the optical axis direction component ne of the refractive index.

ところが、pLZTの特性f:vI4べてみると、複屈
折率Δnは第2図に示すようにPLZT温度と印加電圧
(電圧)との関係で曲線的に変化するものである。
However, when looking at the characteristic f:vI4 of pLZT, the birefringence Δn changes in a curved manner depending on the relationship between the PLZT temperature and the applied voltage (voltage), as shown in FIG.

なお、この第2図(畠)(イ)は組成の異なるPLZT
についての特性を示す。したがって、従来のPLZT光
シャッタでは電極(4)閣に一定の印加電圧をかけてい
るため、 PLZT基板(3)に温度変化が生じ九場合
、複屈折率ノ舊も変化して前述した式で表わされる透過
光量!が変動することKなり、透過光量を一定に維持で
きないものである。
In addition, this Figure 2 (Hatake) (a) shows PLZT with a different composition.
The characteristics of Therefore, in the conventional PLZT optical shutter, since a constant voltage is applied to the electrode (4), when a temperature change occurs in the PLZT substrate (3), the birefringence index also changes, and the above equation is expressed as follows: The amount of transmitted light displayed! This means that the amount of transmitted light cannot be maintained constant.

本発明は、このような点に鑑みなされたもので、透過光
量を一定に維持することができる光シャッタを得ること
を目的とするものである。
The present invention has been devised in view of these points, and an object of the present invention is to obtain an optical shutter that can maintain a constant amount of transmitted light.

本発明は、複屈折率の変動をもたらす電歪物質による基
板の温度変化を検出素子によシ検出して、この複屈折率
の変動をなくすよう基板の電圧上電圧制御装置によシ可
変制御して、透過光量が変化することのないように構成
し九ものである。
The present invention uses a detection element to detect a temperature change in a substrate due to an electrostrictive substance that causes a change in birefringence, and performs variable control using a voltage controller on a voltage of the substrate to eliminate this change in birefringence. Therefore, the structure is such that the amount of transmitted light does not change.

本発明の菖−の実施例を第3図に基づいて説明する。第
1図で示した部分と同一部分は同一符号を用い説明も省
略する。まず、電圧印加用の高圧電源回路(5)とこの
高圧電源回路(5)の電極(4)に対する電圧印加を制
御信号Scによ、9ON−OFFするスイッチング回路
(6)とが設けられている。そして、電歪物質からなる
基板としてのPLZT基板(3)上の一部にはこのPL
ZT基板(3)の温度変化を検出する検出素子として感
熱素子(7)が取付けられている。この感熱素子(7)
は温度に比例した検出信号5Dt−出力するものであり
、この検出信号SDは温度補正回路(8)に入力されて
いる。この温度補正回路(8)は第2図に示したような
Δ九の変化特性を考慮し、複屈折率Δ芥を一定にするよ
う検出信号SDに基づき高圧電源回路(5)の出力電圧
を増減させるものであり、高圧電源回路(5)、スイッ
チング回路(6)にこの温度補正回路(8)が付加され
て電圧制御装置(9)が構成されている。
An embodiment of the irises of the present invention will be described based on FIG. Components that are the same as those shown in FIG. 1 are designated by the same reference numerals, and description thereof will be omitted. First, a high-voltage power supply circuit (5) for voltage application and a switching circuit (6) for turning on and off the voltage application to the electrode (4) of this high-voltage power supply circuit (5) according to a control signal Sc are provided. . A part of the PLZT substrate (3), which is a substrate made of electrostrictive material, is covered with this PL.
A heat sensitive element (7) is attached as a detection element for detecting temperature changes of the ZT substrate (3). This heat sensitive element (7)
outputs a detection signal 5Dt- proportional to temperature, and this detection signal SD is input to the temperature correction circuit (8). This temperature correction circuit (8) takes into consideration the change characteristics of Δ9 as shown in FIG. This temperature correction circuit (8) is added to the high voltage power supply circuit (5) and the switching circuit (6) to form a voltage control device (9).

このような構成において、 PLZT光シャッタはスイ
ッチング回路(6)のON・OFFに応じて光を透過・
遮断することになる。ここで、側時の初期設定において
複屈折率Δ5、印加電圧がたとえば第2図中に点線で示
すように設定されていたとし、PLZT基板(3)の温
度が初期の25℃より上昇したとすると、この温度上昇
は感熱素子(7)により検出され、この検出信号8Dに
基づき温度補正回路(8)は高圧電源回路(5)からの
出力電圧を上昇させるようこの高圧電源回路(5)を制
御する。この結果、PLZT基板(3)の電極(4)K
対する印加電圧も上昇し、第2図に示す特性から明らか
なように複屈折率Δnが一定に維持される。 PLZT
基板(3)の温度が下降した場合には、逆の動作によシ
印加電圧も下降し、複屈折率Δnが一定に保たれる。よ
って、 PLZT光シャッタON時の偏光子(2)から
の透過光量工はPLZT基板(3)の温度変化に関係な
く一定に保たれることになる。したがって、pLZTシ
ャッタのON・OFF時の透過光量比も常に一定に維持
される。
In such a configuration, the PLZT optical shutter transmits or transmits light depending on whether the switching circuit (6) is turned on or off.
It will be cut off. Here, suppose that the birefringence Δ5 and the applied voltage are set, for example, as shown by the dotted line in FIG. Then, this temperature rise is detected by the heat sensitive element (7), and based on this detection signal 8D, the temperature correction circuit (8) controls the high voltage power supply circuit (5) so as to increase the output voltage from the high voltage power supply circuit (5). Control. As a result, the electrode (4) K of the PLZT substrate (3)
The applied voltage also increases, and as is clear from the characteristics shown in FIG. 2, the birefringence Δn is maintained constant. PLZT
When the temperature of the substrate (3) decreases, the applied voltage also decreases due to the reverse operation, and the birefringence Δn is kept constant. Therefore, the amount of transmitted light from the polarizer (2) when the PLZT optical shutter is ON is kept constant regardless of the temperature change of the PLZT substrate (3). Therefore, the ratio of transmitted light amounts when the pLZT shutter is turned on and off is always maintained constant.

つづいて、本発明の第二の実施例を第4図によシ説明す
る。本実施例は偏光子(2)からの透過光を受けるハー
フミラ−(2)を偏光子(2)に対し45°傾けて配置
し、このハーフミラ−αQを介して透過光を検出素子と
しての光電変換素子αηに受光させたものである。すな
わち、この光電変換素子α論は透過光量Iの変化を検出
するものであるが、透過光量Iの変化がPLZT基板(
3)の温度変化に起因するものであるから、間接的に温
度変化を検出することになる。そして、この光電変換素
子α力の検出信号S6に基づき温度補正回路(8)と同
様に高圧電源回路(5)からの出力電圧を増減させて複
屈折率Δnt−一定にさせる光量補正回路(6)が設け
られて電圧制御装置(至)が構成されている。
Next, a second embodiment of the present invention will be explained with reference to FIG. In this embodiment, a half mirror (2) that receives transmitted light from a polarizer (2) is arranged at an angle of 45 degrees with respect to the polarizer (2), and the transmitted light is transmitted through this half mirror αQ to a photodetector as a detection element. The light is received by the conversion element αη. In other words, this photoelectric conversion element α theory detects the change in the amount of transmitted light I, but the change in the amount of transmitted light I is detected when the PLZT substrate (
Since this is caused by the temperature change in 3), the temperature change is indirectly detected. Based on the detection signal S6 of the photoelectric conversion element α power, a light amount correction circuit (6) increases or decreases the output voltage from the high voltage power supply circuit (5) to keep the birefringence Δnt constant, similarly to the temperature correction circuit (8). ) are provided to constitute a voltage control device (to).

このような構成においても、PLZT基板(3) K 
@層変化が生じた場合、光電変換素子(11)によシ透
過光量Iの変化として検出され、電圧制御装置QIKよ
り電極(4)に対する印加電圧が増減制御されて複屈折
率Δ外が一定に維持されることとなり、透過光量Iは温
度変化の影響を受けることなく一定に保たれる。
Even in such a configuration, the PLZT substrate (3) K
@When a layer change occurs, it is detected as a change in the amount of transmitted light I by the photoelectric conversion element (11), and the voltage controller QIK increases or decreases the voltage applied to the electrode (4) to keep the birefringence Δ constant. Therefore, the amount of transmitted light I is kept constant without being affected by temperature changes.

なお、第5図に示すようにPLZT基板(3)上に光量
検出用の電極α◆を追加して設け、この電極α◆にはス
イッチング回路(6)により検出補正時にのみ印加電圧
管印加して、そのときの透過光量X′f:光電変換素子
aカにより検出させるようにしてもよい。
As shown in Fig. 5, an electrode α◆ for light intensity detection is additionally provided on the PLZT substrate (3), and an applied voltage tube is applied to this electrode α◆ by a switching circuit (6) only during detection correction. Then, the transmitted light amount X'f at that time may be detected by the photoelectric conversion element a.

また、本発明においては、単に「光シャッタ」という表
現を用いるが、実施例で示し九通常のPl、ZT光シャ
ッタの他に、第6図に示す如(PI、ZT基板(3)上
に複数の電極CLiを配列し、それぞれの電極(至)に
対する電圧印加をスイッチング回路(6)で制御するよ
うKl、7’1−PLZT光シャッタアレイを含めた意
味である。このPLZT光シャッタアレイにおいても、
第一の実施例の如(PLZT基板(3)上に感熱素子(
7)を設けるとか、第6図に示すように電極に)の一つ
を光量検出用電極(15m)とし、その電圧印加時の透
過光量It光電変換素子αやにより検出させることによ
り、同様の効果が得られる。
In addition, in the present invention, the expression "optical shutter" is simply used, but in addition to the nine ordinary PI and ZT optical shutters shown in the embodiment, there is also a PI and ZT optical shutter as shown in FIG. This includes a 7'1-PLZT optical shutter array in which a plurality of electrodes CLi are arranged and voltage application to each electrode (to) is controlled by a switching circuit (6).In this PLZT optical shutter array, too,
As in the first embodiment (the heat sensitive element (
7), or as shown in Figure 6, one of the electrodes) is used as a light amount detection electrode (15 m), and the amount of transmitted light when voltage is applied is detected by the photoelectric conversion element α. Effects can be obtained.

本発明は、上述したように電歪物質による基板の温度変
化を直接または間接的に検出する検出素子を設け、その
検出信号に基づき電圧制御装置により基板上の電極に対
する印加電圧を制御するようにし九ので、基板に温度変
化が生じても複屈折率を一定に維持して、透過光量を常
に一定に保つ一定に#IA持できるものである。
As described above, the present invention provides a detection element that directly or indirectly detects the temperature change of the substrate caused by the electrostrictive material, and controls the voltage applied to the electrode on the substrate by a voltage control device based on the detection signal. Therefore, even if a temperature change occurs in the substrate, the birefringence can be maintained constant, and the amount of transmitted light can be kept constant at a constant #IA.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はPLZT光シャッタの説明図、!2図(a)(
勺はPLZTのΔn−E特性図、第3図は本発明の第一
の実施例を示す説明図、第4図は本発明の第二の実施例
を示す説明図、第5図は変形例を示す説明図、第6図は
PLZT光シャッタアレイの場合の説明図である。 1〜2・・・偏光子、3・・・基板、4・・・電極、7
・・・感熱素子(検出素子)、9・・・電圧制御装置、
11・・・光電変換素子(検出素子)、13・・・電圧
制御装置、15・・・電極
Figure 1 is an explanatory diagram of the PLZT optical shutter! Figure 2 (a) (
Figure 3 shows the Δn-E characteristic diagram of PLZT, Figure 3 is an explanatory diagram showing the first embodiment of the present invention, Figure 4 is an explanatory diagram showing the second embodiment of the invention, and Figure 5 is a modified example. FIG. 6 is an explanatory diagram showing the case of a PLZT optical shutter array. 1-2...Polarizer, 3...Substrate, 4...Electrode, 7
...thermal element (detection element), 9... voltage control device,
11... Photoelectric conversion element (detection element), 13... Voltage control device, 15... Electrode

Claims (1)

【特許請求の範囲】 1、電圧印加用の電極が形成され九電歪物質による基板
を二枚の偏光子間に配置してなる光シャッタにおいて、
前記基板の温度変化を直接または間接的に検出する検出
素子を設け、複屈折率を一定に維持するようこの検出素
子の検出信号に基づき前記基板上の電極に対する印加電
圧を制御する電圧制御装置を設けたことを特徴とする光
シャッタ。 龜 検出素子として感熱素子を用い、基板上に設置じて
その温度変化を直接的に検出させたことを特徴とする特
許請求の範囲第1項記載の光シャッタ。 3、検出素子として透過光量を検出する充電変換素子を
用い、この透過光量変化により基板の温度変化を間接的
に検出させたことを特徴とする特許請求の範囲第1項記
載の光シャッタ。
[Claims] 1. An optical shutter in which a substrate made of a nine-electrostrictive material on which an electrode for voltage application is formed is arranged between two polarizers,
A voltage control device includes a detection element that directly or indirectly detects a temperature change of the substrate, and controls a voltage applied to the electrode on the substrate based on a detection signal of the detection element so as to maintain a constant birefringence. A light shutter is provided. The optical shutter according to claim 1, characterized in that a heat-sensitive element is used as the detection element, and the temperature change thereof is directly detected by installing it on the substrate. 3. The optical shutter according to claim 1, wherein a charging conversion element for detecting the amount of transmitted light is used as the detection element, and a temperature change of the substrate is indirectly detected by the change in the amount of transmitted light.
JP10910481A 1981-07-13 1981-07-13 Optical shutter Pending JPS5810717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10910481A JPS5810717A (en) 1981-07-13 1981-07-13 Optical shutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10910481A JPS5810717A (en) 1981-07-13 1981-07-13 Optical shutter

Publications (1)

Publication Number Publication Date
JPS5810717A true JPS5810717A (en) 1983-01-21

Family

ID=14501673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10910481A Pending JPS5810717A (en) 1981-07-13 1981-07-13 Optical shutter

Country Status (1)

Country Link
JP (1) JPS5810717A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621903A (en) * 1983-01-14 1986-11-11 Sony Corporation Electro-optic light shutter
JPH0298692A (en) * 1988-06-29 1990-04-11 Westinghouse Electric Corp <We> Method of selecting procedure and procedure execution monitor
JPH03240022A (en) * 1990-02-17 1991-10-25 Fujitsu General Ltd Driving voltage controller for plzt optical device
WO2009086274A1 (en) * 2007-12-20 2009-07-09 Ravenbrick, Llc Thermally switched absorptive window shutter
US7755829B2 (en) 2007-07-11 2010-07-13 Ravenbrick Llc Thermally switched reflective optical shutter
US7768693B2 (en) 2007-01-24 2010-08-03 Ravenbrick Llc Thermally switched optical downconverting filter
US8102478B2 (en) 2005-03-15 2012-01-24 Serious Energy, Inc. Windows with electrically controllable transmission and reflection
US8867132B2 (en) 2009-10-30 2014-10-21 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
US9188804B2 (en) 2008-08-20 2015-11-17 Ravenbrick Llc Methods for fabricating thermochromic filters
US9256085B2 (en) 2010-06-01 2016-02-09 Ravenbrick Llc Multifunctional building component
US10247936B2 (en) 2009-04-10 2019-04-02 Ravenbrick Llc Thermally switched optical filter incorporating a guest-host architecture
WO2021070673A1 (en) 2019-10-09 2021-04-15 ニッタ株式会社 Light blocking member
WO2022209550A1 (en) 2021-03-29 2022-10-06 ニッタ株式会社 Light-blocking member

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621903A (en) * 1983-01-14 1986-11-11 Sony Corporation Electro-optic light shutter
JPH0298692A (en) * 1988-06-29 1990-04-11 Westinghouse Electric Corp <We> Method of selecting procedure and procedure execution monitor
JPH03240022A (en) * 1990-02-17 1991-10-25 Fujitsu General Ltd Driving voltage controller for plzt optical device
US8102478B2 (en) 2005-03-15 2012-01-24 Serious Energy, Inc. Windows with electrically controllable transmission and reflection
US8076661B2 (en) 2007-01-24 2011-12-13 Ravenbrick Llc Thermally switched optical downconverting filter
US7768693B2 (en) 2007-01-24 2010-08-03 Ravenbrick Llc Thermally switched optical downconverting filter
US7755829B2 (en) 2007-07-11 2010-07-13 Ravenbrick Llc Thermally switched reflective optical shutter
US8072672B2 (en) 2007-07-11 2011-12-06 Ravenbrick Llc Thermally switched reflective optical shutter
AU2008345570B2 (en) * 2007-12-20 2011-12-08 Ravenbrick, Llc Thermally switched absorptive window shutter
WO2009086274A1 (en) * 2007-12-20 2009-07-09 Ravenbrick, Llc Thermally switched absorptive window shutter
US8169685B2 (en) 2007-12-20 2012-05-01 Ravenbrick, Llc Thermally switched absorptive window shutter
US9188804B2 (en) 2008-08-20 2015-11-17 Ravenbrick Llc Methods for fabricating thermochromic filters
US10247936B2 (en) 2009-04-10 2019-04-02 Ravenbrick Llc Thermally switched optical filter incorporating a guest-host architecture
US8867132B2 (en) 2009-10-30 2014-10-21 Ravenbrick Llc Thermochromic filters and stopband filters for use with same
US9256085B2 (en) 2010-06-01 2016-02-09 Ravenbrick Llc Multifunctional building component
WO2021070673A1 (en) 2019-10-09 2021-04-15 ニッタ株式会社 Light blocking member
KR20220074881A (en) 2019-10-09 2022-06-03 니타 가부시키가이샤 light blocking member
WO2022209550A1 (en) 2021-03-29 2022-10-06 ニッタ株式会社 Light-blocking member
KR20230163414A (en) 2021-03-29 2023-11-30 니타 가부시키가이샤 Shading member

Similar Documents

Publication Publication Date Title
JPS5810717A (en) Optical shutter
EP0491429B1 (en) Projection display device
JPS58109859A (en) Voltage and electric field measuring device using light
JPH02249912A (en) Optical interference angular velocity meter
US4979796A (en) Thermally controlled optical fiber
JPS61277919A (en) Variable focal length lens
JPH01182824A (en) Optical element
US4621903A (en) Electro-optic light shutter
JPS58171880A (en) Wavelength control device for semiconductor laser
JPH01147528A (en) Secondary high harmonic light generating element
JPH02828A (en) Liquid crystal display device
JPS62270914A (en) Electro-optical shutter
US4408838A (en) System for the regulation of light for a sequential picture apparatus
SU989518A1 (en) Electric optical device for adjusting light radiation intensity
JP2758648B2 (en) Focus detection device
JPH07248339A (en) Optical sensor
JP3159823B2 (en) Optical electric field measuring device
JP2869180B2 (en) Infrared sensor
JP2009133850A (en) Polarization modulator and measuring apparatus
JP2007003949A (en) Optical device
JPS58196463A (en) Photoelectric field measuring apparatus
JPH01219821A (en) Liquid crystal optical shutter
SU373829A1 (en) COMPOUND CAMERA
SU658536A1 (en) Thermostat
JPH0285824A (en) Liquid crystal shutter head