JPS58100953A - Controller for electromagnetic stirrer - Google Patents

Controller for electromagnetic stirrer

Info

Publication number
JPS58100953A
JPS58100953A JP19712981A JP19712981A JPS58100953A JP S58100953 A JPS58100953 A JP S58100953A JP 19712981 A JP19712981 A JP 19712981A JP 19712981 A JP19712981 A JP 19712981A JP S58100953 A JPS58100953 A JP S58100953A
Authority
JP
Japan
Prior art keywords
mold
flow rate
cooling water
stirring
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19712981A
Other languages
Japanese (ja)
Inventor
Yukihiro Mikuni
三国 幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP19712981A priority Critical patent/JPS58100953A/en
Publication of JPS58100953A publication Critical patent/JPS58100953A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

PURPOSE:To correct the velocity of stirring flow at the solidification interface automatically to prescribed values with min. electric current by detecting the flow rate of mold cooling water, the water temp. on the inlet side, the water temp. on the outlet side and the drawing speed of ingots, and controlling the current and frequency of an electromagnetic stirrer in accordance with the prescribed velocity of stirring flow. CONSTITUTION:Electric power is supplied from an electric power source 5 to an electromagnetic stirrer 4 installed in a mold 3 to generate rotating or moving magnetic fields, by which the molten steel 1 in the mold 3 is stirred. The flow rate Vw of the cooling water in a flow passage 6 is detected with a flowmeter 7 and the water temps. theta1, theta2 on the inlet and outlet sides are detected with temp. detectors 8, 9. On the other hand, the drawing speed V of ingots is detected with a detector 10 for the drawing speed of ingots and the prescribed velocity Vs of stirring flow at the interface where a solidified shell 2 contacts the molten steel 1 is set as desired with a setter 12 for the velocity of stirring flow. The water flow rate Vw, the water temps. theta1, theta2, and the set velocity Vs of flow are inputted to an arithmetic device 11 which sets the current and frequency so as to minimize the output current to the power source 5 for the stirrer 4.

Description

【発明の詳細な説明】 発明の技術分野 本発明は電磁攪拌制御装置に係り、特に連続鋳造設備の
鋳型内に設置される電磁攪拌装置の攪拌力を鋳造条件の
変化に対して最適に調整するに好適な電磁攪拌制御装置
に関する0 発明の技術的背景 連続鋳造設備において、鋳片の品質向上のために鋳型内
鋳片の溶融部を電、磁力で攪拌する装置として、電、磁
攪拌装置が用いられる011M、磁攪拌装置は良く知ら
れる如く、多相9:流電流によって作らrする移動磁界
あるいは回転磁界による磁束が鋳型内鋳片の溶融部を横
切るとき、誘起型、圧を生じこれにより流れる電流と前
記磁束との相互作用により発生した霜1磁圧力により溶
鋼に流体運動を生じるという原理を利用した装置である
。電磁攪拌装置による鋳片の品質向上の効果は鋳片の凝
固界面における溶鋼に印加される攪拌エネルギーに依存
スル。ffl拌エネルギーは溶鋼に生じる攪拌流速と撹
拌力が働く時間の積であり、一定の鋳造条件では、後に
絆述する如<、1*、磁攪拌装置に給電される多相交流
電源の出力周波数及び出力電流〒定まる。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to an electromagnetic stirring control device, and in particular, to optimally adjust the stirring force of an electromagnetic stirring device installed in a mold of continuous casting equipment in response to changes in casting conditions. 0 Regarding an electromagnetic stirring control device suitable for As is well known, the magnetic stirrer used in the 011M is a multi-phase 9: When the magnetic flux generated by the moving magnetic field or rotating magnetic field created by a current flows across the molten part of the slab in the mold, an induced pressure is generated. This device utilizes the principle that fluid motion is generated in molten steel by the magnetic pressure generated by the interaction between the flowing current and the magnetic flux. The effectiveness of improving slab quality using an electromagnetic stirring device depends on the stirring energy applied to the molten steel at the solidification interface of the slab. ffl Stirring energy is the product of the stirring flow rate generated in the molten steel and the time during which the stirring force is applied, and under certain casting conditions, as will be described later, the output frequency of the multiphase AC power supply that supplies power to the magnetic stirrer is and output current is determined.

第1図はかかる原理に基〈従来の電磁攪拌制(財)装置
の概略構成図で、同図中1は鋳型3内に送入された溶鋼
、2は溶鋼1の鋳型3との接面で形成され7Ir#固殻
、4は電磁力により鋳型3内の溶鋼IK流体運動を生じ
させるための電磁攪拌装置、5は電磁攪拌装置4に多相
タ:流州、源を与える電源、6は鋳型3の冷却の為に用
いられる冷却水の流路、13は電源5の電流値を設定す
る電流設定器、14は電源5の周波数を設定する周波数
&定器である。
Figure 1 is a schematic configuration diagram of a conventional electromagnetic stirring control device based on this principle. 4 is an electromagnetic stirrer for generating molten steel IK fluid motion in the mold 3 by electromagnetic force; 5 is a power source that provides a multiphase source to the electromagnetic stirrer 4; 6 13 is a current setting device for setting the current value of the power source 5; and 14 is a frequency & constant device for setting the frequency of the power source 5.

かかる構成に於いて、鋳型3内の溶鋼lの攪拌エネルギ
ーを適正に設定する場合は、電、磁攪拌装置4に多相交
流α源を与える電源5の周波数設定器14で設定可能な
周波数fを一定にして設定出力電流工を電流設定器13
で調整していた。
In such a configuration, in order to appropriately set the stirring energy of the molten steel l in the mold 3, the frequency f that can be set with the frequency setting device 14 of the power source 5 that provides a multiphase AC α source to the electric/magnetic stirring device 4 is set. Current setting device 13 sets the output current while keeping it constant.
I was adjusting it.

背景技術の問題点 しかし、なから、かかる構成に於いては、@型条件が変
化し、鋳型3内の凝固殻の厚みが変化した場合、凝固界
面における攪拌エネルギーが変わるという欠点を有し、
借拌効来の最適性、安定性が望めないという問題点があ
る。
Problems with the Background Art However, this configuration has the disadvantage that when the @ mold conditions change and the thickness of the solidified shell in the mold 3 changes, the stirring energy at the solidified interface changes.
There is a problem that optimization and stability of the borrowing effect cannot be expected.

耗j下に、この理由を説明する。今、鋳型3内の電、磁
攪拌装菅4の表面より距離Xの位置にある溶鋼を通る移
a磁界又は回転磁界による磁束密度をB 、誘導により
生じる電、流密麿を1 、磁束密X         
                         
    X度B 及び電流密度IXの相乗効果により発
生する電磁圧力をP 、及び電磁圧力PKにより発生す
る流体の速度、つまり流速fvXとし、更に電磁攪拌装
置4の表面の磁束密度をB。とする。この場合、流速■
 はベルヌーイの定理より■ cc劃−・・・・・・(
1) x     x となる。ここで電磁圧力Pxは市、磁気学の教えるとこ
ろにより P  =i ・B         ・・・・・(2)
x     x   x となるが、i(流密度iXは移動磁界又は回転磁界によ
る磁束の位置変化速度による誘起電圧に依存するので、
電1磁撹拌装置4の電源5の周波数をfとすると、移動
磁界又は回転磁界の速度は周波数fに比例することから 1cx−B=f−・−・−(3) x     x となる。従って、(1)式、儲)式、 (3)式より流
速■、は v OCB −ρ−・・・・・・ (4)X となる。
The reason for this will be explained below. Now, the magnetic flux density due to the moving magnetic field or rotating magnetic field passing through the molten steel at a distance X

The electromagnetic pressure generated by the synergistic effect of X degrees B and current density IX is P, the velocity of the fluid generated by the electromagnetic pressure PK, that is, the flow velocity fvX, and the magnetic flux density on the surface of the electromagnetic stirring device 4 is B. shall be. In this case, the flow rate ■
From Bernoulli's theorem, ■ cc-・・・・・・(
1) x x. Here, the electromagnetic pressure Px is P = i ・B (2) according to the teachings of magnetism.
x
When the frequency of the power source 5 of the electric magnetic stirring device 4 is f, the speed of the moving magnetic field or the rotating magnetic field is proportional to the frequency f, so 1cx-B=f-.--(3) x x . Therefore, from equation (1), equation (3), the flow velocity ■ becomes v OCB -ρ-... (4)X.

ここで、電磁攪拌装置40表面より鋳型3の表面までの
距離をdl 、鋳型3の材料の比抵抗をρ1゜比透磁率
をμm とし、鋳型内溶鋼1の比抵抗をρ2゜比透磁率
を/l 2 とすると、磁束密度Bxは表皮効果により の関係式に従って減衰する。ここで、δ3.δ、は浸透
厚と呼ばれ の関係があることは良く知られている。また、比透磁ホ
μm、μ2は通常1i″であるので、(5)式(6)式
より となる。ところで表面磁束密度B。は1M、磁攪拌装[
4の起磁力に比例する。起磁力は電1源5の出力電随工
に比例するので、 BC,cKI              ・・・・・
・l)J’1となる。従って、(4)式、(5)式、(
7)式、(8)式より溶鋼の流速vx は となる。鋳型3内の溶鋼lの凝固殻2の平均厚みをd、
とすると、X = d、+(1; 、すなわち凝固界面
における溶鋼1の流速■ は(9)式よりとなる、 即ち、流速■8は電源の出力電流I及び周波数 ′fの
みならず凝固Na2にも依存する。従って鋳造条件の変
化、例えば鋳片引抜の変化、鋳型冷却条件の変化により
凝固殻2の厚みが変化すれば、電磁攪拌装置の電源周波
数、′@1流が一定であって41#固界面の攪拌流速は
変化することになり好オしくない。
Here, the distance from the surface of the electromagnetic stirring device 40 to the surface of the mold 3 is dl, the specific resistance of the material of the mold 3 is ρ1°, the relative magnetic permeability is μm, the specific resistance of the molten steel 1 in the mold is ρ2°, and the relative magnetic permeability is /l 2 , the magnetic flux density Bx attenuates according to the relational expression due to the skin effect. Here, δ3. It is well known that δ is called the penetration thickness and there is a relationship between the two. Also, since the relative magnetic permeability μm and μ2 are usually 1i'', equations (5) and (6) are obtained.By the way, the surface magnetic flux density B is 1M, and the magnetic stirring device [
It is proportional to the magnetomotive force of 4. Since the magnetomotive force is proportional to the output power of power source 1, BC, cKI...
・l) It becomes J'1. Therefore, equation (4), equation (5), (
From equations 7) and 8, the flow velocity vx of molten steel is as follows. The average thickness of the solidified shell 2 of the molten steel l in the mold 3 is d,
Then, X = d, +(1;, that is, the flow velocity of molten steel 1 at the solidification interface is obtained from equation (9). In other words, the flow velocity of molten steel 1 is determined by not only the output current I and frequency 'f of the power supply but also the solidification Na2 Therefore, if the thickness of the solidified shell 2 changes due to a change in casting conditions, such as a change in slab drawing or a change in mold cooling conditions, the power frequency of the electromagnetic stirrer, '@1 flow, remains constant. The stirring flow rate at the 41# solid surface changes, which is not desirable.

発明の目的 従って、本発明の目的は上記従来技術の欠点に鑑み、鋳
造条件の変化による凝固厚の変イヒに対しても、凝固界
面の攪拌1M速を所定の値に自動修正することを可能な
らしめると共にかかる目的で電源周波数及び電源電流t
X整する場合に、電源電流f最小にすることを可能なら
しめた連続鋳造設備の電磁攪拌制御装置を提供するにあ
る。
Purpose of the Invention Accordingly, the purpose of the present invention, in view of the above-mentioned drawbacks of the prior art, is to make it possible to automatically adjust the stirring speed of 1M at the solidification interface to a predetermined value even if the solidification thickness changes due to changes in casting conditions. In addition to adjusting the power supply frequency and power supply current t for such purposes,
An object of the present invention is to provide an electromagnetic stirring control device for continuous casting equipment that makes it possible to minimize the power supply current f when adjusting X.

発明の構成 上記目的を達成するために、本発明では電磁攪拌制御装
置を連続鋳造設備の鋳型内に設置され、鋳型的鋳片の溶
融部を攪拌する電、磁攪拌装置と、鋳型を冷却する冷却
水の流量vw を検出する流量検出装置と、鋳型入側の
冷却水の水温θ、を検出する温度検出装着と、鋳型出側
の冷却水の水温θ2を検出する温度検出装着と、鋳片の
引抜速ivを検出する引抜速度検出装置と、鋳片の溶融
部の撹拌流速v6  を設定する攪拌流速設定装置と、
冷却水の流1)vw、水温θ1.θ2.引抜速度V、攪
拌流速v6 に基いて電源周波数fiびに電流工の少な
くとも一方を算出して出力する演算装置と、演杓装置の
演算結果に基いて電磁攪拌装置の電流並びに周波数を制
御する電源装置とで構成するものである。
Structure of the Invention In order to achieve the above object, the present invention includes an electromagnetic stirring control device installed in a mold of continuous casting equipment, an electromagnetic stirring device that stirs the molten part of the cast slab, and a cooling device that cools the mold. A flow rate detection device that detects the flow rate vw of cooling water, a temperature detection installation that detects the temperature θ of the cooling water on the mold entry side, a temperature detection installation that detects the temperature θ2 of the cooling water on the mold exit side, and a slab a drawing speed detection device for detecting a drawing speed iv of the molten part of the slab;
Cooling water flow 1) vw, water temperature θ1. θ2. an arithmetic device that calculates and outputs at least one of the power supply frequency fi and the electric current based on the drawing speed V and the stirring flow rate v6; and a power source device that controls the current and frequency of the electromagnetic stirring device based on the calculation results of the ladle device. It consists of:

発明の実施例 以下、本発明の実施例を図面に従って説明する。Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明の一実施例に係る電磁攪拌制御装置の概
略構成図であり、前記第1図と同一部分は同一符号が付
されている0同図中7は冷却水の流路6内の冷却水流量
を検出する冷却水流量計(流量検出装置)、8は冷却水
の流路60入ロ側の冷却水温度を検出する入側温度検出
装置、9は冷却水の流路6の出口側の冷却水温度を検出
する出側温度検出装置、10は鋳型3より鋳片を引抜く
速度を検出する鋳片引抜速度検出装置、12は攪拌流速
v8  を設定する攪拌流速設定装置、11は冷却水流
量計7、入側温度検出装置8、出側温度検出装#9、鋳
片引抜速度検出装@ 10 、攪拌流速設定装置12の
各出力を演算して1源5の出力である多相交流電源の周
波数f並びに電流工f:設定する演算装置である。
FIG. 2 is a schematic configuration diagram of an electromagnetic stirring control device according to an embodiment of the present invention, in which the same parts as in FIG. 8 is an inlet temperature detection device that detects the cooling water temperature on the input side of the cooling water flow path 60; 9 is the cooling water flow path 6; 10 is a slab withdrawal speed detection device that detects the speed at which the slab is pulled out from the mold 3; 12 is a stirring flow rate setting device that sets the stirring flow rate v8; 11 calculates the outputs of the cooling water flow meter 7, the inlet temperature detection device 8, the outlet temperature detection device #9, the slab withdrawal speed detection device @ 10, and the stirring flow rate setting device 12, and calculates the output of 1 source 5. Frequency f and current f of a certain polyphase AC power supply: This is a calculation device that sets.

かかる構成に於いて、その動作′f:説明する前に、。In such a configuration, its operation 'f: Before explaining.

動作の前提となる理論的な根拠を説明する。Explain the theoretical basis underlying the operation.

〇(9式における凝固殻2の平均厚みd2は溶鋼1が受
ける鋳型3よりの抜熱量に比例することから、鋳型3内
の冷却水の流量をV 、冷却水入側温度をθ1 、冷却
水出側温質を02とし、鋳片の引抜速度をVとすると となる。そして、α(り式、αυ式よりとなる。ここで
、Aは鋳型材料の物性、鋳型3内の電、磁攪拌装置14
の取付付量で定まる定数、Bは鋳片の物性と冷却条件よ
り定まる定数である。、0カ式より亀流工は となる。ここで、Cは溶鋼1の流体的特質を定める定数
である。031式右辺は市、源周波数fの増加に対し減
少する因数と増加する因数を持つので、適当々周波数f
に対して最小値を持つことは明らかである。従って、こ
の電流工を最小にする周波数fは より明らかな如く 又は で与えられる。このとき電流工の最小値工minは0■
式、 (15+式より となる。但し、D=2.720である。
(Since the average thickness d2 of the solidified shell 2 in Equation 9 is proportional to the amount of heat removed from the mold 3 that the molten steel 1 receives, the flow rate of the cooling water in the mold 3 is V, the cooling water inlet temperature is θ1, and the cooling water If the outlet temperature is 02, and the slab withdrawal speed is V, then the α(ri formula and αυ formula) are obtained.Here, A is the physical property of the mold material and the electric and magnetic Stirring device 14
B is a constant determined by the amount of installation, and B is a constant determined by the physical properties of the slab and cooling conditions. , from the 0-ka type, Kiryuko becomes. Here, C is a constant that determines the fluid characteristics of the molten steel 1. The right side of equation 031 has a factor that decreases and a factor that increases as the source frequency f increases, so the frequency f
It is clear that it has a minimum value for . Therefore, the frequency f which minimizes this current flow is more clearly given by or. At this time, the minimum value of the electric current worker is 0■
Equation: (15+Equation). However, D=2.720.

即ち、鋳型冷却水の水1“■ 、入側水温θ1 。That is, the mold cooling water is 1"■, and the inlet water temperature is θ1.

出側水温θ、及び鋳片の引抜速度vf検出し、定数A、
B、Dを与え06)式、07)式で与えられる周波数及
び電流で電1磁攪拌装#4に起磁力を与えれば、最小の
電源電流で所定の凝固界面の攪拌流速を与えることがで
きる。
The outlet water temperature θ and the slab drawing speed vf are detected, and the constant A,
If B and D are given and a magnetomotive force is applied to the electromagnetic stirrer #4 at the frequency and current given by equations 06) and 07), it is possible to provide a predetermined stirring flow rate at the solidification interface with the minimum power supply current. .

かかる動作原理に基いて、次に第2図の構成を有する本
実施例の電磁攪拌制御装置の動作を説明する。
Based on this operating principle, the operation of the electromagnetic stirring control device of this embodiment having the configuration shown in FIG. 2 will be explained next.

鋳型3内に設置された電磁攪拌装置4は電源5より給電
されることにより回転又は移動磁界を生じ、鋳型3内の
溶鋼1′ft攪拌する。溶鋼1は鋳型3より抜熱される
ことにより鋳型3に接した部分に凝固殻2を生じる。鋳
型3は冷却水により冷却されるが、流量1!+7で流路
6内の冷却水流tv。
An electromagnetic stirring device 4 installed in the mold 3 generates a rotating or moving magnetic field by being supplied with power from a power source 5, and stirs 1'ft of molten steel in the mold 3. The heat of the molten steel 1 is removed from the mold 3, so that a solidified shell 2 is formed in the portion in contact with the mold 3. The mold 3 is cooled by cooling water, but the flow rate is 1! Cooling water flow tv in flow path 6 at +7.

が、入側温度検出装置8で冷却水出側温度θ、か。However, the inlet temperature detection device 8 detects the cooling water outlet temperature θ.

出側温度検出装[9で冷却水出側温度θ、がそれぞれ検
出される。一方、鋳片の引抜速度Vは鋳片引vj速度検
出装置10て検出される。、凝固殻2の溶鋼1と接する
面、即ち凝固界面での所定攪拌流速v6は攪拌流速設定
装置]2で任意に設定される。
The cooling water outlet temperature θ is detected by the outlet temperature detection device [9]. On the other hand, the slab drawing speed V is detected by a slab drawing speed detection device 10. The predetermined stirring flow rate v6 at the surface of the solidified shell 2 in contact with the molten steel 1, that is, at the solidification interface, is arbitrarily set by the stirring flow rate setting device]2.

冷却水流量計7で検出された冷却水流ivッ 。Cooling water flow detected by cooling water flow meter 7 iv.

入側温度検出装置8で横用された冷却水入側温度θ1 
、出側温度検出装置9で検出された冷却水出側温度θ2
 、@片引抜法度検出装置10で検出さn斤引抜速度V
並びに攪拌流速設定装置12に設定さj、た攪拌流速の
設定値■8は演算装置11に入力され、ここで前に述べ
た06)式、 Q7)式の演薯が行なわれ、電、磁攪拌
装置4用の電源5への出力組流設定値工及び周波数fが
得られる。即ち、ta攪拌装置4の周波数f及び電流工
は0Φ式 07)式を#たすように自動修正される。
Cooling water inlet temperature θ1 used laterally by the inlet temperature detection device 8
, the cooling water outlet temperature θ2 detected by the outlet temperature detection device 9
, @N loaf drawing speed V detected by the single drawing speed detection device 10
In addition, the setting value 8 of the stirring flow rate set in the stirring flow rate setting device 12 is inputted to the calculation device 11, where the equations 06) and Q7) described earlier are performed, and the electric, magnetic, The output set value and frequency f to the power supply 5 for the stirring device 4 are obtained. That is, the frequency f and electric current of the ta stirring device 4 are automatically corrected so as to satisfy the 0Φ equation 07).

この様に、鋳型冷却水の流量、入側温度、出側温度及び
鋳片の引抜速度を検出して、攪拌流速の設定値と共に(
16)弐 0′I)式 の関係を満足する様に電磁攪拌
装置の′N1流及び周波数を設定することにより、起磁
力の調整を行ない、鋳造条件の変動に対しても最小の電
流で鋳型内凝固界面の攪拌流速を所定の値に自動修正す
ることが出来るものである。
In this way, the mold cooling water flow rate, inlet temperature, outlet temperature, and slab drawing speed are detected, and together with the set value of the stirring flow rate (
16) By setting the 'N1 current and frequency of the electromagnetic stirrer so as to satisfy the relationship shown in the following equation, the magnetomotive force can be adjusted, and the mold can be maintained with the minimum current even when the casting conditions change. The stirring flow rate at the inner solidification interface can be automatically adjusted to a predetermined value.

発明の効果 以上述べた如く、本発明によれば鋳片の電磁攪拌を行う
に当って、鋳造条件が変化しても、凝固界面の攪拌流速
を最小の電流で所定の値に自動制御することを可能なら
しめた新規の電1磁攪拌装置を得ることが出来るもので
ある。
Effects of the Invention As described above, according to the present invention, when performing electromagnetic stirring of slabs, even if the casting conditions change, the stirring flow rate at the solidification interface can be automatically controlled to a predetermined value with the minimum current. This makes it possible to obtain a new electromagnetic stirring device that makes it possible to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁攪拌装置1装置の概略構成図、第2
図は本発明の一実施例に係る電磁攪拌制御装置の概略構
成図である。 l・・・溶鋼、2・・・凝固殻、3・・・鋳型、4・・
・電磁攪拌装置、5・・・電源、6・・・冷却水の流路
、7・・・冷却水流f針(流量検出装置)、8・・・入
(lu11温度検出装置、9・・・出側温度検出装置、
10・鋳片引抜速度検出装置’+1.1・・演算装置、
12・・・攪拌流速設定装置C 出願人代理人  祷  股     清(15) 郁1図
Figure 1 is a schematic diagram of the conventional electromagnetic stirring device 1,
The figure is a schematic configuration diagram of an electromagnetic stirring control device according to an embodiment of the present invention. l... Molten steel, 2... Solidified shell, 3... Mold, 4...
・Electromagnetic stirring device, 5...Power source, 6...Cooling water flow path, 7...Cooling water flow f needle (flow rate detection device), 8...In (LU11 temperature detection device, 9... Outlet temperature detection device,
10. Slab drawing speed detection device'+1.1...Arithmetic device,
12...Agitation flow rate setting device C Applicant's representative Kiyoshi Ikuta (15) Figure 1

Claims (1)

【特許請求の範囲】 1、連続鋳造設備の鋳型内に設置され、鋳型的鋳片の溶
融部を攪拌する電磁攪拌装置と、鋳型を冷却する冷却水
の情景vWを恢出する流敞検出装置と、鋳型入側の冷却
水の水温θ1を検出する温度検出装置と、鋳型m個の冷
却水の水温θ2を検出する温度検出装置と、鋳片の引抜
速度Vを検出する引抜速度検出装置と、鋳片の溶融部の
攪拌流速■8を設定する攪拌流速設定装置と、冷却水の
流量VW、水温θ3.θ3、引抜速度■、攪拌流速v8
に基いて電源周波数f亜びに電流工の少なくとも一方を
算出して出力する演算装置と、演算装置の演算結果に基
いて電磁攪拌装置の電流並びに周波数を制御する電源装
置とから成る事を特徴とする雷、磁攪拌制御装置。 2演算装を°に於いて、電源周波数fを予め定められた
設定値として、更に定数A、B、Cを設定した上で なる演算を行なうことf特徴とした特許請求の範囲第1
項に記載の電磁攪拌制御装置。 3、演算装置に於いて、定数A、B、Dを設定した上で 1 = DV8(A十B)ト(θ2−θ、))なる演算
を行なうことを特徴とする特許請求の範囲第1項に記載
の電磁攪拌制御装置。
[Claims] 1. An electromagnetic stirring device that is installed in a mold of continuous casting equipment and stirs the molten part of a mold-like slab, and a flow rate detection device that determines the scene vW of cooling water that cools the mold. , a temperature detection device that detects the temperature θ1 of the cooling water on the mold entry side, a temperature detection device that detects the temperature θ2 of the cooling water of m molds, and a drawing speed detection device that detects the drawing speed V of the slab. , an agitation flow rate setting device for setting the agitation flow rate (8) of the molten part of the slab, a cooling water flow rate VW, a water temperature θ3. θ3, drawing speed ■, stirring flow rate v8
It is characterized by comprising a calculation device that calculates and outputs at least one of the power supply frequency f and the current frequency based on the calculation result, and a power supply device that controls the current and frequency of the electromagnetic stirring device based on the calculation results of the calculation device. Lightning, magnetic stirring control device. Claim 1 characterized in that the calculation is performed by setting the power supply frequency f to a predetermined setting value and further setting constants A, B, and C using two calculation units at °.
The electromagnetic stirring control device described in . 3. In the arithmetic device, after setting constants A, B, and D, the following calculation is performed: 1 = DV8 (A + B) (θ2 - θ, )) The electromagnetic stirring control device described in .
JP19712981A 1981-12-08 1981-12-08 Controller for electromagnetic stirrer Pending JPS58100953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19712981A JPS58100953A (en) 1981-12-08 1981-12-08 Controller for electromagnetic stirrer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19712981A JPS58100953A (en) 1981-12-08 1981-12-08 Controller for electromagnetic stirrer

Publications (1)

Publication Number Publication Date
JPS58100953A true JPS58100953A (en) 1983-06-15

Family

ID=16369220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19712981A Pending JPS58100953A (en) 1981-12-08 1981-12-08 Controller for electromagnetic stirrer

Country Status (1)

Country Link
JP (1) JPS58100953A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397512B1 (en) * 2000-11-10 2003-09-13 한국타이어 주식회사 Chiller of Rubber Mixing Machine
KR100482621B1 (en) * 2002-11-20 2005-04-14 한국타이어 주식회사 A cooling water control system of mill apparatus for rubber mixing
WO2005042186A1 (en) * 2003-10-27 2005-05-12 Siemens Aktiengesellschaft Device and method for electromagnetically stirring or slowing down cast metal, especially continuously cast steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397512B1 (en) * 2000-11-10 2003-09-13 한국타이어 주식회사 Chiller of Rubber Mixing Machine
KR100482621B1 (en) * 2002-11-20 2005-04-14 한국타이어 주식회사 A cooling water control system of mill apparatus for rubber mixing
WO2005042186A1 (en) * 2003-10-27 2005-05-12 Siemens Aktiengesellschaft Device and method for electromagnetically stirring or slowing down cast metal, especially continuously cast steel

Similar Documents

Publication Publication Date Title
KR101396734B1 (en) Method and apparatus for controlling the flow of molten steel in a mould
JP4865944B2 (en) Method and apparatus for controlling metal flow in continuous casting using electromagnetic fields
EP2682201A1 (en) Method and apparatus for the continuous casting of aluminium alloys
JP6358178B2 (en) Continuous casting method and mold cooling water control device
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
US5063990A (en) Method and apparatus for improved melt flow during continuous strip casting
JPS58100953A (en) Controller for electromagnetic stirrer
JPH03275256A (en) Method for controlling drift flow of molten steel in continuous casting mold
RU2196021C2 (en) Plant for continuous casting of slabs of melt metal
JPS5897471A (en) Controlling device for electromagnetic agitation
JPS6049850A (en) Method for controlling flow rate of secondary coolant in continuous casting plant
JPH02200362A (en) Method for predicting and restraining nozzle clogging in continuous casting apparatus
JPS61279351A (en) Method and mold for continuous casting
JPS58112643A (en) Controlling method for electromagnetic stirring for continuous casting installation
US4824078A (en) Magnetic streamlining and flow control in tundishes
JPS61199557A (en) Device for controlling flow rate of molten steel in mold for continuous casting
JPH02192863A (en) Method for controlling molten metal surface level in mold for continuous casting
JPH0523804A (en) Production of cast steel slab
Goman et al. Modeling electromagnetic stirring processes during continuous casting of large-format slabs
JPS57149052A (en) Method and device for continuous casting of metal
JPH10272546A (en) Method for preventing variation of molten metal surface level in continuous casting and device therefor
JPH03294053A (en) Method for controlling drift flow of molten steel in continuous casting mold
JPH09182943A (en) Continuous casting method of steel
JPH0561024B2 (en)
JPS60196254A (en) Method for controlling cutting length of continuous casting billet